NAME
PDL::LinearAlgebra::Complex - PDL interface to the lapack linear algebra programming library (complex number)
SYNOPSIS
use PDL::Complex
use PDL::LinearAlgebra::Complex;
$a = r2C random (100,100);
$s = r2C zeroes(100);
$u = r2C zeroes(100,100);
$v = r2C zeroes(100,100);
$info = 0;
$job = 0;
cgesdd($a, $job, $info, $s , $u, $v);
# or, using native complex numbers:
use PDL;
use PDL::LinearAlgebra::Complex;
$a = random(cdouble, 100, 100);
$s = zeroes(cdouble, 100);
$u = zeroes(cdouble, 100, 100);
$v = zeroes(cdouble, 100, 100);
$info = 0;
$job = 0;
cgesdd($a, $job, $info, $s , $u, $v);
DESCRIPTION
This module provides an interface to parts of the lapack library (complex numbers). These routines accept either float or double ndarrays.
FUNCTIONS
cgtsv
Signature: ([phys]DL(2,n); [phys]D(2,n); [phys]DU(2,n); [io,phys]B(2,n,nrhs); int [o,phys]info())
Solves the equation
A * X = B
where A is an n
by n
tridiagonal matrix, by Gaussian elimination with partial pivoting, and B is an n
by nrhs
matrix.
Note that the equation A**T*X = B
may be solved by interchanging the order of the arguments DU and DL.
NB This differs from the LINPACK function cgtsl
in that DL
starts from its first element, while the LINPACK equivalent starts from its second element.
Arguments
=========
DL: On entry, DL must contain the (n-1) sub-diagonal elements of A.
On exit, DL is overwritten by the (n-2) elements of the
second super-diagonal of the upper triangular matrix U from
the LU factorization of A, in DL(1), ..., DL(n-2).
D: On entry, D must contain the diagonal elements of A.
On exit, D is overwritten by the n diagonal elements of U.
DU: On entry, DU must contain the (n-1) super-diagonal elements of A.
On exit, DU is overwritten by the (n-1) elements of the
first super-diagonal of the U.
B: On entry, the n by nrhs matrix of right hand side matrix B.
On exit, if info = 0, the n by nrhs solution matrix X.
info: = 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value
> 0: if info = i, U(i,i) is exactly zero, and the solution
has not been computed. The factorization has not been
completed unless i = n.
use PDL::Complex;
$dl = random(float, 9) + random(float, 9) * i;
$d = random(float, 10) + random(float, 10) * i;
$du = random(float, 9) + random(float, 9) * i;
$b = random(10,5) + random(10,5) * i;
cgtsv($dl, $d, $du, $b, ($info=null));
print "X is:\n$b" unless $info;
cgesvd
Signature: ([io,phys]A(2,m,n); int jobu(); int jobvt(); [o,phys]s(r); [o,phys]U(2,p,q); [o,phys]VT(2,s,t); int [o,phys]info())
Complex version of gesvd.
The SVD is written
A = U * SIGMA * ConjugateTranspose(V)
cgesdd
Signature: ([io,phys]A(2,m,n); int job(); [o,phys]s(r); [o,phys]U(2,p,q); [o,phys]VT(2,s,t); int [o,phys]info())
Complex version of gesdd.
The SVD is written
A = U * SIGMA * ConjugateTranspose(V)
cggsvd
Signature: ([io,phys]A(2,m,n); int jobu(); int jobv(); int jobq(); [io,phys]B(2,p,n); int [o,phys]k(); int [o,phys]l();[o,phys]alpha(n);[o,phys]beta(n); [o,phys]U(2,q,r); [o,phys]V(2,s,t); [o,phys]Q(2,u,v); int [o,phys]iwork(n); int [o,phys]info())
Complex version of ggsvd
cgeev
Signature: ([phys]A(2,n,n); int jobvl(); int jobvr(); [o,phys]w(2,n); [o,phys]vl(2,m,m); [o,phys]vr(2,p,p); int [o,phys]info())
Complex version of geev
cgeevx
Signature: ([io,phys]A(2,n,n); int jobvl(); int jobvr(); int balance(); int sense(); [o,phys]w(2,n); [o,phys]vl(2,m,m); [o,phys]vr(2,p,p); int [o,phys]ilo(); int [o,phys]ihi(); [o,phys]scale(n); [o,phys]abnrm(); [o,phys]rconde(q); [o,phys]rcondv(r); int [o,phys]info())
Complex version of geevx
cggev
Signature: ([phys]A(2,n,n); int jobvl();int jobvr();[phys]B(2,n,n);[o,phys]alpha(2,n);[o,phys]beta(2,n);[o,phys]VL(2,m,m);[o,phys]VR(2,p,p);int [o,phys]info())
Complex version of ggev
cggevx
Signature: ([io,phys]A(2,n,n);int balanc();int jobvl();int jobvr();int sense();[io,phys]B(2,n,n);[o,phys]alpha(2,n);[o,phys]beta(2,n);[o,phys]VL(2,m,m);[o,phys]VR(2,p,p);int [o,phys]ilo();int [o,phys]ihi();[o,phys]lscale(n);[o,phys]rscale(n);[o,phys]abnrm();[o,phys]bbnrm();[o,phys]rconde(r);[o,phys]rcondv(s);int [o,phys]info())
Complex version of ggevx
cgees
Signature: ([io,phys]A(2,n,n); int jobvs(); int sort(); [o,phys]w(2,n); [o,phys]vs(2,p,p); int [o,phys]sdim(); int [o,phys]info())
Complex version of gees
select_func:
If sort = 1, select_func is used to select eigenvalues to sort
to the top left of the Schur form.
If sort = 0, select_func is not referenced.
An complex eigenvalue w is selected if
select_func(PDL::Complex(w)) is true;
Note that a selected complex eigenvalue may no longer
satisfy select_func(PDL::Complex(w)) = 1 after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case info is set to N+2.
cgeesx
Signature: ([io,phys]A(2,n,n); int jobvs(); int sort(); int sense(); [o,phys]w(2,n);[o,phys]vs(2,p,p); int [o,phys]sdim(); [o,phys]rconde();[o,phys]rcondv(); int [o,phys]info())
Complex version of geesx
select_func:
If sort = 1, select_func is used to select eigenvalues to sort
to the top left of the Schur form.
If sort = 0, select_func is not referenced.
An complex eigenvalue w is selected if
select_func(PDL::Complex(w)) is true;
Note that a selected complex eigenvalue may no longer
satisfy select_func(PDL::Complex(w)) = 1 after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case info is set to N+2.
cgges
Signature: ([io,phys]A(2,n,n); int jobvsl();int jobvsr();int sort();[io,phys]B(2,n,n);[o,phys]alpha(2,n);[o,phys]beta(2,n);[o,phys]VSL(2,m,m);[o,phys]VSR(2,p,p);int [o,phys]sdim();int [o,phys]info())
Complex version of ggees
select_func:
If sort = 1, select_func is used to select eigenvalues to sort
to the top left of the Schur form.
If sort = 0, select_func is not referenced.
An eigenvalue w = w/beta is selected if
select_func(PDL::Complex(w), PDL::Complex(beta)) is true;
Note that a selected complex eigenvalue may no longer
satisfy select_func(PDL::Complex(w),PDL::Complex(beta)) = 1 after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case info is set to N+2.
cggesx
Signature: ([io,phys]A(2,n,n); int jobvsl();int jobvsr();int sort();int sense();[io,phys]B(2,n,n);[o,phys]alpha(2,n);[o,phys]beta(2,n);[o,phys]VSL(2,m,m);[o,phys]VSR(2,p,p);int [o,phys]sdim();[o,phys]rconde(q);[o,phys]rcondv(r);int [o,phys]info())
Complex version of ggeesx
select_func:
If sort = 1, select_func is used to select eigenvalues to sort
to the top left of the Schur form.
If sort = 0, select_func is not referenced.
An eigenvalue w = w/beta is selected if
select_func(PDL::Complex(w), PDL::Complex(beta)) is true;
Note that a selected complex eigenvalue may no longer
satisfy select_func(PDL::Complex(w),PDL::Complex(beta)) = 1 after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case info is set to N+3.
cheev
Signature: ([io,phys]A(2,n,n); int jobz(); int uplo(); [o,phys]w(n); int [o,phys]info())
Complex version of syev for Hermitian matrix
cheevd
Signature: ([io,phys]A(2,n,n); int jobz(); int uplo(); [o,phys]w(n); int [o,phys]info())
Complex version of syevd for Hermitian matrix
cheevx
Signature: ([phys]A(2,n,n); int jobz(); int range(); int uplo(); [phys]vl(); [phys]vu(); int [phys]il(); int [phys]iu(); [phys]abstol(); int [o,phys]m(); [o,phys]w(n); [o,phys]z(2,p,q);int [o,phys]ifail(r); int [o,phys]info())
Complex version of syevx for Hermitian matrix
cheevr
Signature: ([phys]A(2,n,n); int jobz(); int range(); int uplo(); [phys]vl(); [phys]vu(); int [phys]il(); int [phys]iu(); [phys]abstol(); int [o,phys]m(); [o,phys]w(n); [o,phys]z(2,p,q);int [o,phys]isuppz(r); int [o,phys]info())
Complex version of syevr for Hermitian matrix
chegv
Signature: ([io,phys]A(2,n,n);int [phys]itype();int jobz(); int uplo();[io,phys]B(2,n,n);[o,phys]w(n); int [o,phys]info())
Complex version of sygv for Hermitian matrix
chegvd
Signature: ([io,phys]A(2,n,n);int [phys]itype();int jobz(); int uplo();[io,phys]B(2,n,n);[o,phys]w(n); int [o,phys]info())
Complex version of sygvd for Hermitian matrix
chegvx
Signature: ([io,phys]A(2,n,n);int [phys]itype();int jobz();int range(); int uplo();[io,phys]B(2,n,n);[phys]vl();[phys]vu();int [phys]il();int [phys]iu();[phys]abstol();int [o,phys]m();[o,phys]w(n); [o,phys]Z(2,p,q);int [o,phys]ifail(r);int [o,phys]info())
Complex version of sygvx for Hermitian matrix
cgesv
Signature: ([io,phys]A(2,n,n); [io,phys]B(2,n,m); int [o,phys]ipiv(n); int [o,phys]info())
Complex version of gesv
cgesvx
Signature: ([io,phys]A(2,n,n); int trans(); int fact(); [io,phys]B(2,n,m); [io,phys]af(2,n,n); int [io,phys]ipiv(n); int [io]equed(); [io,phys]r(n); [io,phys]c(n); [o,phys]X(2,n,m); [o,phys]rcond(); [o,phys]ferr(m); [o,phys]berr(m); [o,phys]rpvgrw(); int [o,phys]info())
Complex version of gesvx.
trans: Specifies the form of the system of equations:
= 0: A * X = B (No transpose)
= 1: A' * X = B (Transpose)
= 2: A**H * X = B (Conjugate transpose)
csysv
Signature: ([io,phys]A(2,n,n); int uplo(); [io,phys]B(2,n,m); int [o,phys]ipiv(n); int [o,phys]info())
Complex version of sysv
csysvx
Signature: ([phys]A(2,n,n); int uplo(); int fact(); [phys]B(2,n,m); [io,phys]af(2,n,n); int [io,phys]ipiv(n); [o,phys]X(2,n,m); [o,phys]rcond(); [o,phys]ferr(m); [o,phys]berr(m); int [o,phys]info())
Complex version of sysvx
chesv
Signature: ([io,phys]A(2,n,n); int uplo(); [io,phys]B(2,n,m); int [o,phys]ipiv(n); int [o,phys]info())
Complex version of sysv for Hermitian matrix
chesvx
Signature: ([phys]A(2,n,n); int uplo(); int fact(); [phys]B(2,n,m); [io,phys]af(2,n,n); int [io,phys]ipiv(n); [o,phys]X(2,n,m); [o,phys]rcond(); [o,phys]ferr(m); [o,phys]berr(m); int [o,phys]info())
Complex version of sysvx for Hermitian matrix
cposv
Signature: ([io,phys]A(2,n,n); int uplo(); [io,phys]B(2,n,m); int [o,phys]info())
Complex version of posv for Hermitian positive definite matrix
cposvx
Signature: ([io,phys]A(2,n,n); int uplo(); int fact(); [io,phys]B(2,n,m); [io,phys]af(2,n,n); int [io]equed(); [io,phys]s(n); [o,phys]X(2,n,m); [o,phys]rcond(); [o,phys]ferr(m); [o,phys]berr(m); int [o,phys]info())
Complex version of posvx for Hermitian positive definite matrix
cgels
Signature: ([io,phys]A(2,m,n); int trans(); [io,phys]B(2,p,q);int [o,phys]info())
Solves overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its conjugate-transpose. Complex version of gels.
trans: = 0: the linear system involves A;
= 1: the linear system involves A**H.
cgelsy
Signature: ([io,phys]A(2,m,n); [io,phys]B(2,p,q); [phys]rcond(); int [io,phys]jpvt(n); int [o,phys]rank();int [o,phys]info())
Complex version of gelsy
cgelss
Signature: ([io,phys]A(2,m,n); [io,phys]B(2,p,q); [phys]rcond(); [o,phys]s(r); int [o,phys]rank();int [o,phys]info())
Complex version of gelss
cgelsd
Signature: ([io,phys]A(2,m,n); [io,phys]B(2,p,q); [phys]rcond(); [o,phys]s(r); int [o,phys]rank();int [o,phys]info())
Complex version of gelsd
cgglse
Signature: ([phys]A(2,m,n); [phys]B(2,p,n);[io,phys]c(2,m);[phys]d(2,p);[o,phys]x(2,n);int [o,phys]info())
Complex version of gglse
cggglm
Signature: ([phys]A(2,n,m); [phys]B(2,n,p);[phys]d(2,n);[o,phys]x(2,m);[o,phys]y(2,p);int [o,phys]info())
Complex version of ggglm
cgetrf
Signature: ([io,phys]A(2,m,n); int [o,phys]ipiv(p); int [o,phys]info())
Complex version of getrf
cgetf2
Signature: ([io,phys]A(2,m,n); int [o,phys]ipiv(p); int [o,phys]info())
Complex version of getf2
csytrf
Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())
Complex version of sytrf
csytf2
Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())
Complex version of sytf2
cchetrf
Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())
Complex version of sytrf for Hermitian matrix
chetf2
Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())
Complex version of sytf2 for Hermitian matrix
cpotrf
Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]info())
Complex version of potrf for Hermitian positive definite matrix
cpotf2
Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]info())
Complex version of potf2 for Hermitian positive definite matrix
cgetri
Signature: ([io,phys]A(2,n,n); int [phys]ipiv(n); int [o,phys]info())
Complex version of getri
csytri
Signature: ([io,phys]A(2,n,n); int uplo(); int [phys]ipiv(n); int [o,phys]info())
Complex version of sytri
chetri
Signature: ([io,phys]A(2,n,n); int uplo(); int [phys]ipiv(n); int [o,phys]info())
Complex version of sytri for Hermitian matrix
cpotri
Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]info())
Complex version of potri
ctrtri
Signature: ([io,phys]A(2,n,n); int uplo(); int diag(); int [o,phys]info())
Complex version of trtri
ctrti2
Signature: ([io,phys]A(2,n,n); int uplo(); int diag(); int [o,phys]info())
Complex version of trti2
cgetrs
Signature: ([phys]A(2,n,n); int trans(); [io,phys]B(2,n,m); int [phys]ipiv(n); int [o,phys]info())
Complex version of getrs
Arguments
=========
trans: = 0: No transpose;
= 1: Transpose;
= 2: Conjugate transpose;
csytrs
Signature: ([phys]A(2,n,n); int uplo();[io,phys]B(2,n,m); int [phys]ipiv(n); int [o,phys]info())
Complex version of sytrs
chetrs
Signature: ([phys]A(2,n,n); int uplo();[io,phys]B(2,n,m); int [phys]ipiv(n); int [o,phys]info())
Complex version of sytrs for Hermitian matrix
cpotrs
Signature: ([phys]A(2,n,n); int uplo(); [io,phys]B(2,n,m); int [o,phys]info())
Complex version of potrs for Hermitian positive definite matrix
ctrtrs
Signature: ([phys]A(2,n,n); int uplo(); int trans(); int diag();[io,phys]B(2,n,m); int [o,phys]info())
Complex version of trtrs
Arguments
=========
trans: = 0: No transpose;
= 1: Transpose;
= 2: Conjugate transpose;
clatrs
Signature: ([phys]A(2,n,n); int uplo(); int trans(); int diag(); int normin();[io,phys]x(2,n); [o,phys]scale();[io,phys]cnorm(n);int [o,phys]info())
Complex version of latrs
Arguments
=========
trans: = 0: No transpose;
= 1: Transpose;
= 2: Conjugate transpose;
cgecon
Signature: ([phys]A(2,n,n); int norm(); [phys]anorm(); [o,phys]rcond();int [o,phys]info())
Complex version of gecon
csycon
Signature: ([phys]A(2,n,n); int uplo(); int ipiv(n); [phys]anorm(); [o,phys]rcond();int [o,phys]info())
Complex version of sycon
checon
Signature: ([phys]A(2,n,n); int uplo(); int ipiv(n); [phys]anorm(); [o,phys]rcond();int [o,phys]info())
Complex version of sycon for Hermitian matrix
cpocon
Signature: ([phys]A(2,n,n); int uplo(); [phys]anorm(); [o,phys]rcond();int [o,phys]info())
Complex version of pocon for Hermitian positive definite matrix
ctrcon
Signature: ([phys]A(2,n,n); int norm();int uplo();int diag(); [o,phys]rcond();int [o,phys]info())
Complex version of trcon
cgeqp3
Signature: ([io,phys]A(2,m,n); int [io,phys]jpvt(n); [o,phys]tau(2,k); int [o,phys]info())
Complex version of geqp3
cgeqrf
Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())
Complex version of geqrf
cungqr
Signature: ([io,phys]A(2,m,n); [phys]tau(2,k); int [o,phys]info())
Complex version of orgqr
cunmqr
Signature: ([phys]A(2,p,k); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())
Complex version of ormqr. Here trans = 1 means conjugate transpose.
cgelqf
Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())
Complex version of gelqf
cunglq
Signature: ([io,phys]A(2,m,n); [phys]tau(2,k); int [o,phys]info())
Complex version of orglq
cunmlq
Signature: ([phys]A(2,k,p); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())
Complex version of ormlq. Here trans = 1 means conjugate transpose.
cgeqlf
Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())
Complex version of geqlf
cungql
Signature: ([io,phys]A(2,m,n); [phys]tau(2,k); int [o,phys]info())
Complex version of orgql.
cunmql
Signature: ([phys]A(2,p,k); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())
Complex version of ormql. Here trans = 1 means conjugate transpose.
cgerqf
Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())
Complex version of gerqf
cungrq
Signature: ([io,phys]A(2,m,n); [phys]tau(2,k); int [o,phys]info())
Complex version of orgrq.
cunmrq
Signature: ([phys]A(2,k,p); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())
Complex version of ormrq. Here trans = 1 means conjugate transpose.
ctzrzf
Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())
Complex version of tzrzf
cunmrz
Signature: ([phys]A(2,k,p); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())
Complex version of ormrz. Here trans = 1 means conjugate transpose.
cgehrd
Signature: ([io,phys]A(2,n,n); int [phys]ilo();int [phys]ihi();[o,phys]tau(2,k); int [o,phys]info())
Complex version of gehrd
cunghr
Signature: ([io,phys]A(2,n,n); int [phys]ilo();int [phys]ihi();[phys]tau(2,k); int [o,phys]info())
Complex version of orghr
chseqr
Signature: ([io,phys]H(2,n,n); int job();int compz();int [phys]ilo();int [phys]ihi();[o,phys]w(2,n); [o,phys]Z(2,m,m); int [o,phys]info())
Complex version of hseqr
ctrevc
Signature: ([io,phys]T(2,n,n); int side();int howmny();int [phys]select(q);[io,phys]VL(2,m,r); [io,phys]VR(2,p,s);int [o,phys]m(); int [o,phys]info())
Complex version of trevc
ctgevc
Signature: ([io,phys]A(2,n,n); int side();int howmny(); [io,phys]B(2,n,n);int [phys]select(q);[io,phys]VL(2,m,r); [io,phys]VR(2,p,s);int [o,phys]m(); int [o,phys]info())
Complex version of tgevc
cgebal
Signature: ([io,phys]A(2,n,n); int job(); int [o,phys]ilo();int [o,phys]ihi();[o,phys]scale(n); int [o,phys]info())
Complex version of gebal
clange
Signature: ([phys]A(2,n,m); int norm(); [o]b())
Complex version of lange
clansy
Signature: ([phys]A(2, n,n); int uplo(); int norm(); [o]b())
Complex version of lansy
clantr
Signature: ([phys]A(2,m,n);int uplo();int norm();int diag();[o]b())
Complex version of lantr
cgemm
Signature: ([phys]A(2,m,n); int transa(); int transb(); [phys]B(2,p,q);[phys]alpha(2); [phys]beta(2); [io,phys]C(2,r,s))
Complex version of gemm.
Arguments
=========
transa: = 0: No transpose;
= 1: Transpose;
= 2: Conjugate transpose;
transb: = 0: No transpose;
= 1: Transpose;
= 2: Conjugate transpose;
cmmult
Signature: ([phys]A(2,m,n); [phys]B(2,p,m); [o,phys]C(2,p,n))
Complex version of mmult
ccrossprod
Signature: ([phys]A(2,n,m); [phys]B(2,p,m); [o,phys]C(2,p,n))
Complex version of crossprod
csyrk
Signature: ([phys]A(2,m,n); int uplo(); int trans(); [phys]alpha(2); [phys]beta(2); [io,phys]C(2,p,p))
Complex version of syrk
cdot
Signature: ([phys]a(2,n);int [phys]inca();[phys]b(2,n);int [phys]incb();[o,phys]c(2))
Complex version of dot
cdotc
Signature: ([phys]a(2,n);int [phys]inca();[phys]b(2,n);int [phys]incb();[o,phys]c(2))
Forms the dot product of two vectors, conjugating the first vector.
caxpy
Signature: ([phys]a(2,n);int [phys]inca();[phys] alpha(2);[io,phys]b(2,n);int [phys]incb())
Complex version of axpy
cnrm2
Signature: ([phys]a(2,n);int [phys]inca();[o,phys]b())
Complex version of nrm2
casum
Signature: ([phys]a(2,n);int [phys]inca();[o,phys]b())
Complex version of asum
cscal
Signature: ([io,phys]a(2,n);int [phys]inca();[phys]scale(2))
Complex version of scal
sscal
Signature: ([io,phys]a(2,n);int [phys]inca();[phys]scale())
Scales a complex vector by a real constant.
sscal ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
crotg
Signature: ([io,phys]a(2);[phys]b(2);[o,phys]c(); [o,phys]s(2))
Complex version of rotg
clacpy
Signature: ([phys]A(2,m,n); int uplo(); [o,phys]B(2,p,n))
Complex version of lacpy
claswp
Signature: ([io,phys]A(2,m,n); int [phys]k1(); int [phys]k2(); int [phys]ipiv(p);int [phys]inc())
Complex version of laswp
ctricpy
Signature: (A(c=2,m,n);int uplo();[o] C(c=2,m,n))
Copy triangular part to another matrix. If uplo == 0 copy upper triangular part.
ctricpy does not process bad values. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
cmstack
Signature: (x(c,n,m);y(c,n,p);[o]out(c,n,q))
Combine two 3D ndarrays into a single ndarray. This routine does backward and forward dataflow automatically.
cmstack does not process bad values. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
ccharpol
Signature: ([phys]A(c=2,n,n);[phys,o]Y(c=2,n,n);[phys,o]out(c=2,p);)
Complex version of charpol
AUTHOR
Copyright (C) Grégory Vanuxem 2005-2018.
This library is free software; you can redistribute it and/or modify it under the terms of the Perl Artistic License as in the file Artistic_2 in this distribution.