NAME

PDL::LinearAlgebra::Complex - PDL interface to the lapack linear algebra programming library (complex number)

SYNOPSIS

use PDL::Complex
use PDL::LinearAlgebra::Complex;

$a = r2C random (100,100);
$s = r2C zeroes(100);
$u = r2C zeroes(100,100);
$v = r2C zeroes(100,100);
$info = 0;
$job = 0;
cgesdd($a, $job, $info, $s , $u, $v);

# or, using native complex numbers:
use PDL;
use PDL::LinearAlgebra::Complex;
$a = random(cdouble, 100, 100);
$s = zeroes(cdouble, 100);
$u = zeroes(cdouble, 100, 100);
$v = zeroes(cdouble, 100, 100);
$info = 0;
$job = 0;
cgesdd($a, $job, $info, $s , $u, $v);

DESCRIPTION

This module provides an interface to parts of the lapack library (complex numbers). These routines accept either float or double ndarrays.

FUNCTIONS

cgtsv

Signature: ([phys]DL(2,n); [phys]D(2,n); [phys]DU(2,n); [io,phys]B(2,n,nrhs); int [o,phys]info())

Solves the equation

A * X = B

where A is an n by n tridiagonal matrix, by Gaussian elimination with partial pivoting, and B is an n by nrhs matrix.

Note that the equation A**T*X = B may be solved by interchanging the order of the arguments DU and DL.

NB This differs from the LINPACK function cgtsl in that DL starts from its first element, while the LINPACK equivalent starts from its second element.

Arguments
=========

DL:   On entry, DL must contain the (n-1) sub-diagonal elements of A.

      On exit, DL is overwritten by the (n-2) elements of the
      second super-diagonal of the upper triangular matrix U from
      the LU factorization of A, in DL(1), ..., DL(n-2).

D:    On entry, D must contain the diagonal elements of A.

      On exit, D is overwritten by the n diagonal elements of U.

DU:   On entry, DU must contain the (n-1) super-diagonal elements of A.

      On exit, DU is overwritten by the (n-1) elements of the
      first super-diagonal of the U.

B:    On entry, the n by nrhs matrix of right hand side matrix B.
      On exit, if info = 0, the n by nrhs solution matrix X.

info:   = 0:  successful exit
        < 0:  if info = -i, the i-th argument had an illegal value
        > 0:  if info = i, U(i,i) is exactly zero, and the solution
              has not been computed.  The factorization has not been
              completed unless i = n.
use PDL::Complex;
$dl = random(float, 9) + random(float, 9) * i;
$d = random(float, 10) + random(float, 10) * i;
$du = random(float, 9) + random(float, 9) * i;
$b = random(10,5) + random(10,5) * i;
cgtsv($dl, $d, $du, $b, ($info=null));
print "X is:\n$b" unless $info;

cgesvd

Signature: ([io,phys]A(2,m,n); int jobu(); int jobvt(); [o,phys]s(r); [o,phys]U(2,p,q); [o,phys]VT(2,s,t); int [o,phys]info())

Complex version of gesvd.

The SVD is written

A = U * SIGMA * ConjugateTranspose(V)

cgesdd

Signature: ([io,phys]A(2,m,n); int job(); [o,phys]s(r); [o,phys]U(2,p,q); [o,phys]VT(2,s,t); int [o,phys]info())

Complex version of gesdd.

The SVD is written

A = U * SIGMA * ConjugateTranspose(V)

cggsvd

Signature: ([io,phys]A(2,m,n); int jobu(); int jobv(); int jobq(); [io,phys]B(2,p,n); int [o,phys]k(); int [o,phys]l();[o,phys]alpha(n);[o,phys]beta(n); [o,phys]U(2,q,r); [o,phys]V(2,s,t); [o,phys]Q(2,u,v); int [o,phys]iwork(n); int [o,phys]info())

Complex version of ggsvd

cgeev

Signature: ([phys]A(2,n,n); int jobvl(); int jobvr(); [o,phys]w(2,n); [o,phys]vl(2,m,m); [o,phys]vr(2,p,p); int [o,phys]info())

Complex version of geev

cgeevx

Signature: ([io,phys]A(2,n,n);  int jobvl(); int jobvr(); int balance(); int sense(); [o,phys]w(2,n); [o,phys]vl(2,m,m); [o,phys]vr(2,p,p); int [o,phys]ilo(); int [o,phys]ihi(); [o,phys]scale(n); [o,phys]abnrm(); [o,phys]rconde(q); [o,phys]rcondv(r); int [o,phys]info())

Complex version of geevx

cggev

Signature: ([phys]A(2,n,n); int jobvl();int jobvr();[phys]B(2,n,n);[o,phys]alpha(2,n);[o,phys]beta(2,n);[o,phys]VL(2,m,m);[o,phys]VR(2,p,p);int [o,phys]info())

Complex version of ggev

cggevx

Signature: ([io,phys]A(2,n,n);int balanc();int jobvl();int jobvr();int sense();[io,phys]B(2,n,n);[o,phys]alpha(2,n);[o,phys]beta(2,n);[o,phys]VL(2,m,m);[o,phys]VR(2,p,p);int [o,phys]ilo();int [o,phys]ihi();[o,phys]lscale(n);[o,phys]rscale(n);[o,phys]abnrm();[o,phys]bbnrm();[o,phys]rconde(r);[o,phys]rcondv(s);int [o,phys]info())

Complex version of ggevx

cgees

Signature: ([io,phys]A(2,n,n);  int jobvs(); int sort(); [o,phys]w(2,n); [o,phys]vs(2,p,p); int [o,phys]sdim(); int [o,phys]info())

Complex version of gees

    select_func:
            If sort = 1, select_func is used to select eigenvalues to sort
            to the top left of the Schur form.
            If sort = 0, select_func is not referenced.
            An complex eigenvalue w is selected if
            select_func(PDL::Complex(w)) is true;
            Note that a selected complex eigenvalue may no longer
            satisfy select_func(PDL::Complex(w)) = 1 after ordering, since
            ordering may change the value of complex eigenvalues
            (especially if the eigenvalue is ill-conditioned); in this
            case info is set to N+2.
	

cgeesx

Signature: ([io,phys]A(2,n,n);  int jobvs(); int sort(); int sense(); [o,phys]w(2,n);[o,phys]vs(2,p,p); int [o,phys]sdim(); [o,phys]rconde();[o,phys]rcondv(); int [o,phys]info())

Complex version of geesx

    select_func:
            If sort = 1, select_func is used to select eigenvalues to sort
            to the top left of the Schur form.
            If sort = 0, select_func is not referenced.
            An complex eigenvalue w is selected if
            select_func(PDL::Complex(w)) is true; 
            Note that a selected complex eigenvalue may no longer
            satisfy select_func(PDL::Complex(w)) = 1 after ordering, since
            ordering may change the value of complex eigenvalues
            (especially if the eigenvalue is ill-conditioned); in this
            case info is set to N+2.
	

cgges

Signature: ([io,phys]A(2,n,n); int jobvsl();int jobvsr();int sort();[io,phys]B(2,n,n);[o,phys]alpha(2,n);[o,phys]beta(2,n);[o,phys]VSL(2,m,m);[o,phys]VSR(2,p,p);int [o,phys]sdim();int [o,phys]info())

Complex version of ggees

select_func:
        If sort = 1, select_func is used to select eigenvalues to sort
        to the top left of the Schur form.
        If sort = 0, select_func is not referenced.
        An eigenvalue w = w/beta is selected if
        select_func(PDL::Complex(w), PDL::Complex(beta)) is true; 
        Note that a selected complex eigenvalue may no longer
        satisfy select_func(PDL::Complex(w),PDL::Complex(beta)) = 1 after ordering, since
        ordering may change the value of complex eigenvalues
        (especially if the eigenvalue is ill-conditioned); in this
        case info is set to N+2.

cggesx

Signature: ([io,phys]A(2,n,n); int jobvsl();int jobvsr();int sort();int sense();[io,phys]B(2,n,n);[o,phys]alpha(2,n);[o,phys]beta(2,n);[o,phys]VSL(2,m,m);[o,phys]VSR(2,p,p);int [o,phys]sdim();[o,phys]rconde(q);[o,phys]rcondv(r);int [o,phys]info())

Complex version of ggeesx

select_func:
        If sort = 1, select_func is used to select eigenvalues to sort
        to the top left of the Schur form.
        If sort = 0, select_func is not referenced.
        An eigenvalue w = w/beta is selected if
        select_func(PDL::Complex(w), PDL::Complex(beta)) is true; 
        Note that a selected complex eigenvalue may no longer
        satisfy select_func(PDL::Complex(w),PDL::Complex(beta)) = 1 after ordering, since
        ordering may change the value of complex eigenvalues
        (especially if the eigenvalue is ill-conditioned); in this
        case info is set to N+3.

cheev

Signature: ([io,phys]A(2,n,n);  int jobz(); int uplo(); [o,phys]w(n); int [o,phys]info())

Complex version of syev for Hermitian matrix

cheevd

Signature: ([io,phys]A(2,n,n);  int jobz(); int uplo(); [o,phys]w(n); int [o,phys]info())

Complex version of syevd for Hermitian matrix

cheevx

Signature: ([phys]A(2,n,n);  int jobz(); int range(); int uplo(); [phys]vl(); [phys]vu(); int [phys]il(); int [phys]iu(); [phys]abstol(); int [o,phys]m(); [o,phys]w(n); [o,phys]z(2,p,q);int [o,phys]ifail(r); int [o,phys]info())

Complex version of syevx for Hermitian matrix

cheevr

Signature: ([phys]A(2,n,n);  int jobz(); int range(); int uplo(); [phys]vl(); [phys]vu(); int [phys]il(); int [phys]iu(); [phys]abstol(); int [o,phys]m(); [o,phys]w(n); [o,phys]z(2,p,q);int [o,phys]isuppz(r); int [o,phys]info())

Complex version of syevr for Hermitian matrix

chegv

Signature: ([io,phys]A(2,n,n);int [phys]itype();int jobz(); int uplo();[io,phys]B(2,n,n);[o,phys]w(n); int [o,phys]info())

Complex version of sygv for Hermitian matrix

chegvd

Signature: ([io,phys]A(2,n,n);int [phys]itype();int jobz(); int uplo();[io,phys]B(2,n,n);[o,phys]w(n); int [o,phys]info())

Complex version of sygvd for Hermitian matrix

chegvx

Signature: ([io,phys]A(2,n,n);int [phys]itype();int jobz();int range(); int uplo();[io,phys]B(2,n,n);[phys]vl();[phys]vu();int [phys]il();int [phys]iu();[phys]abstol();int [o,phys]m();[o,phys]w(n); [o,phys]Z(2,p,q);int [o,phys]ifail(r);int [o,phys]info())

Complex version of sygvx for Hermitian matrix

cgesv

Signature: ([io,phys]A(2,n,n);  [io,phys]B(2,n,m); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of gesv

cgesvx

Signature: ([io,phys]A(2,n,n); int trans(); int fact(); [io,phys]B(2,n,m); [io,phys]af(2,n,n); int [io,phys]ipiv(n); int [io]equed(); [io,phys]r(n); [io,phys]c(n); [o,phys]X(2,n,m); [o,phys]rcond(); [o,phys]ferr(m); [o,phys]berr(m); [o,phys]rpvgrw(); int [o,phys]info())

Complex version of gesvx.

trans:  Specifies the form of the system of equations:
        = 0:  A * X = B     (No transpose)   
        = 1:  A' * X = B  (Transpose)   
        = 2:  A**H * X = B  (Conjugate transpose)  

csysv

Signature: ([io,phys]A(2,n,n);  int uplo(); [io,phys]B(2,n,m); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of sysv

csysvx

Signature: ([phys]A(2,n,n); int uplo(); int fact(); [phys]B(2,n,m); [io,phys]af(2,n,n); int [io,phys]ipiv(n); [o,phys]X(2,n,m); [o,phys]rcond(); [o,phys]ferr(m); [o,phys]berr(m); int [o,phys]info())

Complex version of sysvx

chesv

Signature: ([io,phys]A(2,n,n);  int uplo(); [io,phys]B(2,n,m); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of sysv for Hermitian matrix

chesvx

Signature: ([phys]A(2,n,n); int uplo(); int fact(); [phys]B(2,n,m); [io,phys]af(2,n,n); int [io,phys]ipiv(n); [o,phys]X(2,n,m); [o,phys]rcond(); [o,phys]ferr(m); [o,phys]berr(m); int [o,phys]info())

Complex version of sysvx for Hermitian matrix

cposv

Signature: ([io,phys]A(2,n,n);  int uplo(); [io,phys]B(2,n,m); int [o,phys]info())

Complex version of posv for Hermitian positive definite matrix

cposvx

Signature: ([io,phys]A(2,n,n); int uplo(); int fact(); [io,phys]B(2,n,m); [io,phys]af(2,n,n); int [io]equed(); [io,phys]s(n); [o,phys]X(2,n,m); [o,phys]rcond(); [o,phys]ferr(m); [o,phys]berr(m); int [o,phys]info())

Complex version of posvx for Hermitian positive definite matrix

cgels

Signature: ([io,phys]A(2,m,n); int trans(); [io,phys]B(2,p,q);int [o,phys]info())

Solves overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its conjugate-transpose. Complex version of gels.

trans:  = 0: the linear system involves A;
        = 1: the linear system involves A**H.

cgelsy

Signature: ([io,phys]A(2,m,n); [io,phys]B(2,p,q); [phys]rcond(); int [io,phys]jpvt(n); int [o,phys]rank();int [o,phys]info())

Complex version of gelsy

cgelss

Signature: ([io,phys]A(2,m,n); [io,phys]B(2,p,q); [phys]rcond(); [o,phys]s(r); int [o,phys]rank();int [o,phys]info())

Complex version of gelss

cgelsd

Signature: ([io,phys]A(2,m,n); [io,phys]B(2,p,q); [phys]rcond(); [o,phys]s(r); int [o,phys]rank();int [o,phys]info())

Complex version of gelsd

cgglse

Signature: ([phys]A(2,m,n); [phys]B(2,p,n);[io,phys]c(2,m);[phys]d(2,p);[o,phys]x(2,n);int [o,phys]info())

Complex version of gglse

cggglm

Signature: ([phys]A(2,n,m); [phys]B(2,n,p);[phys]d(2,n);[o,phys]x(2,m);[o,phys]y(2,p);int [o,phys]info())

Complex version of ggglm

cgetrf

Signature: ([io,phys]A(2,m,n); int [o,phys]ipiv(p); int [o,phys]info())

Complex version of getrf

cgetf2

Signature: ([io,phys]A(2,m,n); int [o,phys]ipiv(p); int [o,phys]info())

Complex version of getf2

csytrf

Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of sytrf

csytf2

Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of sytf2

cchetrf

Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of sytrf for Hermitian matrix

chetf2

Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of sytf2 for Hermitian matrix

cpotrf

Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]info())

Complex version of potrf for Hermitian positive definite matrix

cpotf2

Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]info())

Complex version of potf2 for Hermitian positive definite matrix

cgetri

Signature: ([io,phys]A(2,n,n); int [phys]ipiv(n); int [o,phys]info())

Complex version of getri

csytri

Signature: ([io,phys]A(2,n,n); int uplo(); int [phys]ipiv(n); int [o,phys]info())

Complex version of sytri

chetri

Signature: ([io,phys]A(2,n,n); int uplo(); int [phys]ipiv(n); int [o,phys]info())

Complex version of sytri for Hermitian matrix

cpotri

Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]info())

Complex version of potri

ctrtri

Signature: ([io,phys]A(2,n,n); int uplo(); int diag(); int [o,phys]info())

Complex version of trtri

ctrti2

Signature: ([io,phys]A(2,n,n); int uplo(); int diag(); int [o,phys]info())

Complex version of trti2

cgetrs

Signature: ([phys]A(2,n,n); int trans(); [io,phys]B(2,n,m); int [phys]ipiv(n); int [o,phys]info())

Complex version of getrs

    Arguments   
    =========   
	trans:   = 0:  No transpose;
            	 = 1:  Transpose; 
            	 = 2:  Conjugate transpose;

csytrs

Signature: ([phys]A(2,n,n); int uplo();[io,phys]B(2,n,m); int [phys]ipiv(n); int [o,phys]info())

Complex version of sytrs

chetrs

Signature: ([phys]A(2,n,n); int uplo();[io,phys]B(2,n,m); int [phys]ipiv(n); int [o,phys]info())

Complex version of sytrs for Hermitian matrix

cpotrs

Signature: ([phys]A(2,n,n); int uplo(); [io,phys]B(2,n,m); int [o,phys]info())

Complex version of potrs for Hermitian positive definite matrix

ctrtrs

Signature: ([phys]A(2,n,n); int uplo(); int trans(); int diag();[io,phys]B(2,n,m); int [o,phys]info())

Complex version of trtrs

    Arguments   
    =========   
	trans:   = 0:  No transpose;
            	 = 1:  Transpose; 
            	 = 2:  Conjugate transpose;

clatrs

Signature: ([phys]A(2,n,n); int uplo(); int trans(); int diag(); int normin();[io,phys]x(2,n); [o,phys]scale();[io,phys]cnorm(n);int [o,phys]info())

Complex version of latrs

    Arguments   
    =========   
	trans:   = 0:  No transpose;
            	 = 1:  Transpose; 
            	 = 2:  Conjugate transpose;

cgecon

Signature: ([phys]A(2,n,n); int norm(); [phys]anorm(); [o,phys]rcond();int [o,phys]info())

Complex version of gecon

csycon

Signature: ([phys]A(2,n,n); int uplo(); int ipiv(n); [phys]anorm(); [o,phys]rcond();int [o,phys]info())

Complex version of sycon

checon

Signature: ([phys]A(2,n,n); int uplo(); int ipiv(n); [phys]anorm(); [o,phys]rcond();int [o,phys]info())

Complex version of sycon for Hermitian matrix

cpocon

Signature: ([phys]A(2,n,n); int uplo(); [phys]anorm(); [o,phys]rcond();int [o,phys]info())

Complex version of pocon for Hermitian positive definite matrix

ctrcon

Signature: ([phys]A(2,n,n); int norm();int uplo();int diag(); [o,phys]rcond();int [o,phys]info())

Complex version of trcon

cgeqp3

Signature: ([io,phys]A(2,m,n); int [io,phys]jpvt(n); [o,phys]tau(2,k); int [o,phys]info())

Complex version of geqp3

cgeqrf

Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())

Complex version of geqrf

cungqr

Signature: ([io,phys]A(2,m,n); [phys]tau(2,k); int [o,phys]info())

Complex version of orgqr

cunmqr

Signature: ([phys]A(2,p,k); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())

Complex version of ormqr. Here trans = 1 means conjugate transpose.

cgelqf

Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())

Complex version of gelqf

cunglq

Signature: ([io,phys]A(2,m,n); [phys]tau(2,k); int [o,phys]info())

Complex version of orglq

cunmlq

Signature: ([phys]A(2,k,p); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())

Complex version of ormlq. Here trans = 1 means conjugate transpose.

cgeqlf

Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())

Complex version of geqlf

cungql

Signature: ([io,phys]A(2,m,n); [phys]tau(2,k); int [o,phys]info())

Complex version of orgql.

cunmql

Signature: ([phys]A(2,p,k); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())

Complex version of ormql. Here trans = 1 means conjugate transpose.

cgerqf

Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())

Complex version of gerqf

cungrq

Signature: ([io,phys]A(2,m,n); [phys]tau(2,k); int [o,phys]info())

Complex version of orgrq.

cunmrq

Signature: ([phys]A(2,k,p); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())

Complex version of ormrq. Here trans = 1 means conjugate transpose.

ctzrzf

Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())

Complex version of tzrzf

cunmrz

Signature: ([phys]A(2,k,p); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())

Complex version of ormrz. Here trans = 1 means conjugate transpose.

cgehrd

Signature: ([io,phys]A(2,n,n); int [phys]ilo();int [phys]ihi();[o,phys]tau(2,k); int [o,phys]info())

Complex version of gehrd

cunghr

Signature: ([io,phys]A(2,n,n); int [phys]ilo();int [phys]ihi();[phys]tau(2,k); int [o,phys]info())

Complex version of orghr

chseqr

Signature: ([io,phys]H(2,n,n); int job();int compz();int [phys]ilo();int [phys]ihi();[o,phys]w(2,n); [o,phys]Z(2,m,m); int [o,phys]info())

Complex version of hseqr

ctrevc

Signature: ([io,phys]T(2,n,n); int side();int howmny();int [phys]select(q);[io,phys]VL(2,m,r); [io,phys]VR(2,p,s);int [o,phys]m(); int [o,phys]info())

Complex version of trevc

ctgevc

Signature: ([io,phys]A(2,n,n); int side();int howmny(); [io,phys]B(2,n,n);int [phys]select(q);[io,phys]VL(2,m,r); [io,phys]VR(2,p,s);int [o,phys]m(); int [o,phys]info())

Complex version of tgevc

cgebal

Signature: ([io,phys]A(2,n,n); int job(); int [o,phys]ilo();int [o,phys]ihi();[o,phys]scale(n); int [o,phys]info())

Complex version of gebal

clange

Signature: ([phys]A(2,n,m); int norm(); [o]b())

Complex version of lange

clansy

Signature: ([phys]A(2, n,n); int uplo(); int norm(); [o]b())

Complex version of lansy

clantr

Signature: ([phys]A(2,m,n);int uplo();int norm();int diag();[o]b())

Complex version of lantr

cgemm

Signature: ([phys]A(2,m,n); int transa(); int transb(); [phys]B(2,p,q);[phys]alpha(2); [phys]beta(2); [io,phys]C(2,r,s))

Complex version of gemm.

    Arguments   
    =========   
	transa:  = 0:  No transpose;
            	 = 1:  Transpose; 
            	 = 2:  Conjugate transpose;

	transb:  = 0:  No transpose;
            	 = 1:  Transpose; 
            	 = 2:  Conjugate transpose;

cmmult

Signature: ([phys]A(2,m,n); [phys]B(2,p,m); [o,phys]C(2,p,n))

Complex version of mmult

ccrossprod

Signature: ([phys]A(2,n,m); [phys]B(2,p,m); [o,phys]C(2,p,n))

Complex version of crossprod

csyrk

Signature: ([phys]A(2,m,n); int uplo(); int trans(); [phys]alpha(2); [phys]beta(2); [io,phys]C(2,p,p))

Complex version of syrk

cdot

Signature: ([phys]a(2,n);int [phys]inca();[phys]b(2,n);int [phys]incb();[o,phys]c(2))

Complex version of dot

cdotc

Signature: ([phys]a(2,n);int [phys]inca();[phys]b(2,n);int [phys]incb();[o,phys]c(2))

Forms the dot product of two vectors, conjugating the first vector.

caxpy

Signature: ([phys]a(2,n);int [phys]inca();[phys] alpha(2);[io,phys]b(2,n);int [phys]incb())

Complex version of axpy

cnrm2

Signature: ([phys]a(2,n);int [phys]inca();[o,phys]b())

Complex version of nrm2

casum

Signature: ([phys]a(2,n);int [phys]inca();[o,phys]b())

Complex version of asum

cscal

Signature: ([io,phys]a(2,n);int [phys]inca();[phys]scale(2))

Complex version of scal

sscal

Signature: ([io,phys]a(2,n);int [phys]inca();[phys]scale())

Scales a complex vector by a real constant.

sscal ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

crotg

Signature: ([io,phys]a(2);[phys]b(2);[o,phys]c(); [o,phys]s(2))

Complex version of rotg

clacpy

Signature: ([phys]A(2,m,n); int uplo(); [o,phys]B(2,p,n))

Complex version of lacpy

claswp

Signature: ([io,phys]A(2,m,n); int [phys]k1(); int [phys]k2(); int [phys]ipiv(p);int [phys]inc())

Complex version of laswp

ctricpy

Signature: (A(c=2,m,n);int uplo();[o] C(c=2,m,n))

Copy triangular part to another matrix. If uplo == 0 copy upper triangular part.

ctricpy does not process bad values. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

cmstack

Signature: (x(c,n,m);y(c,n,p);[o]out(c,n,q))

Combine two 3D ndarrays into a single ndarray. This routine does backward and forward dataflow automatically.

cmstack does not process bad values. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

ccharpol

Signature: ([phys]A(c=2,n,n);[phys,o]Y(c=2,n,n);[phys,o]out(c=2,p);)

Complex version of charpol

AUTHOR

Copyright (C) Grégory Vanuxem 2005-2018.

This library is free software; you can redistribute it and/or modify it under the terms of the Perl Artistic License as in the file Artistic_2 in this distribution.