—package
Set::Similarity;
use
strict;
use
warnings;
our
$VERSION
=
'0.027'
;
sub
new {
my
$class
=
shift
;
# uncoverable condition false
bless
@_
?
@_
> 1 ? {
@_
} : {%{
$_
[0]}} : {},
ref
$class
||
$class
;
}
sub
similarity {
my
(
$self
,
$any1
,
$any2
,
$width
) =
@_
;
return
$self
->from_tokens(
$self
->_any(
$any1
,
$width
),
$self
->_any(
$any2
,
$width
)
);
}
sub
_any {
my
(
$self
,
$any
,
$width
) =
@_
;
if
(
ref
(
$any
) eq
'ARRAY'
) {
return
$any
;
}
elsif
(
ref
(
$any
) eq
'HASH'
) {
return
[
grep
{
$any
->{
$_
} }
keys
%$any
];
}
elsif
(
ref
(
$any
)) {
return
[];
}
else
{
return
[
$self
->ngrams(
$any
,
$width
)];
}
}
sub
ngrams {
my
(
$self
,
$word
,
$width
) =
@_
;
$width
= 1
unless
(
$width
&&
$width
=~ m/^[1-9][0-9]*$/x);
$word
||=
''
;
return
(
$word
)
unless
(
$width
<=
length
(
$word
));
return
map
{
substr
$word
,
$_
,
$width
;} (0..
length
(
$word
)-
$width
);
}
sub
from_tokens {
my
(
$self
,
$tokens1
,
$tokens2
) =
@_
;
return
1
if
(!(
scalar
@$tokens1
||
scalar
@$tokens2
));
return
0
unless
(
scalar
@$tokens1
&&
scalar
@$tokens2
);
return
$self
->from_sets(
[
$self
->uniq(
$tokens1
)],
[
$self
->uniq(
$tokens2
)],
);
}
sub
from_sets { croak
'Method "from_sets" not implemented in subclass'
}
sub
intersection {
my
%uniq
;
@uniq
{@{
$_
[1]}} = ();
scalar
grep
{
exists
$uniq
{
$_
} } @{
$_
[2]};
}
sub
uniq {
my
%uniq
;
@uniq
{@{
$_
[1]}} = ();
return
keys
%uniq
;
}
sub
combined_length {
scalar
(@{
$_
[1]}) +
scalar
(@{
$_
[2]});
}
sub
min {
(
scalar
(@{
$_
[1]}) <
scalar
(@{
$_
[2]}))
?
scalar
(@{
$_
[1]}) :
scalar
(@{
$_
[2]});
}
1;
__END__
=head1 NAME
Set::Similarity - similarity measures for sets
=begin html
<a href="https://travis-ci.org/wollmers/Set-Similarity"><img src="https://travis-ci.org/wollmers/Set-Similarity.png" alt="Set-Similarity"></a>
<a href='https://coveralls.io/r/wollmers/Set-Similarity?branch=master'><img src='https://coveralls.io/repos/wollmers/Set-Similarity/badge.png?branch=master' alt='Coverage Status' /></a>
<a href='http://cpants.cpanauthors.org/dist/Set-Similarity'><img src='http://cpants.cpanauthors.org/dist/Set-Similarity.png' alt='Kwalitee Score' /></a>
<a href="http://badge.fury.io/pl/Set-Similarity"><img src="https://badge.fury.io/pl/Set-Similarity.svg" alt="CPAN version" height="18"></a>
=end html
=head1 SYNOPSIS
use Set::Similarity::Dice;
# object method
my $dice = Set::Similarity::Dice->new;
my $similarity = $dice->similarity('Photographer','Fotograf');
# class method
my $dice = 'Set::Similarity::Dice';
my $similarity = $dice->similarity('Photographer','Fotograf');
# from 2-grams
my $width = 2;
my $similarity = $dice->similarity('Photographer','Fotograf',$width);
# from arrayref of tokens
my $similarity = $dice->similarity(['a','b'],['b']);
# from hashref of features
my $bird = {
wings => true,
eyes => true,
feathers => true,
hairs => false,
legs => true,
arms => false,
};
my $mammal = {
wings => false,
eyes => true,
feathers => false,
hairs => true,
legs => true,
arms => true,
};
my $similarity = $dice->similarity($bird,$mammal);
# from arrayref sets
my $bird = [qw(
wings
eyes
feathers
legs
)];
my $mammal = [qw(
eyes
hairs
legs
arms
)];
my $similarity = $dice->from_sets($bird,$mammal);
=head1 DESCRIPTION
This is the base class including mainly helper and convenience methods.
=head2 Overlap coefficient
( A intersect B ) / min(A,B)
=head2 Jaccard Index
The Jaccard coefficient measures similarity between sample sets, and is defined as the size of the intersection divided by the size of the union of the sample sets
( A intersect B ) / (A union B)
The Tanimoto coefficient is the ratio of the number of features common to both sets to the total number of features, i.e.
( A intersect B ) / ( A + B - ( A intersect B ) ) # the same as Jaccard
The range is 0 to 1 inclusive.
=head2 Dice coefficient
The Dice coefficient is the number of features in common to both sets relative to the average size of the total number of features present, i.e.
( A intersect B ) / 0.5 ( A + B ) # the same as sorensen
The weighting factor comes from the 0.5 in the denominator. The range is 0 to 1.
=head1 METHODS
All methods can be used as class or object methods.
=head2 new
$object = Set::Similarity->new();
=head2 similarity
my $similarity = $object->similarity($any1,$any1,$width);
C<$any> can be an arrayref, a hashref or a string. Strings are tokenized into n-grams of width C<$width>.
C<$width> must be integer, or defaults to 1.
=head2 from_tokens
my $similarity = $object->from_tokens(['a','b'],['b']);
=head2 from_sets
my $similarity = $object->from_sets(['a'],['b']);
Croaks if called directly. This method should be implemented in a child module.
=head2 intersection
my $intersection_size = $object->intersection(['a'],['b']);
=head2 uniq
my @uniq = $object->uniq(['a','b']);
Transforms an arrayref of strings into an array of unique elements.
=head2 combined_length
my $set_size_sum = $object->combined_length(['a'],['b']);
=head2 min
my $min_set_size = $object->min(['a'],['b']);
=head2 ngrams
my @monograms = $object->ngrams('abc');
my @bigrams = $object->ngrams('abc',2);
=head2 _any
my $arrayref = $object->_any($any,$width);
=head1 SEE ALSO
L<Set::Similarity::Cosine>
L<Set::Similarity::Dice>
L<Set::Similarity::Jaccard>
L<Set::Similarity::Overlap>
L<Bag::Similarity> doing the same for bags or multisets.
L<Text::Levenshtein> for distance measures of strings, and a very overview of similar modules,
L<http://en.wikipedia.org/wiki/String_metric> for an overview of similarity measures.
L<Cluster::Similarity> for clusters.
=head1 SOURCE REPOSITORY
=head1 AUTHOR
Helmut Wollmersdorfer, E<lt>helmut@wollmersdorfer.atE<gt>
=begin html
<a href='http://cpants.cpanauthors.org/author/wollmers'><img src='http://cpants.cpanauthors.org/author/wollmers.png' alt='Kwalitee Score' /></a>
=end html
=head1 COPYRIGHT AND LICENSE
Copyright (C) 2013-2020 by Helmut Wollmersdorfer
This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself.
=cut