NAME
AI::MXNet::Gluon::Contrib::NN::BasicLayers - An additional collection of Gluon's building blocks.
|
NAME
AI::MXNet::Gluon::NN::Concurrent - Lays Blocks concurrently.
|
DESCRIPTION
Lays Blocks concurrently.
This block feeds its input to all children blocks, and
produces the output by concatenating all the children blocks' outputs
on the specified axis.
Example:
$net = nn->Concurrent();
$net ->name_scope( sub {
$net ->add(nn->Dense(10, activation => 'relu' ));
$net ->add(nn->Dense(20));
$net ->add(nn->Identity());
});
Parameters
----------
axis : int , default -1
The axis on which to concatenate the outputs.
|
NAME
AI::MXNet::Gluon::NN::HybridConcurrent - Lays HubridBlocks concurrently.
|
DESCRIPTION
Lays HybridBlocks concurrently.
This block feeds its input to all children blocks, and
produces the output by concatenating all the children blocks' outputs
on the specified axis.
Example:
$net = nn->HybridConcurrent();
$net ->name_scope( sub {
$net ->add(nn->Dense(10, activation => 'relu' ));
$net ->add(nn->Dense(20));
$net ->add(nn->Identity());
});
Parameters
----------
axis : int , default -1
The axis on which to concatenate the outputs.
|
NAME
AI::MXNet::Gluon::NN::Identity - Block that passes through the input directly.
|
DESCRIPTION
Block that passes through the input directly.
This block can be used in conjunction with HybridConcurrent
block for residual connection.
Example:
$net = nn->HybridConcurrent();
$net ->name_scope( sub {
$net ->add(nn->Dense(10, activation => 'relu' ));
$net ->add(nn->Dense(20));
$net ->add(nn->Identity());
});
|
NAME
AI::MXNet::Gluon::NN::SparseEmbedding - Turns non-negative integers (indexes/tokens) into dense vectors.
|
DESCRIPTION
Turns non-negative integers (indexes/tokens) into dense vectors
of fixed size. eg. [4, 20] -> [[0.25, 0.1], [0.6, -0.2]]
This SparseBlock is designed for distributed training with extremely large
input dimension. Both weight and gradient w.r.t. weight are AI::MXNet::NDArray::RowSparse.
Parameters
----------
input_dim : int
Size of the vocabulary, i.e. maximum integer index + 1.
output_dim : int
Dimension of the dense embedding.
dtype : Dtype, default 'float32'
Data type of output embeddings.
weight_initializer : Initializer
Initializer for the embeddings matrix.
|