/*
** numeric.c - Numeric, Integer, Float, Fixnum class
**
** See Copyright Notice in mruby.h
*/
#ifndef MRB_WITHOUT_FLOAT
#include <float.h>
#include <math.h>
#endif
#include <limits.h>
#include <stdlib.h>
#include <mruby.h>
#include <mruby/array.h>
#include <mruby/numeric.h>
#include <mruby/string.h>
#include <mruby/class.h>
#ifndef MRB_WITHOUT_FLOAT
#ifdef MRB_USE_FLOAT
#define trunc(f) truncf(f)
#define floor(f) floorf(f)
#define ceil(f) ceilf(f)
#define fmod(x,y) fmodf(x,y)
#define MRB_FLO_TO_STR_FMT "%.7g"
#else
#define MRB_FLO_TO_STR_FMT "%.14g"
#endif
#endif
#ifndef MRB_WITHOUT_FLOAT
MRB_API mrb_float
mrb_to_flo(mrb_state *mrb, mrb_value val)
{
switch (mrb_type(val)) {
case MRB_TT_FIXNUM:
return (mrb_float)mrb_fixnum(val);
case MRB_TT_FLOAT:
break;
default:
mrb_raise(mrb, E_TYPE_ERROR, "non float value");
}
return mrb_float(val);
}
#endif
/*
* call-seq:
*
* num ** other -> num
*
* Raises <code>num</code> the <code>other</code> power.
*
* 2.0**3 #=> 8.0
*/
static mrb_value
num_pow(mrb_state *mrb, mrb_value x)
{
mrb_value y;
#ifndef MRB_WITHOUT_FLOAT
mrb_float d;
#endif
mrb_get_args(mrb, "o", &y);
if (mrb_fixnum_p(x) && mrb_fixnum_p(y)) {
/* try ipow() */
mrb_int base = mrb_fixnum(x);
mrb_int exp = mrb_fixnum(y);
mrb_int result = 1;
if (exp < 0)
#ifdef MRB_WITHOUT_FLOAT
return mrb_fixnum_value(0);
#else
goto float_pow;
#endif
for (;;) {
if (exp & 1) {
if (mrb_int_mul_overflow(result, base, &result)) {
#ifndef MRB_WITHOUT_FLOAT
goto float_pow;
#endif
}
}
exp >>= 1;
if (exp == 0) break;
if (mrb_int_mul_overflow(base, base, &base)) {
#ifndef MRB_WITHOUT_FLOAT
goto float_pow;
#endif
}
}
return mrb_fixnum_value(result);
}
#ifdef MRB_WITHOUT_FLOAT
mrb_raise(mrb, E_TYPE_ERROR, "non fixnum value");
#else
float_pow:
d = pow(mrb_to_flo(mrb, x), mrb_to_flo(mrb, y));
return mrb_float_value(mrb, d);
#endif
}
/* 15.2.8.3.4 */
/* 15.2.9.3.4 */
/*
* call-seq:
* num / other -> num
*
* Performs division: the class of the resulting object depends on
* the class of <code>num</code> and on the magnitude of the
* result.
*/
mrb_value
mrb_num_div(mrb_state *mrb, mrb_value x, mrb_value y)
{
#ifdef MRB_WITHOUT_FLOAT
if (!mrb_fixnum_p(y)) {
mrb_raise(mrb, E_TYPE_ERROR, "non fixnum value");
}
return mrb_fixnum_value(mrb_fixnum(x) / mrb_fixnum(y));
#else
return mrb_float_value(mrb, mrb_to_flo(mrb, x) / mrb_to_flo(mrb, y));
#endif
}
/* 15.2.9.3.19(x) */
/*
* call-seq:
* num.quo(numeric) -> real
*
* Returns most exact division.
*/
static mrb_value
num_div(mrb_state *mrb, mrb_value x)
{
#ifdef MRB_WITHOUT_FLOAT
mrb_value y;
mrb_get_args(mrb, "o", &y);
if (!mrb_fixnum_p(y)) {
mrb_raise(mrb, E_TYPE_ERROR, "non fixnum value");
}
return mrb_fixnum_value(mrb_fixnum(x) / mrb_fixnum(y));
#else
mrb_float y;
mrb_get_args(mrb, "f", &y);
return mrb_float_value(mrb, mrb_to_flo(mrb, x) / y);
#endif
}
#ifndef MRB_WITHOUT_FLOAT
/********************************************************************
*
* Document-class: Float
*
* <code>Float</code> objects represent inexact real numbers using
* the native architecture's double-precision floating point
* representation.
*/
/* 15.2.9.3.16(x) */
/*
* call-seq:
* flt.to_s -> string
*
* Returns a string containing a representation of self. As well as a
* fixed or exponential form of the number, the call may return
* "<code>NaN</code>", "<code>Infinity</code>", and
* "<code>-Infinity</code>".
*/
static mrb_value
flo_to_s(mrb_state *mrb, mrb_value flt)
{
if (isnan(mrb_float(flt))) {
return mrb_str_new_lit(mrb, "NaN");
}
return mrb_float_to_str(mrb, flt, MRB_FLO_TO_STR_FMT);
}
/* 15.2.9.3.2 */
/*
* call-seq:
* float - other -> float
*
* Returns a new float which is the difference of <code>float</code>
* and <code>other</code>.
*/
static mrb_value
flo_minus(mrb_state *mrb, mrb_value x)
{
mrb_value y;
mrb_get_args(mrb, "o", &y);
return mrb_float_value(mrb, mrb_float(x) - mrb_to_flo(mrb, y));
}
/* 15.2.9.3.3 */
/*
* call-seq:
* float * other -> float
*
* Returns a new float which is the product of <code>float</code>
* and <code>other</code>.
*/
static mrb_value
flo_mul(mrb_state *mrb, mrb_value x)
{
mrb_value y;
mrb_get_args(mrb, "o", &y);
return mrb_float_value(mrb, mrb_float(x) * mrb_to_flo(mrb, y));
}
static void
flodivmod(mrb_state *mrb, mrb_float x, mrb_float y, mrb_float *divp, mrb_float *modp)
{
mrb_float div;
mrb_float mod;
if (y == 0.0) {
if (x > 0.0) div = INFINITY;
else if (x < 0.0) div = -INFINITY;
else div = NAN; /* x == 0.0 */
mod = NAN;
}
else {
mod = fmod(x, y);
if (isinf(x) && isfinite(y))
div = x;
else
div = (x - mod) / y;
if (y*mod < 0) {
mod += y;
div -= 1.0;
}
}
if (modp) *modp = mod;
if (divp) *divp = div;
}
/* 15.2.9.3.5 */
/*
* call-seq:
* flt % other -> float
* flt.modulo(other) -> float
*
* Return the modulo after division of <code>flt</code> by <code>other</code>.
*
* 6543.21.modulo(137) #=> 104.21
* 6543.21.modulo(137.24) #=> 92.9299999999996
*/
static mrb_value
flo_mod(mrb_state *mrb, mrb_value x)
{
mrb_value y;
mrb_float mod;
mrb_get_args(mrb, "o", &y);
flodivmod(mrb, mrb_float(x), mrb_to_flo(mrb, y), 0, &mod);
return mrb_float_value(mrb, mod);
}
#endif
/* 15.2.8.3.16 */
/*
* call-seq:
* num.eql?(numeric) -> true or false
*
* Returns <code>true</code> if <i>num</i> and <i>numeric</i> are the
* same type and have equal values.
*
* 1 == 1.0 #=> true
* 1.eql?(1.0) #=> false
* (1.0).eql?(1.0) #=> true
*/
static mrb_value
fix_eql(mrb_state *mrb, mrb_value x)
{
mrb_value y;
mrb_get_args(mrb, "o", &y);
if (!mrb_fixnum_p(y)) return mrb_false_value();
return mrb_bool_value(mrb_fixnum(x) == mrb_fixnum(y));
}
#ifndef MRB_WITHOUT_FLOAT
static mrb_value
flo_eql(mrb_state *mrb, mrb_value x)
{
mrb_value y;
mrb_get_args(mrb, "o", &y);
if (!mrb_float_p(y)) return mrb_false_value();
return mrb_bool_value(mrb_float(x) == (mrb_float)mrb_fixnum(y));
}
/* 15.2.9.3.7 */
/*
* call-seq:
* flt == obj -> true or false
*
* Returns <code>true</code> only if <i>obj</i> has the same value
* as <i>flt</i>. Contrast this with <code>Float#eql?</code>, which
* requires <i>obj</i> to be a <code>Float</code>.
*
* 1.0 == 1 #=> true
*
*/
static mrb_value
flo_eq(mrb_state *mrb, mrb_value x)
{
mrb_value y;
mrb_get_args(mrb, "o", &y);
switch (mrb_type(y)) {
case MRB_TT_FIXNUM:
return mrb_bool_value(mrb_float(x) == (mrb_float)mrb_fixnum(y));
case MRB_TT_FLOAT:
return mrb_bool_value(mrb_float(x) == mrb_float(y));
default:
return mrb_false_value();
}
}
static int64_t
value_int64(mrb_state *mrb, mrb_value x)
{
switch (mrb_type(x)) {
case MRB_TT_FIXNUM:
return (int64_t)mrb_fixnum(x);
break;
case MRB_TT_FLOAT:
return (int64_t)mrb_float(x);
default:
mrb_raise(mrb, E_TYPE_ERROR, "cannot convert to Integer");
break;
}
/* not reached */
return 0;
}
static mrb_value
int64_value(mrb_state *mrb, int64_t v)
{
if (FIXABLE(v)) {
return mrb_fixnum_value((mrb_int)v);
}
return mrb_float_value(mrb, (mrb_float)v);
}
static mrb_value
flo_rev(mrb_state *mrb, mrb_value x)
{
int64_t v1;
mrb_get_args(mrb, "");
v1 = (int64_t)mrb_float(x);
return int64_value(mrb, ~v1);
}
static mrb_value
flo_and(mrb_state *mrb, mrb_value x)
{
mrb_value y;
int64_t v1, v2;
mrb_get_args(mrb, "o", &y);
v1 = (int64_t)mrb_float(x);
v2 = value_int64(mrb, y);
return int64_value(mrb, v1 & v2);
}
static mrb_value
flo_or(mrb_state *mrb, mrb_value x)
{
mrb_value y;
int64_t v1, v2;
mrb_get_args(mrb, "o", &y);
v1 = (int64_t)mrb_float(x);
v2 = value_int64(mrb, y);
return int64_value(mrb, v1 | v2);
}
static mrb_value
flo_xor(mrb_state *mrb, mrb_value x)
{
mrb_value y;
int64_t v1, v2;
mrb_get_args(mrb, "o", &y);
v1 = (int64_t)mrb_float(x);
v2 = value_int64(mrb, y);
return int64_value(mrb, v1 ^ v2);
}
static mrb_value
flo_shift(mrb_state *mrb, mrb_value x, mrb_int width)
{
mrb_float val;
if (width == 0) {
return x;
}
val = mrb_float(x);
if (width < 0) {
while (width++) {
val /= 2;
}
#if defined(_ISOC99_SOURCE)
val = trunc(val);
#else
if (val > 0){
val = floor(val);
} else {
val = ceil(val);
}
#endif
if (val == 0 && mrb_float(x) < 0) {
return mrb_fixnum_value(-1);
}
}
else {
while (width--) {
val *= 2;
}
}
if (FIXABLE_FLOAT(val)) {
return mrb_fixnum_value((mrb_int)val);
}
return mrb_float_value(mrb, val);
}
static mrb_value
flo_lshift(mrb_state *mrb, mrb_value x)
{
mrb_int width;
mrb_get_args(mrb, "i", &width);
return flo_shift(mrb, x, -width);
}
static mrb_value
flo_rshift(mrb_state *mrb, mrb_value x)
{
mrb_int width;
mrb_get_args(mrb, "i", &width);
return flo_shift(mrb, x, width);
}
/* 15.2.9.3.13 */
/*
* call-seq:
* flt.to_f -> self
*
* As <code>flt</code> is already a float, returns +self+.
*/
static mrb_value
flo_to_f(mrb_state *mrb, mrb_value num)
{
return num;
}
/* 15.2.9.3.11 */
/*
* call-seq:
* flt.infinite? -> nil, -1, +1
*
* Returns <code>nil</code>, -1, or +1 depending on whether <i>flt</i>
* is finite, -infinity, or +infinity.
*
* (0.0).infinite? #=> nil
* (-1.0/0.0).infinite? #=> -1
* (+1.0/0.0).infinite? #=> 1
*/
static mrb_value
flo_infinite_p(mrb_state *mrb, mrb_value num)
{
mrb_float value = mrb_float(num);
if (isinf(value)) {
return mrb_fixnum_value(value < 0 ? -1 : 1);
}
return mrb_nil_value();
}
/* 15.2.9.3.9 */
/*
* call-seq:
* flt.finite? -> true or false
*
* Returns <code>true</code> if <i>flt</i> is a valid IEEE floating
* point number (it is not infinite, and <code>nan?</code> is
* <code>false</code>).
*
*/
static mrb_value
flo_finite_p(mrb_state *mrb, mrb_value num)
{
return mrb_bool_value(isfinite(mrb_float(num)));
}
void
mrb_check_num_exact(mrb_state *mrb, mrb_float num)
{
if (isinf(num)) {
mrb_raise(mrb, E_FLOATDOMAIN_ERROR, num < 0 ? "-Infinity" : "Infinity");
}
if (isnan(num)) {
mrb_raise(mrb, E_FLOATDOMAIN_ERROR, "NaN");
}
}
/* 15.2.9.3.10 */
/*
* call-seq:
* flt.floor -> integer
*
* Returns the largest integer less than or equal to <i>flt</i>.
*
* 1.2.floor #=> 1
* 2.0.floor #=> 2
* (-1.2).floor #=> -2
* (-2.0).floor #=> -2
*/
static mrb_value
flo_floor(mrb_state *mrb, mrb_value num)
{
mrb_float f = floor(mrb_float(num));
mrb_check_num_exact(mrb, f);
if (!FIXABLE_FLOAT(f)) {
return mrb_float_value(mrb, f);
}
return mrb_fixnum_value((mrb_int)f);
}
/* 15.2.9.3.8 */
/*
* call-seq:
* flt.ceil -> integer
*
* Returns the smallest <code>Integer</code> greater than or equal to
* <i>flt</i>.
*
* 1.2.ceil #=> 2
* 2.0.ceil #=> 2
* (-1.2).ceil #=> -1
* (-2.0).ceil #=> -2
*/
static mrb_value
flo_ceil(mrb_state *mrb, mrb_value num)
{
mrb_float f = ceil(mrb_float(num));
mrb_check_num_exact(mrb, f);
if (!FIXABLE_FLOAT(f)) {
return mrb_float_value(mrb, f);
}
return mrb_fixnum_value((mrb_int)f);
}
/* 15.2.9.3.12 */
/*
* call-seq:
* flt.round([ndigits]) -> integer or float
*
* Rounds <i>flt</i> to a given precision in decimal digits (default 0 digits).
* Precision may be negative. Returns a floating point number when ndigits
* is more than zero.
*
* 1.4.round #=> 1
* 1.5.round #=> 2
* 1.6.round #=> 2
* (-1.5).round #=> -2
*
* 1.234567.round(2) #=> 1.23
* 1.234567.round(3) #=> 1.235
* 1.234567.round(4) #=> 1.2346
* 1.234567.round(5) #=> 1.23457
*
* 34567.89.round(-5) #=> 0
* 34567.89.round(-4) #=> 30000
* 34567.89.round(-3) #=> 35000
* 34567.89.round(-2) #=> 34600
* 34567.89.round(-1) #=> 34570
* 34567.89.round(0) #=> 34568
* 34567.89.round(1) #=> 34567.9
* 34567.89.round(2) #=> 34567.89
* 34567.89.round(3) #=> 34567.89
*
*/
static mrb_value
flo_round(mrb_state *mrb, mrb_value num)
{
double number, f;
mrb_int ndigits = 0;
mrb_int i;
mrb_get_args(mrb, "|i", &ndigits);
number = mrb_float(num);
if (0 < ndigits && (isinf(number) || isnan(number))) {
return num;
}
mrb_check_num_exact(mrb, number);
f = 1.0;
i = ndigits >= 0 ? ndigits : -ndigits;
while (--i >= 0)
f = f*10.0;
if (isinf(f)) {
if (ndigits < 0) number = 0;
}
else {
double d;
if (ndigits < 0) number /= f;
else number *= f;
/* home-made inline implementation of round(3) */
if (number > 0.0) {
d = floor(number);
number = d + (number - d >= 0.5);
}
else if (number < 0.0) {
d = ceil(number);
number = d - (d - number >= 0.5);
}
if (ndigits < 0) number *= f;
else number /= f;
}
if (ndigits > 0) {
if (!isfinite(number)) return num;
return mrb_float_value(mrb, number);
}
return mrb_fixnum_value((mrb_int)number);
}
/* 15.2.9.3.14 */
/* 15.2.9.3.15 */
/*
* call-seq:
* flt.to_i -> integer
* flt.to_int -> integer
* flt.truncate -> integer
*
* Returns <i>flt</i> truncated to an <code>Integer</code>.
*/
static mrb_value
flo_truncate(mrb_state *mrb, mrb_value num)
{
mrb_float f = mrb_float(num);
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
mrb_check_num_exact(mrb, f);
if (!FIXABLE_FLOAT(f)) {
return mrb_float_value(mrb, f);
}
return mrb_fixnum_value((mrb_int)f);
}
static mrb_value
flo_nan_p(mrb_state *mrb, mrb_value num)
{
return mrb_bool_value(isnan(mrb_float(num)));
}
#endif
/*
* Document-class: Integer
*
* <code>Integer</code> is the basis for the two concrete classes that
* hold whole numbers, <code>Bignum</code> and <code>Fixnum</code>.
*
*/
/*
* call-seq:
* int.to_i -> integer
* int.to_int -> integer
*
* As <i>int</i> is already an <code>Integer</code>, all these
* methods simply return the receiver.
*/
static mrb_value
int_to_i(mrb_state *mrb, mrb_value num)
{
return num;
}
mrb_value
mrb_fixnum_mul(mrb_state *mrb, mrb_value x, mrb_value y)
{
mrb_int a;
a = mrb_fixnum(x);
if (mrb_fixnum_p(y)) {
mrb_int b, c;
if (a == 0) return x;
b = mrb_fixnum(y);
if (mrb_int_mul_overflow(a, b, &c)) {
#ifndef MRB_WITHOUT_FLOAT
return mrb_float_value(mrb, (mrb_float)a * (mrb_float)b);
#endif
}
return mrb_fixnum_value(c);
}
#ifdef MRB_WITHOUT_FLOAT
mrb_raise(mrb, E_TYPE_ERROR, "non fixnum value");
#else
return mrb_float_value(mrb, (mrb_float)a * mrb_to_flo(mrb, y));
#endif
}
/* 15.2.8.3.3 */
/*
* call-seq:
* fix * numeric -> numeric_result
*
* Performs multiplication: the class of the resulting object depends on
* the class of <code>numeric</code> and on the magnitude of the
* result.
*/
static mrb_value
fix_mul(mrb_state *mrb, mrb_value x)
{
mrb_value y;
mrb_get_args(mrb, "o", &y);
return mrb_fixnum_mul(mrb, x, y);
}
static void
fixdivmod(mrb_state *mrb, mrb_int x, mrb_int y, mrb_int *divp, mrb_int *modp)
{
mrb_int div, mod;
/* TODO: add mrb_assert(y != 0) to make sure */
if (y < 0) {
if (x < 0)
div = -x / -y;
else
div = - (x / -y);
}
else {
if (x < 0)
div = - (-x / y);
else
div = x / y;
}
mod = x - div*y;
if ((mod < 0 && y > 0) || (mod > 0 && y < 0)) {
mod += y;
div -= 1;
}
if (divp) *divp = div;
if (modp) *modp = mod;
}
/* 15.2.8.3.5 */
/*
* call-seq:
* fix % other -> real
* fix.modulo(other) -> real
*
* Returns <code>fix</code> modulo <code>other</code>.
* See <code>numeric.divmod</code> for more information.
*/
static mrb_value
fix_mod(mrb_state *mrb, mrb_value x)
{
mrb_value y;
mrb_int a;
mrb_get_args(mrb, "o", &y);
a = mrb_fixnum(x);
if (mrb_fixnum_p(y)) {
mrb_int b, mod;
if ((b=mrb_fixnum(y)) == 0) {
#ifdef MRB_WITHOUT_FLOAT
/* ZeroDivisionError */
return mrb_fixnum_value(0);
#else
return mrb_float_value(mrb, NAN);
#endif
}
fixdivmod(mrb, a, b, 0, &mod);
return mrb_fixnum_value(mod);
}
#ifdef MRB_WITHOUT_FLOAT
mrb_raise(mrb, E_TYPE_ERROR, "non fixnum value");
#else
else {
mrb_float mod;
flodivmod(mrb, (mrb_float)a, mrb_to_flo(mrb, y), 0, &mod);
return mrb_float_value(mrb, mod);
}
#endif
}
/*
* call-seq:
* fix.divmod(numeric) -> array
*
* See <code>Numeric#divmod</code>.
*/
static mrb_value
fix_divmod(mrb_state *mrb, mrb_value x)
{
mrb_value y;
mrb_get_args(mrb, "o", &y);
if (mrb_fixnum_p(y)) {
mrb_int div, mod;
if (mrb_fixnum(y) == 0) {
#ifdef MRB_WITHOUT_FLOAT
return mrb_assoc_new(mrb, mrb_fixnum_value(0), mrb_fixnum_value(0));
#else
return mrb_assoc_new(mrb, ((mrb_fixnum(x) == 0) ?
mrb_float_value(mrb, NAN):
mrb_float_value(mrb, INFINITY)),
mrb_float_value(mrb, NAN));
#endif
}
fixdivmod(mrb, mrb_fixnum(x), mrb_fixnum(y), &div, &mod);
return mrb_assoc_new(mrb, mrb_fixnum_value(div), mrb_fixnum_value(mod));
}
#ifdef MRB_WITHOUT_FLOAT
mrb_raise(mrb, E_TYPE_ERROR, "non fixnum value");
#else
else {
mrb_float div, mod;
mrb_value a, b;
flodivmod(mrb, (mrb_float)mrb_fixnum(x), mrb_to_flo(mrb, y), &div, &mod);
a = mrb_float_value(mrb, div);
b = mrb_float_value(mrb, mod);
return mrb_assoc_new(mrb, a, b);
}
#endif
}
#ifndef MRB_WITHOUT_FLOAT
static mrb_value
flo_divmod(mrb_state *mrb, mrb_value x)
{
mrb_value y;
mrb_float div, mod;
mrb_value a, b;
mrb_get_args(mrb, "o", &y);
flodivmod(mrb, mrb_float(x), mrb_to_flo(mrb, y), &div, &mod);
a = mrb_float_value(mrb, div);
b = mrb_float_value(mrb, mod);
return mrb_assoc_new(mrb, a, b);
}
#endif
/* 15.2.8.3.7 */
/*
* call-seq:
* fix == other -> true or false
*
* Return <code>true</code> if <code>fix</code> equals <code>other</code>
* numerically.
*
* 1 == 2 #=> false
* 1 == 1.0 #=> true
*/
static mrb_value
fix_equal(mrb_state *mrb, mrb_value x)
{
mrb_value y;
mrb_get_args(mrb, "o", &y);
switch (mrb_type(y)) {
case MRB_TT_FIXNUM:
return mrb_bool_value(mrb_fixnum(x) == mrb_fixnum(y));
#ifndef MRB_WITHOUT_FLOAT
case MRB_TT_FLOAT:
return mrb_bool_value((mrb_float)mrb_fixnum(x) == mrb_float(y));
#endif
default:
return mrb_false_value();
}
}
/* 15.2.8.3.8 */
/*
* call-seq:
* ~fix -> integer
*
* One's complement: returns a number where each bit is flipped.
* ex.0---00001 (1)-> 1---11110 (-2)
* ex.0---00010 (2)-> 1---11101 (-3)
* ex.0---00100 (4)-> 1---11011 (-5)
*/
static mrb_value
fix_rev(mrb_state *mrb, mrb_value num)
{
mrb_int val = mrb_fixnum(num);
return mrb_fixnum_value(~val);
}
#ifdef MRB_WITHOUT_FLOAT
#define bit_op(x,y,op1,op2) do {\
return mrb_fixnum_value(mrb_fixnum(x) op2 mrb_fixnum(y));\
} while(0)
#else
static mrb_value flo_and(mrb_state *mrb, mrb_value x);
static mrb_value flo_or(mrb_state *mrb, mrb_value x);
static mrb_value flo_xor(mrb_state *mrb, mrb_value x);
#define bit_op(x,y,op1,op2) do {\
if (mrb_fixnum_p(y)) return mrb_fixnum_value(mrb_fixnum(x) op2 mrb_fixnum(y));\
return flo_ ## op1(mrb, mrb_float_value(mrb, (mrb_float)mrb_fixnum(x)));\
} while(0)
#endif
/* 15.2.8.3.9 */
/*
* call-seq:
* fix & integer -> integer_result
*
* Bitwise AND.
*/
static mrb_value
fix_and(mrb_state *mrb, mrb_value x)
{
mrb_value y;
mrb_get_args(mrb, "o", &y);
bit_op(x, y, and, &);
}
/* 15.2.8.3.10 */
/*
* call-seq:
* fix | integer -> integer_result
*
* Bitwise OR.
*/
static mrb_value
fix_or(mrb_state *mrb, mrb_value x)
{
mrb_value y;
mrb_get_args(mrb, "o", &y);
bit_op(x, y, or, |);
}
/* 15.2.8.3.11 */
/*
* call-seq:
* fix ^ integer -> integer_result
*
* Bitwise EXCLUSIVE OR.
*/
static mrb_value
fix_xor(mrb_state *mrb, mrb_value x)
{
mrb_value y;
mrb_get_args(mrb, "o", &y);
bit_op(x, y, or, ^);
}
#define NUMERIC_SHIFT_WIDTH_MAX (MRB_INT_BIT-1)
static mrb_value
lshift(mrb_state *mrb, mrb_int val, mrb_int width)
{
if (width < 0) { /* mrb_int overflow */
#ifdef MRB_WITHOUT_FLOAT
return mrb_fixnum_value(0);
#else
return mrb_float_value(mrb, INFINITY);
#endif
}
if (val > 0) {
if ((width > NUMERIC_SHIFT_WIDTH_MAX) ||
(val > (MRB_INT_MAX >> width))) {
#ifdef MRB_WITHOUT_FLOAT
return mrb_fixnum_value(-1);
#else
goto bit_overflow;
#endif
}
return mrb_fixnum_value(val << width);
}
else {
if ((width > NUMERIC_SHIFT_WIDTH_MAX) ||
(val < (MRB_INT_MIN >> width))) {
#ifdef MRB_WITHOUT_FLOAT
return mrb_fixnum_value(0);
#else
goto bit_overflow;
#endif
}
return mrb_fixnum_value(val * ((mrb_int)1 << width));
}
#ifndef MRB_WITHOUT_FLOAT
bit_overflow:
{
mrb_float f = (mrb_float)val;
while (width--) {
f *= 2;
}
return mrb_float_value(mrb, f);
}
#endif
}
static mrb_value
rshift(mrb_int val, mrb_int width)
{
if (width < 0) { /* mrb_int overflow */
return mrb_fixnum_value(0);
}
if (width >= NUMERIC_SHIFT_WIDTH_MAX) {
if (val < 0) {
return mrb_fixnum_value(-1);
}
return mrb_fixnum_value(0);
}
return mrb_fixnum_value(val >> width);
}
/* 15.2.8.3.12 */
/*
* call-seq:
* fix << count -> integer or float
*
* Shifts _fix_ left _count_ positions (right if _count_ is negative).
*/
static mrb_value
fix_lshift(mrb_state *mrb, mrb_value x)
{
mrb_int width, val;
mrb_get_args(mrb, "i", &width);
if (width == 0) {
return x;
}
val = mrb_fixnum(x);
if (val == 0) return x;
if (width < 0) {
return rshift(val, -width);
}
return lshift(mrb, val, width);
}
/* 15.2.8.3.13 */
/*
* call-seq:
* fix >> count -> integer or float
*
* Shifts _fix_ right _count_ positions (left if _count_ is negative).
*/
static mrb_value
fix_rshift(mrb_state *mrb, mrb_value x)
{
mrb_int width, val;
mrb_get_args(mrb, "i", &width);
if (width == 0) {
return x;
}
val = mrb_fixnum(x);
if (val == 0) return x;
if (width < 0) {
return lshift(mrb, val, -width);
}
return rshift(val, width);
}
/* 15.2.8.3.23 */
/*
* call-seq:
* fix.to_f -> float
*
* Converts <i>fix</i> to a <code>Float</code>.
*
*/
#ifndef MRB_WITHOUT_FLOAT
static mrb_value
fix_to_f(mrb_state *mrb, mrb_value num)
{
return mrb_float_value(mrb, (mrb_float)mrb_fixnum(num));
}
/*
* Document-class: FloatDomainError
*
* Raised when attempting to convert special float values
* (in particular infinite or NaN)
* to numerical classes which don't support them.
*
* Float::INFINITY.to_r
*
* <em>raises the exception:</em>
*
* FloatDomainError: Infinity
*/
/* ------------------------------------------------------------------------*/
MRB_API mrb_value
mrb_flo_to_fixnum(mrb_state *mrb, mrb_value x)
{
mrb_int z = 0;
if (!mrb_float_p(x)) {
mrb_raise(mrb, E_TYPE_ERROR, "non float value");
z = 0; /* not reached. just suppress warnings. */
}
else {
mrb_float d = mrb_float(x);
if (isinf(d)) {
mrb_raise(mrb, E_FLOATDOMAIN_ERROR, d < 0 ? "-Infinity" : "Infinity");
}
if (isnan(d)) {
mrb_raise(mrb, E_FLOATDOMAIN_ERROR, "NaN");
}
if (FIXABLE_FLOAT(d)) {
z = (mrb_int)d;
}
else {
mrb_raisef(mrb, E_ARGUMENT_ERROR, "number (%S) too big for integer", x);
}
}
return mrb_fixnum_value(z);
}
#endif
mrb_value
mrb_fixnum_plus(mrb_state *mrb, mrb_value x, mrb_value y)
{
mrb_int a;
a = mrb_fixnum(x);
if (mrb_fixnum_p(y)) {
mrb_int b, c;
if (a == 0) return y;
b = mrb_fixnum(y);
if (mrb_int_add_overflow(a, b, &c)) {
#ifndef MRB_WITHOUT_FLOAT
return mrb_float_value(mrb, (mrb_float)a + (mrb_float)b);
#endif
}
return mrb_fixnum_value(c);
}
#ifdef MRB_WITHOUT_FLOAT
mrb_raise(mrb, E_TYPE_ERROR, "non fixnum value");
#else
return mrb_float_value(mrb, (mrb_float)a + mrb_to_flo(mrb, y));
#endif
}
/* 15.2.8.3.1 */
/*
* call-seq:
* fix + numeric -> numeric_result
*
* Performs addition: the class of the resulting object depends on
* the class of <code>numeric</code> and on the magnitude of the
* result.
*/
static mrb_value
fix_plus(mrb_state *mrb, mrb_value self)
{
mrb_value other;
mrb_get_args(mrb, "o", &other);
return mrb_fixnum_plus(mrb, self, other);
}
mrb_value
mrb_fixnum_minus(mrb_state *mrb, mrb_value x, mrb_value y)
{
mrb_int a;
a = mrb_fixnum(x);
if (mrb_fixnum_p(y)) {
mrb_int b, c;
b = mrb_fixnum(y);
if (mrb_int_sub_overflow(a, b, &c)) {
#ifndef MRB_WITHOUT_FLOAT
return mrb_float_value(mrb, (mrb_float)a - (mrb_float)b);
#endif
}
return mrb_fixnum_value(c);
}
#ifdef MRB_WITHOUT_FLOAT
mrb_raise(mrb, E_TYPE_ERROR, "non fixnum value");
#else
return mrb_float_value(mrb, (mrb_float)a - mrb_to_flo(mrb, y));
#endif
}
/* 15.2.8.3.2 */
/* 15.2.8.3.16 */
/*
* call-seq:
* fix - numeric -> numeric_result
*
* Performs subtraction: the class of the resulting object depends on
* the class of <code>numeric</code> and on the magnitude of the
* result.
*/
static mrb_value
fix_minus(mrb_state *mrb, mrb_value self)
{
mrb_value other;
mrb_get_args(mrb, "o", &other);
return mrb_fixnum_minus(mrb, self, other);
}
MRB_API mrb_value
mrb_fixnum_to_str(mrb_state *mrb, mrb_value x, mrb_int base)
{
char buf[MRB_INT_BIT+1];
char *b = buf + sizeof buf;
mrb_int val = mrb_fixnum(x);
if (base < 2 || 36 < base) {
mrb_raisef(mrb, E_ARGUMENT_ERROR, "invalid radix %S", mrb_fixnum_value(base));
}
if (val == 0) {
*--b = '0';
}
else if (val < 0) {
do {
*--b = mrb_digitmap[-(val % base)];
} while (val /= base);
*--b = '-';
}
else {
do {
*--b = mrb_digitmap[(int)(val % base)];
} while (val /= base);
}
return mrb_str_new(mrb, b, buf + sizeof(buf) - b);
}
/* 15.2.8.3.25 */
/*
* call-seq:
* fix.to_s(base=10) -> string
*
* Returns a string containing the representation of <i>fix</i> radix
* <i>base</i> (between 2 and 36).
*
* 12345.to_s #=> "12345"
* 12345.to_s(2) #=> "11000000111001"
* 12345.to_s(8) #=> "30071"
* 12345.to_s(10) #=> "12345"
* 12345.to_s(16) #=> "3039"
* 12345.to_s(36) #=> "9ix"
*
*/
static mrb_value
fix_to_s(mrb_state *mrb, mrb_value self)
{
mrb_int base = 10;
mrb_get_args(mrb, "|i", &base);
return mrb_fixnum_to_str(mrb, self, base);
}
/* compare two numbers: (1:0:-1; -2 for error) */
static mrb_int
cmpnum(mrb_state *mrb, mrb_value v1, mrb_value v2)
{
#ifdef MRB_WITHOUT_FLOAT
mrb_int x, y;
#else
mrb_float x, y;
#endif
#ifdef MRB_WITHOUT_FLOAT
x = mrb_fixnum(v1);
#else
x = mrb_to_flo(mrb, v1);
#endif
switch (mrb_type(v2)) {
case MRB_TT_FIXNUM:
#ifdef MRB_WITHOUT_FLOAT
y = mrb_fixnum(v2);
#else
y = (mrb_float)mrb_fixnum(v2);
#endif
break;
#ifndef MRB_WITHOUT_FLOAT
case MRB_TT_FLOAT:
y = mrb_float(v2);
break;
#endif
default:
return -2;
}
if (x > y)
return 1;
else {
if (x < y)
return -1;
return 0;
}
}
/* 15.2.9.3.6 */
/*
* call-seq:
* self.f <=> other.f => -1, 0, +1
* < => -1
* = => 0
* > => +1
* Comparison---Returns -1, 0, or +1 depending on whether <i>fix</i> is
* less than, equal to, or greater than <i>numeric</i>. This is the
* basis for the tests in <code>Comparable</code>.
*/
static mrb_value
num_cmp(mrb_state *mrb, mrb_value self)
{
mrb_value other;
mrb_int n;
mrb_get_args(mrb, "o", &other);
n = cmpnum(mrb, self, other);
if (n == -2) return mrb_nil_value();
return mrb_fixnum_value(n);
}
static void
cmperr(mrb_state *mrb, mrb_value v1, mrb_value v2)
{
mrb_raisef(mrb, E_ARGUMENT_ERROR, "comparison of %S with %S failed",
mrb_obj_value(mrb_class(mrb, v1)),
mrb_obj_value(mrb_class(mrb, v2)));
}
static mrb_value
num_lt(mrb_state *mrb, mrb_value self)
{
mrb_value other;
mrb_int n;
mrb_get_args(mrb, "o", &other);
n = cmpnum(mrb, self, other);
if (n == -2) cmperr(mrb, self, other);
if (n < 0) return mrb_true_value();
return mrb_false_value();
}
static mrb_value
num_le(mrb_state *mrb, mrb_value self)
{
mrb_value other;
mrb_int n;
mrb_get_args(mrb, "o", &other);
n = cmpnum(mrb, self, other);
if (n == -2) cmperr(mrb, self, other);
if (n <= 0) return mrb_true_value();
return mrb_false_value();
}
static mrb_value
num_gt(mrb_state *mrb, mrb_value self)
{
mrb_value other;
mrb_int n;
mrb_get_args(mrb, "o", &other);
n = cmpnum(mrb, self, other);
if (n == -2) cmperr(mrb, self, other);
if (n > 0) return mrb_true_value();
return mrb_false_value();
}
static mrb_value
num_ge(mrb_state *mrb, mrb_value self)
{
mrb_value other;
mrb_int n;
mrb_get_args(mrb, "o", &other);
n = cmpnum(mrb, self, other);
if (n == -2) cmperr(mrb, self, other);
if (n >= 0) return mrb_true_value();
return mrb_false_value();
}
static mrb_value
num_finite_p(mrb_state *mrb, mrb_value self)
{
mrb_get_args(mrb, "");
return mrb_true_value();
}
static mrb_value
num_infinite_p(mrb_state *mrb, mrb_value self)
{
mrb_get_args(mrb, "");
return mrb_false_value();
}
/* 15.2.9.3.1 */
/*
* call-seq:
* float + other -> float
*
* Returns a new float which is the sum of <code>float</code>
* and <code>other</code>.
*/
#ifndef MRB_WITHOUT_FLOAT
static mrb_value
flo_plus(mrb_state *mrb, mrb_value x)
{
mrb_value y;
mrb_get_args(mrb, "o", &y);
return mrb_float_value(mrb, mrb_float(x) + mrb_to_flo(mrb, y));
}
#endif
/* ------------------------------------------------------------------------*/
void
mrb_init_numeric(mrb_state *mrb)
{
struct RClass *numeric, *integer, *fixnum;
#ifndef MRB_WITHOUT_FLOAT
struct RClass *fl;
#endif
/* Numeric Class */
numeric = mrb_define_class(mrb, "Numeric", mrb->object_class); /* 15.2.7 */
mrb_define_method(mrb, numeric, "**", num_pow, MRB_ARGS_REQ(1));
mrb_define_method(mrb, numeric, "/", num_div, MRB_ARGS_REQ(1)); /* 15.2.8.3.4 */
mrb_define_method(mrb, numeric, "quo", num_div, MRB_ARGS_REQ(1)); /* 15.2.7.4.5 (x) */
mrb_define_method(mrb, numeric, "<=>", num_cmp, MRB_ARGS_REQ(1)); /* 15.2.9.3.6 */
mrb_define_method(mrb, numeric, "<", num_lt, MRB_ARGS_REQ(1));
mrb_define_method(mrb, numeric, "<=", num_le, MRB_ARGS_REQ(1));
mrb_define_method(mrb, numeric, ">", num_gt, MRB_ARGS_REQ(1));
mrb_define_method(mrb, numeric, ">=", num_ge, MRB_ARGS_REQ(1));
mrb_define_method(mrb, numeric, "finite?", num_finite_p, MRB_ARGS_NONE());
mrb_define_method(mrb, numeric, "infinite?",num_infinite_p, MRB_ARGS_NONE());
/* Integer Class */
integer = mrb_define_class(mrb, "Integer", numeric); /* 15.2.8 */
MRB_SET_INSTANCE_TT(integer, MRB_TT_FIXNUM);
mrb_undef_class_method(mrb, integer, "new");
mrb_define_method(mrb, integer, "to_i", int_to_i, MRB_ARGS_NONE()); /* 15.2.8.3.24 */
mrb_define_method(mrb, integer, "to_int", int_to_i, MRB_ARGS_NONE());
#ifndef MRB_WITHOUT_FLOAT
mrb_define_method(mrb, integer, "ceil", int_to_i, MRB_ARGS_REQ(1)); /* 15.2.8.3.8 (x) */
mrb_define_method(mrb, integer, "floor", int_to_i, MRB_ARGS_REQ(1)); /* 15.2.8.3.10 (x) */
mrb_define_method(mrb, integer, "round", int_to_i, MRB_ARGS_REQ(1)); /* 15.2.8.3.12 (x) */
mrb_define_method(mrb, integer, "truncate", int_to_i, MRB_ARGS_REQ(1)); /* 15.2.8.3.15 (x) */
#endif
/* Fixnum Class */
mrb->fixnum_class = fixnum = mrb_define_class(mrb, "Fixnum", integer);
mrb_define_method(mrb, fixnum, "+", fix_plus, MRB_ARGS_REQ(1)); /* 15.2.8.3.1 */
mrb_define_method(mrb, fixnum, "-", fix_minus, MRB_ARGS_REQ(1)); /* 15.2.8.3.2 */
mrb_define_method(mrb, fixnum, "*", fix_mul, MRB_ARGS_REQ(1)); /* 15.2.8.3.3 */
mrb_define_method(mrb, fixnum, "%", fix_mod, MRB_ARGS_REQ(1)); /* 15.2.8.3.5 */
mrb_define_method(mrb, fixnum, "==", fix_equal, MRB_ARGS_REQ(1)); /* 15.2.8.3.7 */
mrb_define_method(mrb, fixnum, "~", fix_rev, MRB_ARGS_NONE()); /* 15.2.8.3.8 */
mrb_define_method(mrb, fixnum, "&", fix_and, MRB_ARGS_REQ(1)); /* 15.2.8.3.9 */
mrb_define_method(mrb, fixnum, "|", fix_or, MRB_ARGS_REQ(1)); /* 15.2.8.3.10 */
mrb_define_method(mrb, fixnum, "^", fix_xor, MRB_ARGS_REQ(1)); /* 15.2.8.3.11 */
mrb_define_method(mrb, fixnum, "<<", fix_lshift, MRB_ARGS_REQ(1)); /* 15.2.8.3.12 */
mrb_define_method(mrb, fixnum, ">>", fix_rshift, MRB_ARGS_REQ(1)); /* 15.2.8.3.13 */
mrb_define_method(mrb, fixnum, "eql?", fix_eql, MRB_ARGS_REQ(1)); /* 15.2.8.3.16 */
#ifndef MRB_WITHOUT_FLOAT
mrb_define_method(mrb, fixnum, "to_f", fix_to_f, MRB_ARGS_NONE()); /* 15.2.8.3.23 */
#endif
mrb_define_method(mrb, fixnum, "to_s", fix_to_s, MRB_ARGS_NONE()); /* 15.2.8.3.25 */
mrb_define_method(mrb, fixnum, "inspect", fix_to_s, MRB_ARGS_NONE());
mrb_define_method(mrb, fixnum, "divmod", fix_divmod, MRB_ARGS_REQ(1)); /* 15.2.8.3.30 (x) */
#ifndef MRB_WITHOUT_FLOAT
/* Float Class */
mrb->float_class = fl = mrb_define_class(mrb, "Float", numeric); /* 15.2.9 */
MRB_SET_INSTANCE_TT(fl, MRB_TT_FLOAT);
mrb_undef_class_method(mrb, fl, "new");
mrb_define_method(mrb, fl, "+", flo_plus, MRB_ARGS_REQ(1)); /* 15.2.9.3.1 */
mrb_define_method(mrb, fl, "-", flo_minus, MRB_ARGS_REQ(1)); /* 15.2.9.3.2 */
mrb_define_method(mrb, fl, "*", flo_mul, MRB_ARGS_REQ(1)); /* 15.2.9.3.3 */
mrb_define_method(mrb, fl, "%", flo_mod, MRB_ARGS_REQ(1)); /* 15.2.9.3.5 */
mrb_define_method(mrb, fl, "==", flo_eq, MRB_ARGS_REQ(1)); /* 15.2.9.3.7 */
mrb_define_method(mrb, fl, "~", flo_rev, MRB_ARGS_NONE());
mrb_define_method(mrb, fl, "&", flo_and, MRB_ARGS_REQ(1));
mrb_define_method(mrb, fl, "|", flo_or, MRB_ARGS_REQ(1));
mrb_define_method(mrb, fl, "^", flo_xor, MRB_ARGS_REQ(1));
mrb_define_method(mrb, fl, ">>", flo_lshift, MRB_ARGS_REQ(1));
mrb_define_method(mrb, fl, "<<", flo_rshift, MRB_ARGS_REQ(1));
mrb_define_method(mrb, fl, "ceil", flo_ceil, MRB_ARGS_NONE()); /* 15.2.9.3.8 */
mrb_define_method(mrb, fl, "finite?", flo_finite_p, MRB_ARGS_NONE()); /* 15.2.9.3.9 */
mrb_define_method(mrb, fl, "floor", flo_floor, MRB_ARGS_NONE()); /* 15.2.9.3.10 */
mrb_define_method(mrb, fl, "infinite?", flo_infinite_p, MRB_ARGS_NONE()); /* 15.2.9.3.11 */
mrb_define_method(mrb, fl, "round", flo_round, MRB_ARGS_OPT(1)); /* 15.2.9.3.12 */
mrb_define_method(mrb, fl, "to_f", flo_to_f, MRB_ARGS_NONE()); /* 15.2.9.3.13 */
mrb_define_method(mrb, fl, "to_i", flo_truncate, MRB_ARGS_NONE()); /* 15.2.9.3.14 */
mrb_define_method(mrb, fl, "to_int", flo_truncate, MRB_ARGS_NONE());
mrb_define_method(mrb, fl, "truncate", flo_truncate, MRB_ARGS_NONE()); /* 15.2.9.3.15 */
mrb_define_method(mrb, fl, "divmod", flo_divmod, MRB_ARGS_REQ(1));
mrb_define_method(mrb, fl, "eql?", flo_eql, MRB_ARGS_REQ(1)); /* 15.2.8.3.16 */
mrb_define_method(mrb, fl, "to_s", flo_to_s, MRB_ARGS_NONE()); /* 15.2.9.3.16(x) */
mrb_define_method(mrb, fl, "inspect", flo_to_s, MRB_ARGS_NONE());
mrb_define_method(mrb, fl, "nan?", flo_nan_p, MRB_ARGS_NONE());
#ifdef INFINITY
mrb_define_const(mrb, fl, "INFINITY", mrb_float_value(mrb, INFINITY));
#endif
#ifdef NAN
mrb_define_const(mrb, fl, "NAN", mrb_float_value(mrb, NAN));
#endif
#endif
mrb_define_module(mrb, "Integral");
}