NAME
AI::TensorFlow::Libtensorflow::Manual::Notebook::InferenceUsingTFHubMobileNetV2Model - Using TensorFlow to do image classification using a pre-trained model
SYNOPSIS
The following tutorial is based on the Image Classification with TensorFlow Hub notebook. It uses a pre-trained model based on the MobileNet V2 architecture trained on the Imagenet dataset. Running the code requires an Internet connection to download the model (from Google servers) and testing data (from Wikimedia servers).
Please look at the SECURITY note regarding running models as models are programs. You can also used saved_model_cli scan
to check for security-sensitive "denylisted ops" which by default are operations that do I/O.
If you would like to visualise a model, you can use Netron on the .pb
file.
COLOPHON
The following document is either a POD file which can additionally be run as a Perl script or a Jupyter Notebook which can be run in IPerl (viewable online at nbviewer). If you are reading this as POD, there should be a generated list of Perl dependencies in the CPANFILE section.
If you are running the code, you may optionally install the tensorflow
Python package in order to access the saved_model_cli
command, but this is only used for informational purposes.
TUTORIAL
Load the library
First, we need to load the AI::TensorFlow::Libtensorflow
library and more helpers. We then create an AI::TensorFlow::Libtensorflow::Status
object and helper function to make sure that the calls to the libtensorflow
C library are working properly.
use strict;
use warnings;
use utf8;
use constant IN_IPERL => !! $ENV{PERL_IPERL_RUNNING};
no if IN_IPERL, warnings => 'redefine'; # fewer messages when re-running cells
use feature qw(say state);
use Syntax::Construct qw(each-array);
use lib::projectroot qw(lib);
BEGIN {
if( IN_IPERL ) {
$ENV{TF_CPP_MIN_LOG_LEVEL} = 3;
}
require AI::TensorFlow::Libtensorflow;
}
use URI ();
use HTTP::Tiny ();
use Path::Tiny qw(path);
use File::Which ();
use List::Util ();
use Data::Printer ( output => 'stderr', return_value => 'void', filters => ['PDL'] );
use Data::Printer::Filter::PDL ();
use Text::Table::Tiny qw(generate_table);
use Imager;
my $s = AI::TensorFlow::Libtensorflow::Status->New;
sub AssertOK {
die "Status $_[0]: " . $_[0]->Message
unless $_[0]->GetCode == AI::TensorFlow::Libtensorflow::Status::OK;
return;
}
AssertOK($s);
In this notebook, we will use PDL
to store and manipulate the ndarray data before converting it to a TFTensor
. The following functions help with copying the data back and forth between the two object types.
An important thing to note about the dimensions used by TensorFlow's TFTensors when compared with PDL is that the dimension lists are reversed. Consider a binary raster image with width W and height H stored in row-major format (meaning the pixels in the first row are stored next to each other followed by the second row and so on). With PDL, the dimension list for this will be [ W H ]
and for TFTensor the dimension list will be [ H W ]
. TensorFlow uses the same convention for the dimension list as NumPy with the faster changing dimensions at the end of the dimension list while PDL is the opposite (see Dima Kogan's library and talk for more on this).
This difference will be explained more concretely further in the tutorial.
Future work will provide an API for more convenient wrappers which will provide an option to either copy or share the same data (if possible).
use PDL;
use AI::TensorFlow::Libtensorflow::DataType qw(FLOAT);
use FFI::Platypus::Memory qw(memcpy);
use FFI::Platypus::Buffer qw(scalar_to_pointer);
sub FloatPDLTOTFTensor {
my ($p) = @_;
return AI::TensorFlow::Libtensorflow::Tensor->New(
FLOAT, [ reverse $p->dims ], $p->get_dataref, sub { undef $p }
);
}
sub FloatTFTensorToPDL {
my ($t) = @_;
my $pdl = zeros(float,reverse( map $t->Dim($_), 0..$t->NumDims-1 ) );
memcpy scalar_to_pointer( ${$pdl->get_dataref} ),
scalar_to_pointer( ${$t->Data} ),
$t->ByteSize;
$pdl->upd_data;
$pdl;
}
The following is just a small helper to generate an HTML <table>
for output in IPerl
.
use HTML::Tiny;
sub my_table {
my ($data, $cb) = @_;
my $h = HTML::Tiny->new;
$h->table( { style => 'width: 100%' },
[
$h->tr(
map {
[
$h->td( $cb->($_, $h) )
]
} @$data
)
]
)
}
This is a helper to display images in Gnuplot for debugging, but those debugging lines are commented out.
sub show_in_gnuplot {
my ($p) = @_;
require PDL::Graphics::Gnuplot;
PDL::Graphics::Gnuplot::image( square => 1, $p );
}
Fetch the model and labels
We are going to use an image classification model from TensorFlow Hub based on the MobileNet V2 architecture. We download both the model and ImageNet classification labels.
# image_size => [width, height] (but usually square images)
my %model_name_to_params = (
mobilenet_v2_100_224 => {
handle => 'https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/5',
image_size => [ 224, 224 ],
},
mobilenet_v2_140_224 => {
handle => "https://tfhub.dev/google/imagenet/mobilenet_v2_140_224/classification/5",
image_size => [ 224, 224 ],
},
);
my $model_name = 'mobilenet_v2_100_224';
say "Selected model: $model_name : $model_name_to_params{$model_name}{handle}";
STREAM (STDOUT):
Selected model: mobilenet_v2_100_224 : https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/5
RESULT:
1
We download the model and labels to the current directory then extract the model to a folder with the name given in $model_base
.
my $model_uri = URI->new( $model_name_to_params{$model_name}{handle} );
$model_uri->query_form( 'tf-hub-format' => 'compressed' );
my $model_base = substr( $model_uri->path, 1 ) =~ s,/,_,gr;
my $model_archive_path = "${model_base}.tar.gz";
use constant IMAGENET_LABEL_COUNT_WITH_BG => 1001;
my $labels_uri = URI->new('https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt');
my $labels_path = ($labels_uri->path_segments)[-1];
my $http = HTTP::Tiny->new;
for my $download ( [ $model_uri => $model_archive_path ],
[ $labels_uri => $labels_path ]) {
my ($uri, $path) = @$download;
say "Downloading $uri to $path";
next if -e $path;
$http->mirror( $uri, $path );
}
use Archive::Extract;
my $ae = Archive::Extract->new( archive => $model_archive_path );
die "Could not extract archive" unless $ae->extract( to => $model_base );
my $saved_model = path($model_base)->child('saved_model.pb');
say "Saved model is in $saved_model" if -f $saved_model;
my @labels = path($labels_path)->lines( { chomp => 1 });
die "Labels should have @{[ IMAGENET_LABEL_COUNT_WITH_BG ]} items"
unless @labels == IMAGENET_LABEL_COUNT_WITH_BG;
say "Got labels: ", join( ", ", List::Util::head(5, @labels) ), ", etc.";
STREAM (STDOUT):
Downloading https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/5?tf-hub-format=compressed to google_imagenet_mobilenet_v2_100_224_classification_5.tar.gz
Downloading https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt to ImageNetLabels.txt
Saved model is in google_imagenet_mobilenet_v2_100_224_classification_5/saved_model.pb
Got labels: background, tench, goldfish, great white shark, tiger shark, etc.
RESULT:
1
Load the model and session
We define the tag set [ 'serve' ]
which we will use to load the model.
my @tags = ( 'serve' );
RESULT:
serve
We can examine what computations are contained in the graph in terms of the names of the inputs and outputs of an operation found in the graph by running saved_model_cli
.
if( File::Which::which('saved_model_cli')) {
local $ENV{TF_CPP_MIN_LOG_LEVEL} = 3; # quiet the TensorFlow logger for the following command
system(qw(saved_model_cli show),
qw(--dir) => $model_base,
qw(--tag_set) => join(',', @tags),
qw(--signature_def) => 'serving_default'
) == 0 or die "Could not run saved_model_cli";
} else {
say "Install the tensorflow Python package to get the `saved_model_cli` command.";
}
STREAM (STDOUT):
The given SavedModel SignatureDef contains the following input(s):
inputs['inputs'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 224, 224, 3)
name: serving_default_inputs:0
The given SavedModel SignatureDef contains the following output(s):
outputs['logits'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 1001)
name: StatefulPartitionedCall:0
Method name is: tensorflow/serving/predict
RESULT:
1
The above saved_model_cli
output shows that the model input is at serving_default_inputs:0
which means the operation named serving_default_inputs
at index 0
and the output is at StatefulPartitionedCall:0
which means the operation named StatefulPartitionedCall
at index 0
.
It also shows the type and shape of the TFTensor
s for those inputs and outputs. Together this is known as a signature.
For the input
, we have (-1, 224, 224, 3)
which is a common input image specification for TensorFlow Hub. This is known as channels_last
(or NHWC
) layout where the TensorFlow dimension list is [batch_size, height, width, 3]
where 3 represents the RGB channels where each element is normalised to the range [0, 1]
. The -1
in the batch_size
dimension represents an unknown dimension size so the model can accept any number of images. Note that the TFTensor
dimension list has the dimension that changes the fastest in memory at the end of the list, so the float32_t
channels for a single pixel as stored next to each other followed by the next pixel in the same row.
For the output
, we have (-1, 1001)
which is [batch_size, num_classes]
where the elements are scores that the image received for that ImageNet class.
Now we can load the model from that folder with the tag set [ 'serve' ]
by using the LoadFromSavedModel
constructor to create a ::Graph
and a ::Session
for that graph.
my $opt = AI::TensorFlow::Libtensorflow::SessionOptions->New;
my $graph = AI::TensorFlow::Libtensorflow::Graph->New;
my $session = AI::TensorFlow::Libtensorflow::Session->LoadFromSavedModel(
$opt, undef, $model_base, \@tags, $graph, undef, $s
);
AssertOK($s);
So let's use the names from the saved_model_cli
output to create our ::Output
ArrayRef
s.
my %ops = (
in => $graph->OperationByName('serving_default_inputs'),
out => $graph->OperationByName('StatefulPartitionedCall'),
);
die "Could not get all operations" unless List::Util::all(sub { defined }, values %ops);
my %outputs = map { $_ => [ AI::TensorFlow::Libtensorflow::Output->New( { oper => $ops{$_}, index => 0 } ) ] }
keys %ops;
p %outputs;
say "Input: " , $outputs{in}[0];
say "Output: ", $outputs{out}[0];
STREAM (STDOUT):
Input: serving_default_inputs:0
Output: StatefulPartitionedCall:0
STREAM (STDERR):
{
in [
[0] AI::TensorFlow::Libtensorflow::Output {
index 0,
oper AI::TensorFlow::Libtensorflow::Operation {
Name "serving_default_inputs",
NumInputs 0,
NumOutputs 1,
OpType "Placeholder"
}
}
],
out [
[0] AI::TensorFlow::Libtensorflow::Output {
index 0,
oper AI::TensorFlow::Libtensorflow::Operation {
Name "StatefulPartitionedCall",
NumInputs 263,
NumOutputs 1,
OpType "StatefulPartitionedCall"
}
}
]
}
RESULT:
1
Now we can get the following testing images from Wikimedia.
my %images_for_test_to_uri = (
"tiger" => "https://upload.wikimedia.org/wikipedia/commons/b/b0/Bengal_tiger_%28Panthera_tigris_tigris%29_female_3_crop.jpg",
#by Charles James Sharp, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons
"bus" => "https://upload.wikimedia.org/wikipedia/commons/6/63/LT_471_%28LTZ_1471%29_Arriva_London_New_Routemaster_%2819522859218%29.jpg",
#by Martin49 from London, England, CC BY 2.0 <https://creativecommons.org/licenses/by/2.0>, via Wikimedia Commons
"car" => "https://upload.wikimedia.org/wikipedia/commons/4/49/2013-2016_Toyota_Corolla_%28ZRE172R%29_SX_sedan_%282018-09-17%29_01.jpg",
#by EurovisionNim, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons
"cat" => "https://upload.wikimedia.org/wikipedia/commons/4/4d/Cat_November_2010-1a.jpg",
#by Alvesgaspar, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons
"dog" => "https://upload.wikimedia.org/wikipedia/commons/archive/a/a9/20090914031557%21Saluki_dog_breed.jpg",
#by Craig Pemberton, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons
"apple" => "https://upload.wikimedia.org/wikipedia/commons/1/15/Red_Apple.jpg",
#by Abhijit Tembhekar from Mumbai, India, CC BY 2.0 <https://creativecommons.org/licenses/by/2.0>, via Wikimedia Commons
"banana" => "https://upload.wikimedia.org/wikipedia/commons/1/1c/Bananas_white_background.jpg",
#by fir0002 flagstaffotos [at] gmail.com Canon 20D + Tamron 28-75mm f/2.8, GFDL 1.2 <http://www.gnu.org/licenses/old-licenses/fdl-1.2.html>, via Wikimedia Commons
"turtle" => "https://upload.wikimedia.org/wikipedia/commons/8/80/Turtle_golfina_escobilla_oaxaca_mexico_claudio_giovenzana_2010.jpg",
#by Claudio Giovenzana, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons
"flamingo" => "https://upload.wikimedia.org/wikipedia/commons/b/b8/James_Flamingos_MC.jpg",
#by Christian Mehlführer, User:Chmehl, CC BY 3.0 <https://creativecommons.org/licenses/by/3.0>, via Wikimedia Commons
"piano" => "https://upload.wikimedia.org/wikipedia/commons/d/da/Steinway_%26_Sons_upright_piano%2C_model_K-132%2C_manufactured_at_Steinway%27s_factory_in_Hamburg%2C_Germany.png",
#by "Photo: © Copyright Steinway & Sons", CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons
"honeycomb" => "https://upload.wikimedia.org/wikipedia/commons/f/f7/Honey_comb.jpg",
#by Merdal, CC BY-SA 3.0 <http://creativecommons.org/licenses/by-sa/3.0/>, via Wikimedia Commons
"teapot" => "https://upload.wikimedia.org/wikipedia/commons/4/44/Black_tea_pot_cropped.jpg",
#by Mendhak, CC BY-SA 2.0 <https://creativecommons.org/licenses/by-sa/2.0>, via Wikimedia Commons
);
my @image_names = sort keys %images_for_test_to_uri;
if( IN_IPERL ) {
IPerl->html(
my_table( \@image_names, sub {
my ($image_name, $h) = @_;
(
$h->tt($image_name),
$h->a( { href => $images_for_test_to_uri{$image_name} },
$h->img({
src => $images_for_test_to_uri{$image_name},
alt => $image_name,
width => '50%',
})
),
)
})
);
}
DISPLAY:
apple | |
banana | |
bus | |
car | |
cat | |
dog | |
flamingo | |
honeycomb | |
piano | |
teapot | |
tiger | |
turtle |
Download the test images and transform them into suitable input data
We now fetch these images and prepare them to be the in the needed format by using Imager
to resize and add padding. Then we turn the Imager
data into a PDL
ndarray. Since the Imager
data is stored as 32-bits with 4 channels in the order ARGB
, we create an uint32_t
PDL ndarray and use bit manipulation to create a uint8_t
ndarray (which gives a PDL dimension list that starts with 3 for the RGB channels). Then we create a float32_t
ndarray by normalising the values from [0, 1]
as the model specifies.
We then take all the PDL ndarrays and concatenate them. Again, note that the dimension lists for the PDL ndarray and the TFTensor are reversed.
sub imager_paste_center_pad {
my ($inner, $padded_sz, @rest) = @_;
my $outer = Imager->new( List::Util::mesh( [qw(xsize ysize)], $padded_sz ),
@rest
);
$outer->paste(
left => int( ($outer->getwidth - $inner->getwidth ) / 2 ),
top => int( ($outer->getheight - $inner->getheight) / 2 ),
src => $inner,
);
$outer;
}
sub imager_scale_to {
my ($img, $image_size) = @_;
my $rescaled = $img->scale(
List::Util::mesh( [qw(xpixels ypixels)], $image_size ),
type => 'min',
qtype => 'mixing', # 'mixing' seems to work better than 'normal'
);
}
sub load_image_to_pdl {
my ($uri, $image_size) = @_;
my $http = HTTP::Tiny->new;
my $response = $http->get( $uri );
die "Could not fetch image from $uri" unless $response->{success};
say "Downloaded $uri";
my $img = Imager->new;
$img->read( data => $response->{content} );
my $rescaled = imager_scale_to($img, $image_size);
say sprintf "Rescaled image from [ %d x %d ] to [ %d x %d ]",
$img->getwidth, $img->getheight,
$rescaled->getwidth, $rescaled->getheight;
my $padded = imager_paste_center_pad($rescaled, $image_size,
# ARGB fits in 32-bits (uint32_t)
channels => 4
);
say sprintf "Padded to [ %d x %d ]", $padded->getwidth, $padded->getheight;
# Create PDL ndarray from Imager data in-memory.
my $data;
$padded->write( data => \$data, type => 'raw' )
or die "could not write ". $padded->errstr;
# $data is packed as PDL->dims == [w,h] with ARGB pixels
# $ PDL::howbig(ulong) # 4
my $pdl_raw = zeros(ulong, $padded->getwidth, $padded->getheight);
${ $pdl_raw->get_dataref } = $data;
$pdl_raw->upd_data;
# Split uint32_t pixels into first dimension with 3 channels (R,G,B) with values 0-255.
my @shifts = map 8*$_, 0..2;
my $pdl_channels = $pdl_raw->dummy(0)
->and2(ulong(map 0xFF << $_, @shifts)->slice(':,*,*') )
->shiftright( ulong(@shifts)->slice(':,*,*') )
->byte;
my $pdl_scaled = (
# Scale to [ 0, 1 ].
( $pdl_channels / float(255) )
);
## flip vertically to see image right way up
#show_in_gnuplot( $pdl_channels->slice(':,:,-1:0') ); #DEBUG
#show_in_gnuplot( $pdl_scaled->slice(':,:,-1:0') * 255.0 ); #DEBUG
$pdl_scaled;
}
my @pdl_images = map {
load_image_to_pdl(
$images_for_test_to_uri{$_},
$model_name_to_params{$model_name}{image_size}
);
} @image_names;
my $pdl_image_batched = cat(@pdl_images);
my $t = FloatPDLTOTFTensor($pdl_image_batched);
p $pdl_image_batched;
p $t;
STREAM (STDOUT):
Downloaded https://upload.wikimedia.org/wikipedia/commons/1/15/Red_Apple.jpg
Rescaled image from [ 2418 x 2192 ] to [ 224 x 203 ]
Padded to [ 224 x 224 ]
Downloaded https://upload.wikimedia.org/wikipedia/commons/1/1c/Bananas_white_background.jpg
Rescaled image from [ 1600 x 1067 ] to [ 224 x 149 ]
Padded to [ 224 x 224 ]
Downloaded https://upload.wikimedia.org/wikipedia/commons/6/63/LT_471_%28LTZ_1471%29_Arriva_London_New_Routemaster_%2819522859218%29.jpg
Rescaled image from [ 3840 x 2560 ] to [ 224 x 149 ]
Padded to [ 224 x 224 ]
Downloaded https://upload.wikimedia.org/wikipedia/commons/4/49/2013-2016_Toyota_Corolla_%28ZRE172R%29_SX_sedan_%282018-09-17%29_01.jpg
Rescaled image from [ 4152 x 2252 ] to [ 224 x 121 ]
Padded to [ 224 x 224 ]
Downloaded https://upload.wikimedia.org/wikipedia/commons/4/4d/Cat_November_2010-1a.jpg
Rescaled image from [ 1795 x 2397 ] to [ 168 x 224 ]
Padded to [ 224 x 224 ]
Downloaded https://upload.wikimedia.org/wikipedia/commons/archive/a/a9/20090914031557%21Saluki_dog_breed.jpg
Rescaled image from [ 543 x 523 ] to [ 224 x 216 ]
Padded to [ 224 x 224 ]
Downloaded https://upload.wikimedia.org/wikipedia/commons/b/b8/James_Flamingos_MC.jpg
Rescaled image from [ 3000 x 1999 ] to [ 224 x 149 ]
Padded to [ 224 x 224 ]
Downloaded https://upload.wikimedia.org/wikipedia/commons/f/f7/Honey_comb.jpg
Rescaled image from [ 800 x 600 ] to [ 224 x 168 ]
Padded to [ 224 x 224 ]
Downloaded https://upload.wikimedia.org/wikipedia/commons/d/da/Steinway_%26_Sons_upright_piano%2C_model_K-132%2C_manufactured_at_Steinway%27s_factory_in_Hamburg%2C_Germany.png
Rescaled image from [ 2059 x 2080 ] to [ 222 x 224 ]
Padded to [ 224 x 224 ]
Downloaded https://upload.wikimedia.org/wikipedia/commons/4/44/Black_tea_pot_cropped.jpg
Rescaled image from [ 900 x 838 ] to [ 224 x 209 ]
Padded to [ 224 x 224 ]
Downloaded https://upload.wikimedia.org/wikipedia/commons/b/b0/Bengal_tiger_%28Panthera_tigris_tigris%29_female_3_crop.jpg
Rescaled image from [ 4500 x 3000 ] to [ 224 x 149 ]
Padded to [ 224 x 224 ]
Downloaded https://upload.wikimedia.org/wikipedia/commons/8/80/Turtle_golfina_escobilla_oaxaca_mexico_claudio_giovenzana_2010.jpg
Rescaled image from [ 2000 x 1329 ] to [ 224 x 149 ]
Padded to [ 224 x 224 ]
STREAM (STDERR):
PDL {
Data : too long to print
Type : float
Shape : [3 224 224 12]
Nelem : 1806336
Min : 0
Max : 1
Badflag : No
Has Bads : No
}
AI::TensorFlow::Libtensorflow::Tensor {
Type FLOAT
Dims [ 12 224 224 3 ]
NumDims 4
ElementCount 1806336
}
Run the model for inference
We can use the Run
method to run the session and get the output TFTensor
.
First, we send a single random input to warm up the model.
my $RunSession = sub {
my ($session, $t) = @_;
my @outputs_t;
$session->Run(
undef,
$outputs{in}, [$t],
$outputs{out}, \@outputs_t,
undef,
undef,
$s
);
AssertOK($s);
return $outputs_t[0];
};
say "Warming up the model";
use PDL::GSL::RNG;
my $rng = PDL::GSL::RNG->new('default');
my $image_size = $model_name_to_params{$model_name}{image_size};
my $warmup_input = zeros(float, 3, @$image_size, 1 );
$rng->get_uniform($warmup_input);
p $RunSession->($session, FloatPDLTOTFTensor($warmup_input));
STREAM (STDOUT):
Warming up the model
STREAM (STDERR):
AI::TensorFlow::Libtensorflow::Tensor {
Type FLOAT
Dims [ 1 1001 ]
NumDims 2
ElementCount 1001
}
Then we send the batched image data. The returned scores need to by normalised using the softmax function with the following formula (taken from Wikipedia):
$$ {\displaystyle \sigma (\mathbf {z} ){i}={\frac {e^{z{i}}}{\sum {j=1}^{K}e^{z{j}}}}\ \ {\text{ for }}i=1,\dotsc ,K{\text{ and }}\mathbf {z} =(z{1},\dotsc ,z{K})\in \mathbb {R} ^{K}.} $$
my $output_pdl_batched = FloatTFTensorToPDL($RunSession->($session, $t));
my $softmax = sub { ( map $_/sumover($_)->dummy(0), exp($_[0]) )[0] };
my $probabilities_batched = $softmax->($output_pdl_batched);
p $probabilities_batched;
STREAM (STDERR):
PDL {
Data : too long to print
Type : float
Shape : [1001 12]
Nelem : 12012
Min : 2.73727380317723e-07
Max : 0.980696022510529
Badflag : No
Has Bads : No
}
Results summary
Then select the top 5 of those and find their class labels.
my $N = 5; # number to select
my $top_batched = $probabilities_batched->qsorti->slice([-1, -$N]);
my @top_lists = dog($top_batched);
my $includes_background_class = $probabilities_batched->dim(0) == IMAGENET_LABEL_COUNT_WITH_BG;
if( IN_IPERL ) {
my $html = IPerl->html(
my_table( [0..$#image_names], sub {
my ($batch_idx, $h) = @_;
my $image_name = $image_names[$batch_idx];
my @top_for_image = $top_lists[$batch_idx]->list;
(
$h->tt($image_name),
$h->a( { href => $images_for_test_to_uri{$image_name} },
$h->img({
src => $images_for_test_to_uri{$image_name},
alt => $image_name,
width => '50%',
})
),
do {
my @tr;
push @tr, [ $h->th('Rank', 'Label No', 'Label', 'Prob') ];
while( my ($i, $label_index) = each @top_for_image ) {
my $class_index = $includes_background_class ? $label_index : $label_index + 1;
push @tr, [ $h->td(
$i + 1,
$class_index,
$labels[$class_index],
$probabilities_batched->at($label_index,$batch_idx),
) ];
}
$h->table([$h->tr(@tr)])
},
)
})
);
IPerl->display($html);
} else {
for my $batch_idx (0..$#image_names) {
my $image_name = $image_names[$batch_idx];
my @top_for_image = $top_lists[$batch_idx]->list;
my @td;
say "Image name: `$image_name`";
my $header = [ ('Rank', 'Label No', 'Label', 'Prob') ];
my @rows;
while( my ($i, $label_index) = each @top_for_image ) {
my $class_index = $includes_background_class ? $label_index : $label_index + 1;
push @rows, [ (
$i + 1,
$class_index,
$labels[$class_index],
$probabilities_batched->at($label_index,$batch_idx),
) ];
}
say generate_table( rows => [ $header, @rows ], header_row => 1 );
print "\n";
}
}
DISPLAY:
my $p_approx_batched = $probabilities_batched->sumover->approx(1, 1e-5);
p $p_approx_batched;
say "All probabilities sum up to approximately 1" if $p_approx_batched->all->sclr;
STREAM (STDOUT):
All probabilities sum up to approximately 1
STREAM (STDERR):
PDL {
Data : [1 1 1 1 1 1 1 1 1 1 1 1]
Type : double
Shape : [12]
Nelem : 12
Min : 1
Max : 1
Badflag : No
Has Bads : No
}
RESULT:
1
RESOURCE USAGE
use Filesys::DiskUsage qw/du/;
my $total = du( { 'human-readable' => 1, dereference => 1 },
$model_archive_path, $model_base, $labels_path );
say "Disk space usage: $total"; undef;
STREAM (STDOUT):
Disk space usage: 27.45M
DEBUGGING
The following images can be used to test the load_image_to_pdl
function.
my @solid_channel_uris = (
'https://upload.wikimedia.org/wikipedia/commons/thumb/6/62/Solid_red.svg/480px-Solid_red.svg.png',
'https://upload.wikimedia.org/wikipedia/commons/thumb/1/1d/Green_00FF00_9x9.svg/480px-Green_00FF00_9x9.svg.png',
'https://upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Solid_blue.svg/480px-Solid_blue.svg.png',
);
undef;
CPANFILE
requires 'AI::TensorFlow::Libtensorflow';
requires 'AI::TensorFlow::Libtensorflow::DataType';
requires 'Archive::Extract';
requires 'Data::Printer';
requires 'Data::Printer::Filter::PDL';
requires 'FFI::Platypus::Buffer';
requires 'FFI::Platypus::Memory';
requires 'File::Which';
requires 'Filesys::DiskUsage';
requires 'HTML::Tiny';
requires 'HTTP::Tiny';
requires 'Imager';
requires 'List::Util';
requires 'PDL';
requires 'PDL::GSL::RNG';
requires 'Path::Tiny';
requires 'Syntax::Construct';
requires 'Text::Table::Tiny';
requires 'URI';
requires 'constant';
requires 'feature';
requires 'lib::projectroot';
requires 'strict';
requires 'utf8';
requires 'warnings';
AUTHOR
Zakariyya Mughal <zmughal@cpan.org>
COPYRIGHT AND LICENSE
This software is Copyright (c) 2022-2023 by Auto-Parallel Technologies, Inc.
This is free software, licensed under:
The Apache License, Version 2.0, January 2004