Synopsis

Take a data structure in Perl, and automatically write a Python3 script using matplotlib to generate an image. The Python3 script is saved in /tmp, to be edited at the user's discretion. Requires python3 and matplotlib installations.

My aim is to simplify the most common tasks as much as possible. In my opinion, using this module is much easier than matplotlib itself.

Single Plots

Simplest use case:

use Matplotlib::Simple;
bar({
   'output.file'     => '/tmp/gospel.word.counts.png',
   data              => {
	  Matthew => 18345,
	  Mark    => 11304,
	  Luke    => 19482,
	  John    => 15635,
   }
});

A more complete (and slightly faster execution):

use Matplotlib::Simple;
plt({
   'output.file'     => '/tmp/gospel.word.counts.png',
   'plot.type'       => 'bar',
   data              => {
	  Matthew => 18345,
	  Mark    => 11304,
	  Luke    => 19482,
	  John    => 15635,
   }
});
gospel word counts

Multiple Plots

Having a plots argument as an array lets the module know to create subplots:

use Matplotlib::Simple 'plt';
plt({
	'output.file'	=> 'svg/pies.png',
	plots             => [
    {
			data	=> {
			 Russian => 106_000_000,  # Primarily European Russia
    		 German => 95_000_000,    # Germany, Austria, Switzerland, etc.
    		},
    		'plot.type'	=> 'pie',
    		title       => 'Top Languages in Europe',
		    suptitle    => 'Pie in subplots',
		},
    	{
    		data	=> {
    		 Russian => 106_000_000,  # Primarily European Russia
    		 German => 95_000_000,    # Germany, Austria, Switzerland, etc.
	    	},
	    	'plot.type'	=> 'pie',
	    	title       => 'Top Languages in Europe',
	    },
    ],
    ncols    => 2,
});

which produces the following subplots image:

pies

bar, barh, boxplot, hexbin, hist, hist2d, imshow, pie, plot, scatter, and violinplot all match the methods in matplotlib itself.

Options

sharex and sharey are both implemented at the plot, rather than subplot, level. See Matplotlib's documentation for more clarity.

Color Bars (colorbars)

Colarbar args attempt to match matplotlib closely

| Option | Description | Example | | -------- | ------- | ------- |cbdrawedges | Whether to draw lines at color boundaries | cbdrawedges => 1| |cblabel | The label on the colorbar's long axis | cblabel => 1 | |cblocation | of the colorbar None or {'left', 'right', 'top', 'bottom'} | | |cborientation | # None or {vertical, horizontal} | |cbpad | pad : float, default: 0.05 if vertical, 0.15 if horizontal; Fraction of original Axes between colorbar and new image Axes |cb_logscale | Perl true (anything but 0) or false (0)| | |shared.colorbar | share colorbar between different plots: specify plot indices | 'shared.colorbar' => [0,1]|

Size/Dimensions of output file

| Option | Description | Example | | -------- | ------- | ------- | |scale | scale/multiply the size of the output figure | scale => 2.4| |scalex | scale/multiply the x-axis only | scalex => 2.4 | |scaley | scale/multiply the y-axis only | scalex => 1.4 |

Examples/Plot Types

Consider the following helper subroutines to generate data to plot:

sub linspace { # mostly written by Grok
   my ($start, $stop, $num, $endpoint) = @_; # endpoint means include $stop
   $num = defined $num ? int($num) : 50; # Default to 50 points
   $endpoint = defined $endpoint ? $endpoint : 1; # Default to include endpoint
   return () if $num < 0; # Return empty array for invalid num
   return ($start) if $num == 1; # Return single value if num is 1
   my (@result, $step);

   if ($endpoint) {
       $step = ($stop - $start) / ($num - 1) if $num > 1;
       for my $i (0 .. $num - 1) {
         $result[$i] = $start + $i * $step;
       }
  } else {
     $step = ($stop - $start) / $num;
     for my $i (0 .. $num - 1) {
	    $result[$i] = $start + $i * $step;
     }
  }
   return @result;
}

sub generate_normal_dist {
	my ($mean, $std_dev, $size) = @_;
	$size = defined $size ? int $size : 100; # default to 100 points
	my @numbers;
	for (1 .. int($size / 2) + 1) {# Box-Muller transform
		my $u1 = rand();
		my $u2 = rand();
    	my $z0 = sqrt(-2.0 * log($u1)) * cos(2.0 * 3.141592653589793 * $u2);
	    my $z1 = sqrt(-2.0 * log($u1)) * sin(2.0 * 3.141592653589793 * $u2); # Scale and shift to match mean and std_dev
	    push @numbers, ($z0 * $std_dev + $mean, $z1 * $std_dev + $mean);
	} # Trim to exact size if needed
    @numbers = @numbers[0 .. $size - 1] if @numbers > $size;
	@numbers = map {sprintf '%.1f', $_} @numbers;
    return \@numbers;
}
sub rand_between {
    my ($min, $max) = @_;
    return $min + rand($max - $min)
}

Barplot/bar/barh

Plot a hash or a hash of arrays as a boxplot

Options

| Option | Description | Example | | -------- | ------- | ------- |color| :mpltype:color or list of :mpltype:color, optional; The colors of the bar faces. This is an alias for facecolor. If both are given, facecolor takes precedence # if entering multiple colors, quoting isn't needed; as of version 0.23, colors can be given as a hash |color => ['red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'fuchsia'], or a single color for all bars color => 'red', or as of version 0.23 color => {A => 'red', B => 'green'} |edgecolor| :mpltype:color or list of :mpltype:color, optional; The colors of the bar edges|edgecolor => 'black' |key.order| define the keys in an order (an array reference)|'key.order' => ['Sun','Mon','Tue','Wed','Thu','Fri','Sat'], |linewidth| float or array, optional; Width of the bar edge(s). If 0, don't draw edges. Only does anything with defined edgecolor|linewidth => 2, |log| bool, default: False; If True, set the y-axis to be log scale.|log = 'True', |stacked| stack the groups on top of one another; default 0 = off|stacked => 1, |width| float only, default: 0.8; The width(s) of the bars. width will be deactivated with grouped, non-stacked bar plots |width => 0.4, |xerr| float or array-like of shape(N,) or shape(2, N), optional. If not None, add horizontal / vertical errorbars to the bar tips. The values are +/- sizes relative to the data: - scalar: symmetric +/- values for all bars # - shape(N,): symmetric +/- values for each bar # - shape(2, N): Separate - and + values for each bar. First row # contains the lower errors, the second row contains the upper # errors. # - None: No errorbar. (Default)|yerr => {'USA' => [15,29], 'Russia' => [199,1000],} |yerr|same as xerr, but better with bar|

an example of multiple plots, showing many options:

single, simple plot

use Matplotlib::Simple 'plt';
plt({
    'output.file'			=> 'output.images/single.barplot.png',
    data	=> { # simple hash
	    Fri => 76, Mon	=> 73, Sat => 26, Sun => 11, Thu	=> 94, Tue	=> 93, Wed	=> 77
    },
    'plot.type'	=> 'bar',
    xlabel		=> '# of Days',
    ylabel		=> 'Count',
    title		=> 'Customer Calls by Days'
});

where xlabel, ylabel, title, etc. are axis methods in matplotlib itself. plot.type, data, fh are all specific to MatPlotLib::Simple. single barplot

multiple plots

plt({
    fh                  => $fh,
    execute				   => 0,
    'output.file'	=> 'output.images/barplots.png',
    plots					=> [
	{ # simple plot
		    data	=> { # simple hash
			    Fri => 76, Mon	=> 73, Sat => 26, Sun => 11, Thu	=> 94, Tue	=> 93, Wed	=> 77
    		},
			'plot.type'	=> 'bar',
		   'key.order'		=> ['Sun','Mon','Tue','Wed','Thu','Fri','Sat'],
	    	suptitle			=> 'Types of Plots', # applies to all
    		color				=> ['red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'fuchsia'],
			edgecolor		=> 'black',
		    set_figwidth	=> 40/1.5, # applies to all plots
    		set_figheight	=> 30/2, # applies to all plots
    		title				=> 'bar: Rejections During Job Search',
			xlabel			=> 'Day of the Week',
			ylabel			=> 'No. of Rejections'
		},
    	{ # grouped bar plot
		    'plot.type'	=> 'bar',
		    data	=> {
			    1941 => {
	    		   UK       => 6.6,
    			   US       => 6.2,
				   USSR     => 17.8,
			       Germany => 26.6
		    	},
	    		1942 => {
    			  UK      => 7.6,
				  US      => 26.4,
		    	  USSR    => 19.2,
			      Germany => 29.7
     			},
				1943 => {
			   	 UK      => 7.9,
			      US      => 61.4,
	    		  USSR    => 22.5,
    			  Germany => 34.9
				},
			    1944 => {
			      UK      => 7.4,
		    	  US      => 80.5,
        		  USSR    => 27.0,
				  Germany => 31.4
			    },
			    1945 => {
			      UK      => 5.4,
		    	  US      => 83.1,
	    		  USSR    => 25.5,
    			  Germany => 11.2 #Rapid decrease due to war's end	
				},
	    	},
    		stacked	=> 0,
			title		=> 'Hash of Hash Grouped Unstacked Barplot',
		    width		=> 0.23,
	    	xlabel	=> 'r"$\it{anno}$ $\it{domini}$"', # italic
    		ylabel	=> 'Military Expenditure (Billions of $)'
		},
	     { # grouped bar plot
		    'plot.type'	=> 'bar',
		    data	=> {
	    		1941 => {
    			  UK      => 6.6,
				  US      => 6.2,
			      USSR    => 17.8,
		    	  Germany => 26.6
	    		},
    			1942 => {
				  UK      => 7.6,
			      US      => 26.4,
		    	  USSR    => 19.2,
	    		  Germany => 29.7
    			},
				1943 => {
				  UK      => 7.9,
			      US      => 61.4,
		     	  USSR    => 22.5,
	    		  Germany => 34.9
    			},
				1944 => {
			      UK      => 7.4,
		    	  US      => 80.5,
	    		  USSR    => 27.0,
    			  Germany => 31.4
				},
			    1945 => {
		    	  UK      => 5.4,
	    		  US      => 83.1,
    			  USSR    => 25.5,
				   Germany => 11.2 #Rapid decrease due to war's end	
    			},
			},
		    stacked	=> 1,
	    	title		=> 'Hash of Hash Grouped Stacked Barplot',
    		xlabel	=> 'r"$\it{anno}$ $\it{domini}$"', # italic
			ylabel	=> 'Military Expenditure (Billions of $)'
		},
	    {# grouped barplot: arrays indicate Union, Confederate which must be specified in options hash
    		data					=> { # 4th plot: arrays indicate Union, Confederate which must be specified in options hash
			 'Antietam'				=> [ 12400, 10300 ],
		     'Gettysburg'			=> [ 23000, 28000 ],
	    	 'Chickamauga'			=> [ 16000, 18000 ],
    		 'Chancellorsville'	=> [ 17000, 13000 ],
			 'Wilderness'			=> [ 17500, 11000 ],
		     'Spotsylvania'		=> [ 18000, 12000 ],
	    	 'Cold Harbor'			=> [ 12000, 5000  ],
    		 'Shiloh'				=> [ 13000, 10700 ],
			 'Second Bull Run'	=> [ 10000, 8000  ],
		     'Fredericksburg'		=> [ 12600, 5300  ],
		    },
	    	'plot.type'	=> 'barh',
    		color		=>	['blue', 'gray'], # colors match indices of data arrays
			label		=> ['North', 'South'], # colors match indices of data arrays
		    xlabel	=> 'Casualties',
	    	ylabel	=> 'Battle',
    		title		=> 'barh: hash of array'
		},
    	{ # 5th plot: barplot with groups
			data	=> {
		    	1942 => [ 109867,  310000, 7700000 ], # US, Japan, USSR
	    		1943 => [ 221111,  440000, 9000000 ],
    			1944 => [ 318584,  610000, 7000000 ],
				1945 => [ 318929, 1060000, 3000000 ],
		    },
	    	color		=> ['blue', 'pink', 'red'], # colors match indices of data arrays
    		label		=> ['USA', 'Japan', 'USSR'], # colors match indices of data arrays
			'log'		=> 1,
		    title		=> 'grouped bar: Casualties in WWII',
	    	ylabel	=> 'Casualties',
    		'plot.type'	=> 'bar'
		},	
	    { # nuclear weapons barplot
    		'plot.type'		=> 'bar',
			data => {
		    	'USA'				=> 5277, # FAS Estimate
	    		'Russia'			=> 5449, # FAS Estimate
    			'UK'				=> 225, # Consistent estimate
				'France'			=> 290, # Consistent estimate
			    'China'			=> 600, # FAS Estimate
    			'India'			=> 180, # FAS Estimate
				'Pakistan'		=> 130, # FAS Estimate
		    	'Israel'			=> 90, # FAS Estimate
	    		'North Korea'	=> 50, # FAS Estimate
    		},
			title		=> 'Simple hash for barchart with yerr',
		    xlabel	=> 'Country',
	    	yerr						=> {
    			'USA'				=> [15,29],
				'Russia'			=> [199,1000],
    			'UK'				=> [15,19],
				'France'			=> [19,29],
    			'China'			=> [200,159],
				'India'			=> [15,25],
			    'Pakistan'		=> [15,49],
		    	'Israel'			=> [90,50],
	    		'North Korea'	=> [10,20],
    		},
			ylabel	=> '# of Nuclear Warheads',
		    'log'						=> 'True', #	linewidth				=> 1,
	    }
    ],
    ncols	=> 3,
    nrows	=> 4
});

which produces the plot:

barplots

colors for each hash key defined by hash

plt({
	plots => [
		{
			color        => {
				A => 'red', B => 'green', C => 'blue'
			},
			data => {
				A => 1, B => 2, C => 3
			},
			'plot.type'   => 'bar'
		},
		{
			color        => {
				A => 'red', B => 'green', C => 'blue'
			},
			data => {
				A => 1, B => 2, C => 3
			},
			'plot.type'   => 'barh'
		},
	],
	ncols         => 2,
	'output.file' => '/tmp/key.colors.bar.svg',
});

which produces the plot

key colors bar

boxplot

Plot a hash of arrays as a series of boxplots

options

| Option | Description | Example | | -------- | ------- | ------- | |color | a single color for all plots | color => 'pink'| |colors| a hash, where each data point and color is a hash pair |colors => { A => 'orange', E => 'yellow', B => 'purple' },| | key.order| order that the keys in the entry hash will be plotted | key.order = ['A', 'E', 'B'] | | orientation| orientation of the plot, by default vertical| orientation = 'horizontal' | |showcaps| Show the caps on the ends of whiskers; default True | showcaps => 'False', | | showfliers |Show the outliers beyond the caps; default True | showfliers => 'False' | |showmeans | show means; default = True | showmeans => 'False' | |whiskers| show whiskers, default = 1| whiskers => 0,|

single, simple plot

my $x = generate_normal_dist( 100, 15, 3 * 10 );
my $y = generate_normal_dist( 85,  15, 3 * 10 );
my $z = generate_normal_dist( 106, 15, 3 * 10 );

single plots are simple

use Matplotlib::Simple 'barplot';
boxplot({
	'output.file' => 'output.images/single.boxplot.png',
	data              => {                                     # simple hash
		E => [ 55,    @{$x}, 160 ],
		B => [ @{$y}, 140 ],

		#		A => @a
	},
	title        => 'Single Box Plot: Specified Colors',
	colors       => { E => 'yellow', B => 'purple' },
	fh           => $fh,
	execute      => 0,
});

which makes the following image:

single boxplot

multiple plots

plt({
	'output.file' => 'output.images/boxplot.png',
	execute           => 0,
	fh                => $fh,
	plots             => [
		{
		    data => {
		        A => [ 55, @{$z} ],
		        E => [ @{$y} ],
		        B => [ 122, @{$z} ],
		    },
		    title       => 'Simple Boxplot',
		    ylabel      => 'ylabel',
		    xlabel      => 'label',
		    'plot.type' => 'boxplot',
		    suptitle    => 'Boxplot examples'
		},
		{
		    color => 'pink',
		    data  => {
		        A => [ 55, @{$z} ],
		        E => [ @{$y} ],
		        B => [ 122, @{$z} ],
		    },
		    title       => 'Specify single color',
		    ylabel      => 'ylabel',
		    xlabel      => 'label',
		    'plot.type' => 'boxplot'
		},
		{
		    colors => {
		        A => 'orange',
		        E => 'yellow',
		        B => 'purple'
		    },
		    data => {
		        A => [ 55, @{$z} ],
		        E => [ @{$y} ],
		        B => [ 122, @{$z} ],
		    },
		    title       => 'Specify set-specific color; showfliers = False',
		    ylabel      => 'ylabel',
		    xlabel      => 'label',
		    'plot.type' => 'boxplot',
		    showmeans   => 'True',
		    showfliers  => 'False',
		    set_figwidth => 12
		},
		{
		    colors => {
		        A => 'orange',
		        E => 'yellow',
		        B => 'purple'
		    },
		    data => {
		        A => [ 55, @{$z} ],
		        E => [ @{$y} ],
		        B => [ 122, @{$z} ],
		    },
		    title       => 'Specify set-specific color; showmeans = False',
		    ylabel      => 'ylabel',
		    xlabel      => 'label',
		    'plot.type' => 'boxplot',
		    showmeans   => 'False',
		},
		{
		    colors => {
		        A => 'orange',
		        E => 'yellow',
		        B => 'purple'
		    },
		    data => {
		        A => [ 55, @{$z} ],
		        E => [ @{$y} ],
		        B => [ 122, @{$z} ],
		    },
		    title       => 'Set-specific color; orientation = horizontal',
		    ylabel      => 'ylabel',
		    xlabel      => 'label',
		    orientation => 'horizontal',
		    'plot.type' => 'boxplot',
		},
		{
		    colors => {
		        A => 'orange',
		        E => 'yellow',
		        B => 'purple'
		    },
		    data => {
		        A => [ 55, @{$z} ],
		        E => [ @{$y} ],
		        B => [ 122, @{$z} ],
		    },
		    title       => 'Notch = True',
		    ylabel      => 'ylabel',
		    xlabel      => 'label',
		    notch       => 'True',
		    'plot.type' => 'boxplot',
		},
		{
		    colors => {
		        A => 'orange',
		        E => 'yellow',
		        B => 'purple'
		    },
		    data => {
		        A => [ 55, @{$z} ],
		        E => [ @{$y} ],
		        B => [ 122, @{$z} ],
		    },
		    title         => 'showcaps = False',
		    ylabel        => 'ylabel',
		    xlabel        => 'label',
		    showcaps      => 'False',
		    'plot.type'   => 'boxplot',
		    set_figheight => 12,
		},
	],
	ncols => 3,
	nrows => 3,
});

which makes the following plot:

boxplot

Colored Table

options

Single, simple plot

the bond dissociation energy table can be plotted:

# https://labs.chem.ucsb.edu/zakarian/armen/11---bonddissociationenergy.pdf and https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Chemical_Bonding/Fundamentals_of_Chemical_Bonding/Bond_Energies
my %bond_dissociation = (
	Br =>  {
	  Br =>  193
	},
	C  =>  {
		Br =>  276,	C  =>  347,	Cl =>  339,	F   => 485,	H  =>  413,	I  =>  240,
		N  =>  305,	O  =>  358,	S  =>  259
	},
	Cl =>  {
		Br =>  218,	Cl =>  239
	},
	F =>   {
		I => 280, Br =>  237, Cl  => 253, F   => 154
	},
	H  =>  {
		Br =>  363,	Cl =>  427,	F  =>  565,	H   => 432,	I   => 295
	},
	I  =>  {
		Br  => 175,	Cl =>  208,	I  =>  149
	},
	N  =>  {
		Br =>  243,	Cl  => 200,	F   => 272,	H  =>  391,	N  =>  160, O  =>  201
	},
	O =>   {
		Cl =>  203, F  =>  190,	H  =>  467,	I  =>  234,	O  =>  146
	},
	S  =>  {
		Br => 218,	Cl => 253,	F  => 327,	H  => 347,	S  => 266
	},
	Si => {
		C  => 360, H  => 393, O  => 452,	Si => 340
	}
);

and the plot itself:

colored_table({
	'cblabel'     => 'kJ/mol',
	'col.labels'  => ['H', 'F', 'Cl', 'Br', 'I'],
	data          => \%bond_dissociation,
	execute       => 0,
	fh            => $fh,
	mirror        => 1,
	'output.file' => 'output.images/single.tab.png',
	'row.labels'  => ['H', 'F', 'Cl', 'Br', 'I'],
	'show.numbers'=> 1,
	set_title     => 'Bond Dissociation Energy'
});

which makes the following image:

single tab

Multiple Plots

plt({
	'output.file' => 'output.images/tab.multiple.png',
	execute       => 0,
	fh            => $fh,
	plots         => [
		{
			data          => \%bond_dissociation,
			'output.file' => '/tmp/single.bonds.svg',
			'plot.type'   => 'colored_table',
			set_title     => 'No other options'
		},
		{
			data          => \%bond_dissociation,
			cblabel       => 'Average Dissociation Energy (kJ/mol)',
			'col.labels'  => ['H', 'C', 'N', 'O', 'F', 'Si', 'S', 'Cl', 'Br', 'I'],
			mirror        => 1,
			'output.file' => '/tmp/single.bonds.svg',
			'plot.type'   => 'colored_table',
			'row.labels'  => ['H', 'C', 'N', 'O', 'F', 'Si', 'S', 'Cl', 'Br', 'I'],
			'show.numbers'=> 1,
			set_title     => 'Showing numbers and mirror with defined order'
		},
		{
			data          => \%bond_dissociation,
			cblabel       => 'Average Dissociation Energy (kJ/mol)',
			'col.labels'  => ['H', 'C', 'N', 'O', 'F', 'Si', 'S', 'Cl', 'Br', 'I'],
			mirror        => 1,
			'output.file' => '/tmp/single.bonds.svg',
			'plot.type'   => 'colored_table',
			'row.labels'  => ['H', 'C', 'N', 'O', 'F', 'Si', 'S', 'Cl', 'Br', 'I'],
			'show.numbers'=> 1,
			set_title     => 'Set undefined color to white',
			'undef.color' => 'white'
		}
	],
	ncols         => 3,
	set_figwidth  => 14,
	suptitle      => 'Colored Table options'
});

which makes the following plot:

tab multiple

hexbin

Plot a hash of arrays as a hexbin see https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hexbin.html

options

| Option | Description | Example | | -------- | ------- | ------- | cb_logscale | colorbar log scale from matplotlib.colors import LogNorm | default 0, any value > 0 enables | |cmap| The Colormap instance or registered colormap name used to map scalar data to colors | default gist_rainbow | |key.order| define the keys in an order (an array reference)|'key.order' => ['X-rays', 'Yak Butter'], | marginals | integer, by default off = 0 | marginals => 1 | | mincnt | int >= 0, default: None; If not None, only display cells with at least mincnt number of points in the cell. | mincnt => 2| | vmax | The normalization method used to scale scalar data to the [0, 1] range before mapping to colors using cmap | 'asinh', 'function', 'functionlog', 'linear', 'log', 'logit', 'symlog' default linear | | vmin | The normalization method used to scale scalar data to the [0, 1] range before mapping to colors using cmap | 'asinh', 'function', 'functionlog', 'linear', 'log', 'logit', 'symlog' default linear | | xbins | integer that accesses horizontal gridsize | default is 15 | | xscale.hexbin | 'linear', 'log'}, default: 'linear': Use a linear or log10 scale on the horizontal axis | 'xscale.hexbin' => 'log'| | ybins | integer that accesses vertical gridsize | default is 15 | | yscale.hexbin | 'linear', 'log'}, default: 'linear': Use a linear or log10 scale on the vertical axis | 'yscale.hexbin' => 'log'|

single, simple plot

plt({
	data	=> {
		E	=> generate_normal_dist(100, 15, 3*210),
		B	=> generate_normal_dist(85, 15, 3*210)
	},
	'output.file'	=> 'output.images/single.hexbin.png',
	'plot.type'	=> 'hexbin',
	set_figwidth => 12,
	title			=> 'Simple Hexbin',
});

which makes the following plot: single hexbin

multiple plots

plt({
	fh => $fh,
	execute           => 0,
	'output.file' => 'output.images/hexbin.png',
	plots             => [
		{
			data => {
			E => @e,
			B => @b
			},
			'plot.type'  => 'hexbin',
			title        => 'Simple Hexbin',
		},
		{
		    data => {
		        E => @e,
		        B => @b
		    },
		    'plot.type' => 'hexbin',
		    title       => 'colorbar logscale',
		    cb_logscale => 1
		},
		{
		    cmap => 'jet',
		    data => {
		        E => @e,
		        B => @b
		    },
		    'plot.type'  => 'hexbin',
		    title        => 'cmap is jet',
		    xlabel       => 'xlabel',
		},
		 {
		    data => {
		        E => @e,
		        B => @b
		    },
		    'key.order'  => ['E', 'B'],
		    'plot.type'  => 'hexbin',
		    title        => 'Switch axes with key.order',
		},
		 {
		    data => {
		        E => @e,
		        B => @b
		    },
		    'plot.type'  => 'hexbin',
		    title        => 'vmax set to 25',
		    vmax         => 25
		},
		 {
		    data => {
		        E => @e,
		        B => @b
		    },
		    'plot.type'  => 'hexbin',
		    title        => 'vmin set to -4',
		    vmin         => -4
		},
		{
		    data => {
		        E => @e,
		        B => @b
		    },
		    'plot.type'  => 'hexbin',
		    title        => 'mincnt set to 7',
		    mincnt       => 7
		},
		{
		    data => {
		        E => @e,
		        B => @b
		    },
		    'plot.type'  => 'hexbin',
		    title        => 'xbins set to 9',
		    xbins        => 9
		},
		{
		    data => {
		        E => @e,
		        B => @b
		    },
		    'plot.type'  => 'hexbin',
		    title        => 'ybins set to 9',
		    ybins        => 9
		},
		{
		    data => {
		        E => @e,
		        B => @b
		    },
		    'plot.type'  => 'hexbin',
		    title        => 'marginals = 1',
		    marginals    => 1
		},
		{
		    data => {
		        E => @e,
		        B => @b
		    },
		    'plot.type'  => 'hexbin',
		    title        => 'xscale.hexbin = 1',
		    'xscale.hexbin' => 'log'
		},
		{
		    data => {
		        E => @e,
		        B => @b
		    },
		    'plot.type'  => 'hexbin',
		    title        => 'yscale.hexbin = 1',
		    'yscale.hexbin' => 'log'
		},
	],
	ncols        => 4,
	nrows        => 3,
	scale        => 5,
	suptitle     => 'Various Changes to Standard Hexbin: All data is the same'
});

which produces the following image: hexbin

hist

Plot a hash of arrays as a series of histograms

options

| Option | Description | Example | | -------- | ------- | ------- | |alpha | default 0.5; same for all sets| | |bins | # nt or sequence or str, default: :rc:hist.binsIf bins is an integer, it defines the number of equal-width bins in the range. If bins is a sequence, it defines the bin edges, including the left edge of the first bin and the right edge of the last bin; in this case, bins may be unequally spaced. All but the last (righthand-most) bin is half-open| |color | a hash, where keys are the keys in data, and values are colors | X => 'blue'| |log| if set to > 1, the y-axis will be logarithmic | |orientation| {'vertical', 'horizontal'}, default: 'vertical'|

single, simple plot

use Matplotlib::Simple 'hist';

my @e = generate_normal_dist( 100, 15, 3 * 200 );
my @b = generate_normal_dist( 85,  15, 3 * 200 );
my @a = generate_normal_dist( 105, 15, 3 * 200 );

hist({
	fh => $fh,
	execute           => 0,
	'output.file' => 'output.images/single.hist.png',
	data              => {
    	E => @e,
    	B => @b,
    	A => @a,
	}
});

which makes the following simple plot:

single hist

multiple plots

plt({
	fh => $fh,
	execute           => 0,
	'output.file' => 'output.images/histogram.png',
   set_figwidth => 15,
   suptitle          => 'hist Examples',
	plots             => [
		{ # 1st subplot
		    data => {
		        E => @e,
		        B => @b,
		        A => @a,
		    },
		    'plot.type' => 'hist',
		    alpha       => 0.25,
		    bins        => 50,
		    title       => 'alpha = 0.25',
		    color       => {
		        B => 'Black',
		        E => 'Orange',
		        A => 'Yellow',
		    },
		    scatter => '['
		      . join( ',', 22 .. 44 ) . '],['  # x coords
		      . join( ',', 22 .. 44 )          # y coords
		      . '], label = "scatter"',
		    xlabel   => 'Value',
		    ylabel   => 'Frequency',
		},
		{ # 2nd subplot
		    data => {
				E => @e,
				B => @b,
				A => @a,
		    },
		    'plot.type' => 'hist',
		    alpha       => 0.75,
		    bins        => 50,
		    title       => 'alpha = 0.75',
		    color       => {
		        B => 'Black',
		        E => 'Orange',
		        A => 'Yellow',
		    },
		    xlabel   => 'Value',
		    ylabel   => 'Frequency',
		},
		{ # 3rd subplot
			add               => [ # add secondary plots/graphs/methods
			{ # 1st additional plot/graph
				data              => {
					'Gaussian'       => [
						[40..150],
						[map {150 * exp(-0.5*($_-100)**2)} 40..150]
					]
				},
				'plot.type' => 'plot',
				'set.options' => {
					'Gaussian' =>  'color = "red", linestyle = "dashed"'
				}
			}
			],
		   data => {
		        E => @e,
		        B => @b,
		        A => @a,
		    },
		    'plot.type' => 'hist',
		    alpha       => 0.75,
		    bins        => {
		        A => 10,
		        B => 25,
		        E => 50
		    },
		    title => 'Varying # of bins',
		    color => {
		        B => 'Black',
		        E => 'Orange',
		        A => 'Yellow',
		    },
		    xlabel       => 'Value',
		    ylabel       => 'Frequency',
		},
		{# 4th subplot
		    data => {
		        E => @e,
		        B => @b,
		        A => @a,
		    },
		    'plot.type' => 'hist',
		    alpha       => 0.75,
		    color       => {
		        B => 'Black',
		        E => 'Orange',
		        A => 'Yellow',
		    },
		    orientation  => 'horizontal',    # assign x and y labels smartly
		    title        => 'Horizontal orientation',
		    ylabel       => 'Value',
		    xlabel       => 'Frequency',                #				'log'					=> 1,
		},
	],
	ncols => 3,
	nrows => 2,
});
histogram

Make a 2-D histogram from a hash of arrays

hist2d

single, simple plot

plt({
	'output.file' => 'output.images/single.hist2d.png',
	data              => {
		E => @e,
		B => @b
	},
	'plot.type'  => 'hist2d',
	title        => 'title',
	execute      => 0,
	fh => $fh,
});

makes the following image:

single hist2d

the range for the density min and max is reported to stdout

options

| Option | Description | Example | | -------- | ------- | ------- | |cb_logscale| make the colorbar log-scale | cb_logscale => 1 | |cmap| color map for coloring # "gist_rainbow" by default | | |'cmax', cmin| All bins that has count < cmin or > cmax will not be displayed| | 'density'| density : bool, default: False| | 'key.order'| define the keys in an order (an array reference) | 'logscale' | # logscale, an array of axes that will get log scale |'show.colorbar'| self-evident, 0 or 1 | show.colorbar => 1| |'vmax'| When using scalar data and no explicit norm, vmin and vmax define the data range that the colormap cover | |'vmin' | # When using scalar data and no explicit norm, vmin and vmax define the data range that the colormap cover | |'xbins'| # default 15 |'xmin', 'xmax',| |'ymin', 'ymax',| |'ybins' | default 15 |

multiple plots

plt({
	fh => $fh,
	execute           => 1,
	ncols             => 3,
	nrows             => 3,
	suptitle          => 'Types of hist2d plots: all of the data is identical',
	plots => [
		{
			data => {
			X => $x,    # x-axis
			Y => $y,    # y-axis
			},
			'plot.type' => 'hist2d',
			title       => 'Simple hist2d',
		},
		{
			data => {
				X => $x,    # x-axis
				Y => $y,    # y-axis
			},
			'plot.type' => 'hist2d',
			title       => 'cmap = terrain',
			cmap        => 'terrain'
		},
		{
			cmap => 'ocean',
			data => {
				X => $x,    # x-axis
				Y => $y,    # y-axis
			},
			'plot.type' => 'hist2d',
			title => 'cmap = ocean and set colorbar range with vmin/vmax',
			set_figwidth => 15,
			vmin         => -2,
			vmax         => 14
		},
		{
			data => {
				X => $x,    # x-axis
				Y => $y,    # y-axis
			},
			'plot.type' => 'hist2d',
			title       => 'density = True',
			cmap        => 'terrain',
			density     => 'True'
		},
		{
			data => {
				X => $x,    # x-axis
				Y => $y,    # y-axis
			},
			'plot.type' => 'hist2d',
			title       => 'key.order flips axes',
			cmap        => 'terrain',
			'key.order' => [ 'Y', 'X' ]
		},
		{
			cb_logscale => 1,
			data => {
				X => $x,    # x-axis
				Y => $y,    # y-axis
			},
			'plot.type' => 'hist2d',
			title       => 'cb_logscale = 1',
		},
		{
			cb_logscale => 1,
			data => {
				X => $x,    # x-axis
				Y => $y,    # y-axis
			},
			'plot.type' => 'hist2d',
			title       => 'cb_logscale = 1 with vmax set',
			vmax        => 2.1,
			vmin        => 1
		},
		{
			data => {
				X => $x,    # x-axis
				Y => $y,    # y-axis
			},
			'plot.type'     => 'hist2d',
			'show.colorbar' => 0,
			title           => 'no colorbar',
		},
		{
			data => {
				X => $x,    # x-axis
				Y => $y,    # y-axis
			},
			'plot.type'     => 'hist2d',
			title           => 'xbins = 9',
			xbins           => 9
		},
	],
	'output.file' => 'output.images/hist2d.png',
});

makes the following image:

hist2d

imshow

Plot 2D array of numbers as an image

options

| Option | Description | Example | | -------- | ------- | ------- |cblabel| colorbar label | cblabel => 'sin(x) * cos(x)', |cbdrawedges |draw edges for colorbar | | |cblocation | 'left', 'right', 'top', 'bottom'| cblocation => 'left',| |cborientation| None, or 'vertical', 'horizontal' | |cmap| # The Colormap instance or registered colormap name used to map scalar data to colors.| |vmax| float | |vmin| float |

single, simple plot

my @imshow_data;
foreach my $i (0..360) {
	foreach my $j (0..360) {
		push @{ $imshow_data[$i] }, sin($i * $pi/180)*cos($j * $pi/180);
	}
}
plt({
	data              => \@imshow_data,
	execute           => 0,
   fh => $fh,
	'output.file' => 'output.images/imshow.single.png',
	'plot.type'       => 'imshow',
	set_xlim          => '0, ' . scalar @imshow_data,
	set_ylim          => '0, ' . scalar @imshow_data,
});

which makes the following image:

imshow single

multiple plots

plt({
	plots  => [
		{
			data => \@imshow_data,
			'plot.type'       => 'imshow',
			set_xlim          => '0, ' . scalar @imshow_data,
			set_ylim          => '0, ' . scalar @imshow_data,
			title             => 'basic',
		},
		{
			cblabel           => 'sin(x) * cos(x)',
			data => \@imshow_data,
			'plot.type'       => 'imshow',
			set_xlim          => '0, ' . scalar @imshow_data,
			set_ylim          => '0, ' . scalar @imshow_data,
			title             => 'cblabel',
		},
		{
			cblabel           => 'sin(x) * cos(x)',
			cblocation        => 'left',
			data              => \@imshow_data,
			'plot.type'       => 'imshow',
			set_xlim          => '0, ' . scalar @imshow_data,
			set_ylim          => '0, ' . scalar @imshow_data,
			title             => 'cblocation = left',
		},
		{
			cblabel           => 'sin(x) * cos(x)',
			data              => \@imshow_data,
			add               => [ # add secondary plots
			{ # 1st additional plot
				data              => {
					'sin(x)'       => [
						[0..360],
						[map {180 + 180*sin($_ * $pi/180)} 0..360]
					],
					'cos(x)'       => [
						[0..360],
						[map {180 + 180*cos($_ * $pi/180)} 0..360]
					],
				},
				'plot.type' => 'plot',
				'set.options' => {
					'sin(x)'	=>  'color = "red", linestyle = "dashed"',
					'cos(x)'	=>  'color = "blue", linestyle = "dashed"',
				}
			}
			],
			'plot.type'       => 'imshow',
			set_xlim          => '0, ' . scalar @imshow_data,
			set_ylim          => '0, ' . scalar @imshow_data,
			title             => 'auxiliary plots',
		},
	],
	execute         => 0,
  fh              => $fh,
	'output.file'   => 'output.images/imshow.multiple.png',
	ncols           => 2,
	nrows           => 2,
	set_figheight   => 6*3,# 4.8
	set_figwidth    => 6*4 # 6.4
});

which makes the following image:

imshow multiple

Secondary Structure Prediction (DSSP)

Sometimes strings instead of numbers can be entered into a 2-D array, one example is protein secondary structure. Protein secondary structure can be plotted thus, with a key in stringmap to show which strings become which integers in a minimal working example:

plt({
	cbpad       => 0.01,          # default 0.05 is too big
	data        => [              # imshow gets a 2D array
		[' ', ' ', ' ', ' ', 'G'], # bottom
		['S', 'I', 'T', 'E', 'H'], # top
	],
	'plot.type' => 'imshow',
	stringmap   => {
		'H' => 'Alpha helix',
		'B' => 'Residue in isolated β-bridge',
		'E' => 'Extended strand, participates in β ladder',
		'G' => '3-helix (3/10 helix)',
		'I' => '5 helix (pi helix)',
		'T' => 'hydrogen bonded turn',
		'S' => 'bend',
		' ' => 'Loops and irregular elements'
	},
	'output.file' => 'output.images/dssp.single.png',
	scalex        => 2.4,
	set_ylim      => '0, 1',
	title         => 'Dictionary of Secondary Structure in Proteins (DSSP)',
	xlabel        => 'xlabel',
	ylabel        => 'ylabel'
});
dssp single

or for multiple plots, where the colorbar can be spread across multiple plots now:

plt({
	cbpad       => 0.01,          # default 0.05 is too big
	plots       => [
		{ # 1st plot
			data 	=> [
				[' ', ' ', ' ', ' ', 'G'], # bottom
				['S', 'I', 'T', 'E', 'H'], # top
			],
			'plot.type' => 'imshow',
			set_xticklabels=> '[]', # remove x-axis labels
			set_ylim    => '0, 1',
			stringmap   => {
				'H' => 'Alpha helix',
				'B' => 'Residue in isolated β-bridge',
				'E' => 'Extended strand, participates in β ladder',
				'G' => '3-helix (3/10 helix)',
				'I' => '5 helix (pi helix)',
				'T' => 'hydrogen bonded turn',
				'S' => 'bend',
				' ' => 'Loops and irregular elements'
			},
			title         => 'top plot',
			ylabel        => 'ylabel'
		},
		{ # 2nd plot
			data 	=> [
				[' ', ' ', ' ', ' ', 'G'], # bottom
				['S', 'I', 'T', 'E', 'H'], # top
			],
			'plot.type' => 'imshow',
			set_ylim    => '0, 1',
			stringmap   => {
				'H' => 'Alpha helix',
				'B' => 'Residue in isolated β-bridge',
				'E' => 'Extended strand, participates in β ladder',
				'G' => '3-helix (3/10 helix)',
				'I' => '5 helix (pi helix)',
				'T' => 'hydrogen bonded turn',
				'S' => 'bend',
				' ' => 'Loops and irregular elements'
			},
			title         => 'bottom plot',
			xlabel        => 'xlabel',
			ylabel        => 'ylabel'
		}
	],
	nrows             => 2,
	'output.file'     => 'output.images/dssp.multiple.png',
	scalex            => 2.4,
	'shared.colorbar' => [0,1], # plots 0 and 1 share a colorbar
	suptitle          => 'Dictionary of Secondary Structure in Proteins (DSSP)',
});

which makes the following plot:

dssp multiple

pie

options

single, simple plot

plt({
	'output.file' => 'output.images/single.pie.png',
	data              => {                                 # simple hash
		Fri => 76,
		Mon => 73,
		Sat => 26,
		Sun => 11,
		Thu => 94,
		Tue => 93,
		Wed => 77
	},
	'plot.type'  => 'pie',
	title        => 'Single Simple Pie',
	fh           => $fh,
	execute      => 0,
});

which makes the image:

single pie

multiple plots

plt({
	'output.file' => 'output.images/pie.png',
	plots             => [
		{
		    data => {
		        'Russian' => 106_000_000,    # Primarily European Russia
		        'German'  =>
		          95_000_000,    # Germany, Austria, Switzerland, etc.
		        'English' => 70_000_000,      # UK, Ireland, etc.
		        'French' => 66_000_000, # France, Belgium, Switzerland, etc.
		        'Italian'   => 59_000_000,    # Italy, Switzerland, etc.
		        'Spanish'   => 45_000_000,    # Spain
		        'Polish'    => 38_000_000,    # Poland
		        'Ukrainian' => 32_000_000,    # Ukraine
		        'Romanian'  => 24_000_000,    # Romania, Moldova
		        'Dutch'     => 22_000_000     # Netherlands, Belgium
		    },
		    'plot.type' => 'pie',
		    title       => 'Top Languages in Europe',
		    suptitle    => 'Pie in subplots',
		},
		{
		    data => {
		        'Russian' => 106_000_000,     # Primarily European Russia
		        'German'  =>
		          95_000_000,    # Germany, Austria, Switzerland, etc.
		        'English' => 70_000_000,      # UK, Ireland, etc.
		        'French' => 66_000_000, # France, Belgium, Switzerland, etc.
		        'Italian'   => 59_000_000,    # Italy, Switzerland, etc.
		        'Spanish'   => 45_000_000,    # Spain
		        'Polish'    => 38_000_000,    # Poland
		        'Ukrainian' => 32_000_000,    # Ukraine
		        'Romanian'  => 24_000_000,    # Romania, Moldova
		        'Dutch'     => 22_000_000     # Netherlands, Belgium
		    },
		    'plot.type' => 'pie',
		    title       => 'Top Languages in Europe',
		    autopct     => '%1.1f%%',
		},
		{
		    data => {
		        'United States'  => 86,
		        'United Kingdom' => 33,
		        'Germany'        => 29,
		        'France'         => 10,
		        'Japan'          => 7,
		        'Israel'         => 6,
		    },
		    title         => 'Chem. Nobels: swap text positions',
		    'plot.type'   => 'pie',
		    autopct       => '%1.1f%%',
		    pctdistance   => 1.25,
		    labeldistance => 0.6,
		}
	],
	fh => $fh,
	execute      => 0,
   set_figwidth  => 12,
	ncols        => 3,
});
pie

plot

plot either a hash of arrays or an array of arrays

single, simple

data can be given as a hash, where the hash key is the label:

plt({
	fh => $fh,
	execute           => 0,
	'output.file' => 'output.images/plot.single.png',
	data              => {
		'sin(x)' => [
		    [@x],                     # x
		    [ map { sin($_) } @x ]    # y
		],
		'cos(x)' => [
		    [@x],                     # x
		    [ map { cos($_) } @x ]    # y
		],
	},
	'plot.type' => 'plot',
	title       => 'simple plot',
	set_xticks  =>
	"[-2 * $pi, -3 * $pi / 2, -$pi, -$pi / 2, 0, $pi / 2, $pi, 3 * $pi / 2, 2 * $pi"
	 . '], [r\'$-2\pi$\', r\'$-3\pi/2$\', r\'$-\pi$\', r\'$-\pi/2$\', r\'$0$\', r\'$\pi/2$\', r\'$\pi$\', r\'$3\pi/2$\', r\'$2\pi$\']',
	'set.options' => {    # set options overrides global settings
		'sin(x)' => 'color="blue", linewidth=2',
		'cos(x)' => 'color="red",  linewidth=2'
	}
});

or as an array of arrays:

plt({
	fh => $fh,
	execute           => 0,
	'output.file' => 'output.images/plot.single.arr.png',
	data              => [
		[
			[@x],                     # x
			[ map { sin($_) } @x ]    # y
		],
		[
		 	[@x],                     # x
		 	[ map { cos($_) } @x ]    # y
		],
	],
	'plot.type' => 'plot',
	title       => 'simple plot',
	set_xticks  =>
	"[-2 * $pi, -3 * $pi / 2, -$pi, -$pi / 2, 0, $pi / 2, $pi, 3 * $pi / 2, 2 * $pi"
	 . '], [r\'$-2\pi$\', r\'$-3\pi/2$\', r\'$-\pi$\', r\'$-\pi/2$\', r\'$0$\', r\'$\pi/2$\', r\'$\pi$\', r\'$3\pi/2$\', r\'$2\pi$\']',
	'set.options' => [    # set options overrides global settings; indices match data array
		'color="blue", linewidth=2, label = "sin(x)"', # labels aren't added automatically when using array here
		'color="red",  linewidth=2, label = "cos(x)"'
	],
});

both of which make the following "plot" plot:

plot single

multiple sub-plots

which makes

my $epsilon = 10**-7;
my (%set_opt, %d);
my $i = 0;
foreach my $interval (
	[-2*$pi, -$pi],
	[-$pi, 0],
	[0, $pi],
	[$pi, 2*$pi]
) {
	my @th = linspace($interval->[0] + $epsilon, $interval->[1] - $epsilon, 99, 0);
	@{ $d{csc}{$i}[0] } = @th;
	@{ $d{csc}{$i}[1] } = map { 1/sin($_) } @th;
	@{ $d{cot}{$i}[0] } = @th;
	@{ $d{cot}{$i}[1] } = map { cos($_)/sin($_) } @th;
	if ($i == 0) {
		$set_opt{csc}{$i} = 'color = "red", label = "csc(θ)"';
		$set_opt{cot}{$i} = 'color = "violet", label = "cot(θ)"';
	} else {
		$set_opt{csc}{$i} = 'color = "red"';
		$set_opt{cot}{$i} = 'color = "violet"';
	}
	$i++;
}
$i = 0;
foreach my $interval (
	[-2 * $pi, -1.5 * $pi],
	[-1.5*$pi, -0.5*$pi],
	[-0.5*$pi, 0.5 * $pi],
	[0.5 * $pi, 1.5 * $pi],
	[1.5 * $pi, 2 * $pi]
) {
	my @th = linspace($interval->[0] + $epsilon, $interval->[1] - $epsilon, 99, 0);
	@{ $d{sec}{$i}[0] } = @th;
	@{ $d{sec}{$i}[1] } = map { 1/cos($_) } @th;
	if ($i == 0) {
		$set_opt{sec}{$i} = 'color = "blue", label = "sec(θ)"';
		$set_opt{tan}{$i} = 'color = "green", label = "tan(θ)"';
	} else {
		$set_opt{sec}{$i} = 'color = "blue"';
		$set_opt{tan}{$i} = 'color = "green"';
	}
	@{ $d{tan}{$i}[0] } = @th;
	@{ $d{tan}{$i}[1] } = map { sin($_)/cos($_) } @th;
	$i++;
}
mkdir 'svg' unless -d 'svg';
my $xticks = "[-2 * $pi, -3 * $pi / 2, -$pi, -$pi / 2, 0, $pi / 2, $pi, 3 * $pi / 2, 2 * $pi"
		. '], [r\'$-2\pi$\', r\'$-3\pi/2$\', r\'$-\pi$\', r\'$-\pi/2$\', r\'$0$\', r\'$\pi/2$\', r\'$\pi$\', r\'$3\pi/2$\', r\'$2\pi$\']';
my ($min, $max) = (-9,9);
plt({
	fh => $fh,
	execute           => 0,
	'output.file' => 'output.images/plots.png',
	plots         => [
	{ # sin
		data          => {
			'sin(θ)' => [
				[@x],
				[map {sin($_)} @x]
			]
		},
		'plot.type'   => 'plot',
		'set.options' => {
			'sin(θ)' => 'color = "orange"'
		},
		set_xticks    => $xticks,
		set_xlim      => "-2*$pi, 2*$pi",
		xlabel        => 'θ',
		ylabel        => 'sin(θ)',
	},
	{ # sin
		data          => {
			'cos(θ)' => [
				[@x],
				[map {cos($_)} @x]
			]
		},
		'plot.type'   => 'plot',
		'set.options' => {
			'cos(θ)' => 'color = "black"'
		},
		set_xticks    => $xticks,
		set_xlim      => "-2*$pi, 2*$pi",
		xlabel        => 'θ',
		ylabel        => 'cos(θ)',
	},
	{ # csc
		data          => $d{csc},
		'plot.type'   => 'plot',
		'set.options' => $set_opt{csc},
		set_xticks    => $xticks,
		set_xlim      => "-2*$pi, 2*$pi",
		set_ylim      => "$min,$max",
		'show.legend' => 0,
		vlines        => [ # asymptotes
			"-2*$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
			"-$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
			"0, $min, $max, color = 'gray', linestyle = 'dashed'",
			"$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
			"2*$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
		],
		xlabel        => 'θ',
		ylabel        => 'csc(θ)',
	},
	{ # sec
		data          => $d{sec},
		'plot.type'   => 'plot',
		'set.options' => $set_opt{sec},
		set_xticks    => $xticks,
		set_xlim      => "-2*$pi, 2*$pi",
		set_ylim      => "$min,$max",
		'show.legend' => 0,
		vlines        => [ # asymptotes
			"-1.5*$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
			"-.5*$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
			".5*$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
			"1.5*$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
#			"2*$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
		],
		xlabel        => 'θ',
		ylabel        => 'sec(θ)',
	},
		{ # csc
		data          => $d{cot},
		'plot.type'   => 'plot',
		'set.options' => $set_opt{cot},
		set_xticks    => $xticks,
		set_xlim      => "-2*$pi, 2*$pi",
		set_ylim      => "$min,$max",
		'show.legend' => 0,
		vlines        => [ # asymptotes
			"-2*$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
			"-$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
			"0, $min, $max, color = 'gray', linestyle = 'dashed'",
			"$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
			"2*$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
		],
		xlabel        => 'θ',
		ylabel        => 'cot(θ)',
	},
	{ # sec
		data          => $d{tan},
		'plot.type'   => 'plot',
		'set.options' => $set_opt{tan},
		set_xticks    => $xticks,
		set_xlim      => "-2*$pi, 2*$pi",
		set_ylim      => "$min,$max",
		'show.legend' => 0,
		vlines        => [ # asymptotes
			"-1.5*$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
			"-.5*$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
			".5*$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
			"1.5*$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
#			"2*$pi, $min, $max, color = 'gray', linestyle = 'dashed'",
		],
		xlabel        => 'θ',
		ylabel        => 'tan(θ)',
	},
	], # end
	ncols        => 2,
	nrows        => 3,
	set_figwidth => 8,
	suptitle     => 'Basic Trigonometric Functions'
});
plots

scatter

single, simple plot

scatter({
	fh            => $fh,
	data          => {
		X => [@x],
		Y => [map {sin($_)} @x]
	},
	execute       => 0,
	'output.file' => 'output.images/single.scatter.png',
});

makes the following image:

single scatter

options

multiple plots

plt({
	fh => $fh,
	'output.file' => 'output.images/scatterplots.png',
	execute           => 0,
	nrows             => 2,
	ncols             => 3,
	set_figheight     => 8,
	set_figwidth      => 16,
	suptitle          => 'Scatterplot Examples',            # applies to all
	plots             => [
		{    # single-set scatter; no label
			data => {
				X => @e,    # x-axis
				Y => @b,    # y-axis
				Z => @a     # color
			},
			title     => '"Single Set Scatterplot: Random Distributions"',
			color_key => 'Z',
			'set.options' => 'marker = "v"'
			, # arguments to ax.scatter: there's only 1 set, so "set.options" is a scalar
			text        => [ '100, 100, "text1"', '100, 100, "text2"', ],
			'plot.type' => 'scatter',
		},
		{     # multiple-set scatter, labels are "X" and "Y"
			data => {
				X => {    # 1st data set; label is "X"
					A => @a,    # x-axis
					B => @b,    # y-axis
				},
				W => {    # 2nd data set; label is "Y"
					A => generate_normal_dist( 100, 15, 210 ),    # x-axis
					B => generate_normal_dist( 100, 15, 210 ),    # y-axis
				}
			},
			'plot.type'   => 'scatter',
			title         => 'Multiple Set Scatterplot',
			'set.options' =>
			{    # arguments to ax.scatter, for each set in data
			  X => 'marker = ".", color = "red"',
			  W => 'marker = "d", color = "green"'
			},
		},
		{          # multiple-set scatter, labels are "X" and "Y"
			data => {    # 8th plot,
				X => {    # 1st data set; label is "X"
					A => @e,    # x-axis
					B => @b,    # y-axis
					C => @a,    # color
				},
				Y => {    # 2nd data set; label is "Y"
					A => generate_normal_dist( 100, 15, 210 ),    # x-axis
					B => generate_normal_dist( 100, 15, 210 ),    # y-axis
					C => generate_normal_dist( 100, 15, 210 ),    # color
				},
			},
			'plot.type'   => 'scatter',
			title         => 'Multiple Set Scatter w/ colorbar',
			'set.options' => {    # arguments to ax.scatter, for each set in data
				X => 'marker = "."',    # diamond
				Y => 'marker = "d"'     # diamond
			},
			color_key => 'Z',
		}
	]
});

which makes the following figure:

scatterplots

violin

plot a hash of array refs as violins

options

| Option | Description | Example | | -------- | ------- | ------- |color| # a hash, where keys are the keys in data, and values are colors, e.g. X => 'blue' |colors| match sets | colors => { E => 'yellow', B => 'purple', A => 'green' }| |key.order| determine key order display on x-axis| |log| # if set to > 1, the y-axis will be logarithmic |orientation|'vertical', 'horizontal'}, default: 'vertical'|

single, simple plot

plt({
	'output.file' => 'output.images/single.violinplot.png',
	data              => {                                     # simple hash
		A => [ 55, @{$z} ],
		E => [ @{$y} ],
		B => [ 122, @{$z} ],
	},
	'plot.type'  => 'violinplot',
	title        => 'Single Violin Plot: Specified Colors',
	colors       => { E => 'yellow', B => 'purple', A => 'green' },
	fh => $fh,
	execute      => 0,
});

which makes:

single violinplot

multiple plots

plt({
	fh                => $fh,
	execute           => 0,
	'output.file'     => 'output.images/violin.png',
	plots             => [
		{
		    data => {
		        E => @e,
		        B => @b
		    },
		    'plot.type'  => 'violinplot',
		    title        => 'Basic',
		    xlabel       => 'xlabel',
		    set_figwidth => 12,
		    suptitle     => 'Violinplot'
		},
		{
		    data => {
		        E => @e,
		        B => @b
		    },
		    'plot.type' => 'violinplot',
		    color       => 'red',
		    title       => 'Set Same Color for All',
		},
		{
		    data => {
		        E => @e,
		        B => @b
		    },
		    'plot.type' => 'violinplot',
		    colors      => {
		        E => 'yellow',
		        B => 'black'
		    },
		    title => 'Color by Key',
		},
		{
		    data => {
		        E => @e,
		        B => @b
		    },
		    orientation => 'horizontal',
		    'plot.type' => 'violinplot',
		    colors      => {
		        E => 'yellow',
		        B => 'black'
		    },
		    title => 'Horizontal orientation',
		},
		{
		    data => {
		        E => @e,
		        B => @b
		    },
		    whiskers    => 0,
		    'plot.type' => 'violinplot',
		    colors      => {
		        E => 'yellow',
		        B => 'black'
		    },
		    title => 'Whiskers off',
		},
	],
	ncols => 3,
	nrows => 2,
});
violin

wide

options

single, simple plot

multiple plots

Advanced

Notes in Files

all files that can have notes with them, give notes about how the file was written. For example, SVG files have the following:

<dc:title>made/written by /mnt/ceph/dcondon/ui/gromacs/tut/dup.2puy/1.plot.gromacs.pl called using "plot" in /mnt/ceph/dcondon/perl5/perlbrew/perls/perl-5.42.0/lib/site_perl/5.42.0/x86_64-linux/Matplotlib/Simple.pm</dc:title>`

Speed

To improve speed, all data can be written into a single temp python3 file thus:

use File::Temp;
my $fh = File::Temp->new( DIR => '/tmp', SUFFIX => '.py', UNLINK => 0 );

all files will be written to $fh->filename; be sure to put execute => 0 unless you want the file to be run, which is the last step.

plt({
    data => {
        Clinical => [
            [
                [@xw],    # x
                [@y]      # y
            ],
            [ [@xw], [ map { $_ + rand_between( -0.5, 0.5 ) } @y ] ],
            [ [@xw], [ map { $_ + rand_between( -0.5, 0.5 ) } @y ] ]
        ],
        HGI => [
            [
                [@xw],                            # x
                [ map { 1.9 - 1.1 / $_ } @xw ]    # y
            ],
            [ [@xw], [ map { $_ + rand_between( -0.5, 0.5 ) } @y ] ],
            [ [@xw], [ map { $_ + rand_between( -0.5, 0.5 ) } @y ] ]
        ]
    },
    'output.file' => 'output.images/single.wide.png',
    'plot.type'       => 'wide',
    color             => {
        Clinical => 'blue',
        HGI      => 'green'
    },
    title        => 'Visualization of similar lines plotted together',
    fh => $fh,
    execute      => 0,
});
# the last plot should have `execute => 1`
plt({
    data => [
        [
            [@xw],    # x
            [@y]      # y
        ],
        [ [@xw], [ map { $_ + rand_between( -0.5, 0.5 ) } @y ] ],
        [ [@xw], [ map { $_ + rand_between( -0.5, 0.5 ) } @y ] ]
    ],
    'output.file' => 'output.images/single.array.png',
    'plot.type'       => 'wide',
    color             => 'red',
    title             => 'Visualization of similar lines plotted together',
    fh                => $fh,
    execute           => 1,
});