#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"
/* pre-5.10 compatibility */
#ifndef GV_NOTQUAL
# define GV_NOTQUAL 1
#endif
#ifndef gv_fetchpvs
# define gv_fetchpvs gv_fetchpv
#endif
/* pre-5.8 compatibility */
#ifndef PERL_MAGIC_tied
# define PERL_MAGIC_tied 'P'
#endif
#include "multicall.h"
/* workaround for buggy multicall API */
#ifndef cxinc
# define cxinc() Perl_cxinc (aTHX)
#endif
#define dCMP \
dMULTICALL; \
void *cmp_data; \
I32 gimme = G_SCALAR;
#define CMP_PUSH(sv) \
PUSH_MULTICALL (cmp_push_ (sv));\
cmp_data = multicall_cop;
#define CMP_POP \
POP_MULTICALL;
#define dCMP_CALL(data) \
OP *multicall_cop = (OP *)data;
static void *
cmp_push_ (SV *sv)
{
HV *st;
GV *gvp;
CV *cv;
cv = sv_2cv (sv, &st, &gvp, 0);
if (!cv)
croak ("%s: callback must be a CODE reference or another callable object", SvPV_nolen (sv));
SAVESPTR (PL_firstgv ); PL_firstgv = gv_fetchpv ("a", GV_ADD | GV_NOTQUAL, SVt_PV); SAVESPTR (GvSV (PL_firstgv ));
SAVESPTR (PL_secondgv); PL_secondgv = gv_fetchpv ("b", GV_ADD | GV_NOTQUAL, SVt_PV); SAVESPTR (GvSV (PL_secondgv));
return cv;
}
/*****************************************************************************/
static SV *
sv_first (SV *sv)
{
if (SvROK (sv) && SvTYPE (SvRV (sv)) == SVt_PVAV)
{
AV *av = (AV *)SvRV (sv);
sv = AvFILLp (av) < 0 || !AvARRAY (sv)[0]
? &PL_sv_undef : AvARRAY (av)[0];
}
return sv;
}
static void
set_idx (SV *sv, int idx)
{
if (!SvROK (sv))
return;
sv = SvRV (sv);
if (SvTYPE (sv) != SVt_PVAV)
return;
if (
AvFILL ((AV *)sv) < 1
|| AvARRAY ((AV *)sv)[1] == 0
|| AvARRAY ((AV *)sv)[1] == &PL_sv_undef)
av_store ((AV *)sv, 1, newSViv (idx));
else
{
sv = AvARRAY ((AV *)sv)[1];
if (SvTYPE (sv) == SVt_IV)
SvIV_set (sv, idx);
else
sv_setiv (sv, idx);
}
}
#define set_heap(idx,he) \
do { \
if (flags) \
set_idx (he, idx); \
heap [idx] = he; \
} while (0)
static int
cmp_nv (SV *a, SV *b, void *cmp_data)
{
a = sv_first (a);
b = sv_first (b);
return SvNV (a) > SvNV (b);
}
static int
cmp_sv (SV *a, SV *b, void *cmp_data)
{
a = sv_first (a);
b = sv_first (b);
return sv_cmp (a, b) > 0;
}
static int
cmp_custom (SV *a, SV *b, void *cmp_data)
{
dCMP_CALL (cmp_data);
GvSV (PL_firstgv ) = a;
GvSV (PL_secondgv) = b;
MULTICALL;
if (SvTRUE (ERRSV))
croak (NULL);
{
dSP;
return TOPi > 0;
}
}
/*****************************************************************************/
typedef int (*f_cmp)(SV *a, SV *b, void *cmp_data);
static AV *
array (SV *ref)
{
if (SvROK (ref)
&& SvTYPE (SvRV (ref)) == SVt_PVAV
&& !SvTIED_mg (SvRV (ref), PERL_MAGIC_tied))
return (AV *)SvRV (ref);
croak ("argument 'heap' must be a (non-tied) array");
}
#define gt(a,b) cmp ((a), (b), cmp_data)
/*****************************************************************************/
/* away from the root */
static void
downheap (AV *av, f_cmp cmp, void *cmp_data, int N, int k, int flags)
{
SV **heap = AvARRAY (av);
SV *he = heap [k];
for (;;)
{
int c = (k << 1) + 1;
if (c >= N)
break;
c += c + 1 < N && gt (heap [c], heap [c + 1])
? 1 : 0;
if (!(gt (he, heap [c])))
break;
set_heap (k, heap [c]);
k = c;
}
set_heap (k, he);
}
/* towards the root */
static void
upheap (AV *av, f_cmp cmp, void *cmp_data, int k, int flags)
{
SV **heap = AvARRAY (av);
SV *he = heap [k];
while (k)
{
int p = (k - 1) >> 1;
if (!(gt (heap [p], he)))
break;
set_heap (k, heap [p]);
k = p;
}
set_heap (k, he);
}
/* move an element suitably so it is in a correct place */
static void
adjustheap (AV *av, f_cmp cmp, void *cmp_data, int N, int k, int flags)
{
SV **heap = AvARRAY (av);
if (k > 0 && !gt (heap [k], heap [(k - 1) >> 1]))
upheap (av, cmp, cmp_data, k, flags);
else
downheap (av, cmp, cmp_data, N, k, flags);
}
/*****************************************************************************/
static void
make_heap (AV *av, f_cmp cmp, void *cmp_data, int flags)
{
int i, len = AvFILLp (av);
/* do not use floyds algorithm, as I expect the simpler and more cache-efficient */
/* upheap is actually faster */
for (i = 0; i <= len; ++i)
upheap (av, cmp, cmp_data, i, flags);
}
static void
push_heap (AV *av, f_cmp cmp, void *cmp_data, SV **elems, int nelems, int flags)
{
int i;
av_extend (av, AvFILLp (av) + nelems);
/* we do it in two steps, as the perl cmp function might copy the stack */
for (i = 0; i < nelems; ++i)
AvARRAY (av)[++AvFILLp (av)] = newSVsv (elems [i]);
for (i = 0; i < nelems; ++i)
upheap (av, cmp, cmp_data, AvFILLp (av) - i, flags);
}
static SV *
pop_heap (AV *av, f_cmp cmp, void *cmp_data, int flags)
{
int len = AvFILLp (av);
if (len < 0)
return &PL_sv_undef;
else if (len == 0)
return av_pop (av);
else
{
SV *top = av_pop (av);
SV *result = AvARRAY (av)[0];
AvARRAY (av)[0] = top;
downheap (av, cmp, cmp_data, len, 0, flags);
return result;
}
}
static SV *
splice_heap (AV *av, f_cmp cmp, void *cmp_data, int idx, int flags)
{
int len = AvFILLp (av);
if (idx < 0 || idx > len)
return &PL_sv_undef;
else if (idx == len)
return av_pop (av); /* the last element */
else
{
SV *top = av_pop (av);
SV *result = AvARRAY (av)[idx];
AvARRAY (av)[idx] = top;
adjustheap (av, cmp, cmp_data, len, idx, flags);
return result;
}
}
static void
adjust_heap (AV *av, f_cmp cmp, void *cmp_data, int idx, int flags)
{
int len = AvFILLp (av);
if (idx > len)
croak ("Array::Heap::adjust_heap: index out of array bounds");
adjustheap (av, cmp, cmp_data, len + 1, idx, flags);
}
MODULE = Array::Heap PACKAGE = Array::Heap
void
make_heap (SV *heap)
PROTOTYPE: \@
ALIAS:
make_heap_idx = 1
CODE:
make_heap (array (heap), cmp_nv, 0, ix);
void
make_heap_lex (SV *heap)
PROTOTYPE: \@
CODE:
make_heap (array (heap), cmp_sv, 0, 0);
void
make_heap_cmp (SV *cmp, SV *heap)
PROTOTYPE: &\@
CODE:
{
dCMP;
CMP_PUSH (cmp);
make_heap (array (heap), cmp_custom, cmp_data, 0);
CMP_POP;
}
void
push_heap (SV *heap, ...)
PROTOTYPE: \@@
ALIAS:
push_heap_idx = 1
CODE:
push_heap (array (heap), cmp_nv, 0, &(ST(1)), items - 1, ix);
void
push_heap_lex (SV *heap, ...)
PROTOTYPE: \@@
CODE:
push_heap (array (heap), cmp_sv, 0, &(ST(1)), items - 1, 0);
void
push_heap_cmp (SV *cmp, SV *heap, ...)
PROTOTYPE: &\@@
CODE:
{
SV **st_2 = &(ST(2)); /* multicall.h uses PUSHSTACK */
dCMP;
CMP_PUSH (cmp);
push_heap (array (heap), cmp_custom, cmp_data, st_2, items - 2, 0);
CMP_POP;
}
SV *
pop_heap (SV *heap)
PROTOTYPE: \@
ALIAS:
pop_heap_idx = 1
CODE:
RETVAL = pop_heap (array (heap), cmp_nv, 0, ix);
OUTPUT:
RETVAL
SV *
pop_heap_lex (SV *heap)
PROTOTYPE: \@
CODE:
RETVAL = pop_heap (array (heap), cmp_sv, 0, 0);
OUTPUT:
RETVAL
SV *
pop_heap_cmp (SV *cmp, SV *heap)
PROTOTYPE: &\@
CODE:
{
dCMP;
CMP_PUSH (cmp);
RETVAL = pop_heap (array (heap), cmp_custom, cmp_data, 0);
CMP_POP;
}
OUTPUT:
RETVAL
SV *
splice_heap (SV *heap, int idx)
PROTOTYPE: \@$
ALIAS:
splice_heap_idx = 1
CODE:
RETVAL = splice_heap (array (heap), cmp_nv, 0, idx, ix);
OUTPUT:
RETVAL
SV *
splice_heap_lex (SV *heap, int idx)
PROTOTYPE: \@$
CODE:
RETVAL = splice_heap (array (heap), cmp_sv, 0, idx, 0);
OUTPUT:
RETVAL
SV *
splice_heap_cmp (SV *cmp, SV *heap, int idx)
PROTOTYPE: &\@$
CODE:
{
dCMP;
CMP_PUSH (cmp);
RETVAL = splice_heap (array (heap), cmp_custom, cmp_data, idx, 0);
CMP_POP;
}
OUTPUT:
RETVAL
void
adjust_heap (SV *heap, int idx)
PROTOTYPE: \@$
ALIAS:
adjust_heap_idx = 1
CODE:
adjust_heap (array (heap), cmp_nv, 0, idx, ix);
void
adjust_heap_lex (SV *heap, int idx)
PROTOTYPE: \@$
CODE:
adjust_heap (array (heap), cmp_sv, 0, idx, 0);
void
adjust_heap_cmp (SV *cmp, SV *heap, int idx)
PROTOTYPE: &\@$
CODE:
{
dCMP;
CMP_PUSH (cmp);
adjust_heap (array (heap), cmp_custom, cmp_data, idx, 0);
CMP_POP;
}