NAME
Math::PlanePath -- points on a path through the 2-D plane
SYNOPSIS
use Math::PlanePath;
# only a base class, see the subclasses for actual operation
DESCRIPTION
This is the base class for some mathematical paths which map an integer position $n
to and from coordinates $x,$y
in the 2D plane.
The current classes include the following. The intention is that any Math::PlanePath::Something
is a PlanePath, and supporting base classes or related things are further down like Math::PlanePath::Base::Xyzzy
.
SquareSpiral four-sided spiral
PyramidSpiral square base pyramid
TriangleSpiral equilateral triangle spiral
TriangleSpiralSkewed equilateral skewed for compactness
DiamondSpiral four-sided spiral, looping faster
PentSpiral five-sided spiral
PentSpiralSkewed five-sided spiral, compact
HexSpiral six-sided spiral
HexSpiralSkewed six-sided spiral skewed for compactness
HeptSpiralSkewed seven-sided spiral, compact
AnvilSpiral anvil shape
OctagramSpiral eight pointed star
KnightSpiral an infinite knight's tour
CretanLabyrinth 7-circuit extended infinitely
SquareArms four-arm square spiral
DiamondArms four-arm diamond spiral
AztecDiamondRings four-sided rings
HexArms six-arm hexagonal spiral
GreekKeySpiral spiral with Greek key motif
MPeaks "M" shape layers
SacksSpiral quadratic on an Archimedean spiral
VogelFloret seeds in a sunflower
TheodorusSpiral unit steps at right angles
ArchimedeanChords chords on an Archimedean spiral
MultipleRings concentric circles
PixelRings concentric rings of midpoint pixels
FilledRings concentric rings of pixels
Hypot points by distance
HypotOctant first octant points by distance
TriangularHypot points by triangular lattice distance
PythagoreanTree primitive triples by tree
PeanoCurve 3x3 self-similar quadrant traversal
WunderlichSerpentine transpose parts of PeanoCurve
HilbertCurve 2x2 self-similar quadrant traversal
HilbertSpiral 2x2 self-similar whole-plane traversal
ZOrderCurve replicating Z shapes
GrayCode Gray code splits
WunderlichMeander 3x3 "R" pattern quadrant traversal
BetaOmega 2x2 self-similar half-plane traversal
AR2W2Curve 2x2 self-similar of four shapes
KochelCurve 3x3 self-similar two shapes
CincoCurve 5x5 self-similar
ImaginaryBase replicating in four directions
ImaginaryHalf half-plane replicate three directions
CubicBase replicating in three directions
SquareReplicate 3x3 replicating squares
CornerReplicate 2x2 replicating squares
LTiling self-simlar L shapes
DigitGroups digit groups of high zero
FibonacciWordFractal turns by Fibonacci word bits
Flowsnake self-similar hexagonal tile traversal
FlowsnakeCentres likewise, but centres of hexagons
GosperReplicate self-similar hexagonal tiling
GosperIslands concentric island rings
GosperSide single side or radial
QuintetCurve self-similar "+" shape
QuintetCentres likewise, but centres of squares
QuintetReplicate self-similar "+" tiling
DragonCurve paper folding
DragonRounded same but rounding-off vertices
DragonMidpoint paper folding midpoints
AlternatePaper paper folding in alternating directions
TerdragonCurve ternary dragon
TerdragonRounded ternary dragon, rounded corners
TerdragonMidpoint ternary dragon midpoints
R5DragonCurve radix-5 dragon curve
R5DragonMidpoint radix-5 dragon curve midpoints
CCurve "C" curve
ComplexPlus base i+r
ComplexMinus base i-r, including twindragon
ComplexRevolving revolving base i+1
SierpinskiCurve self-similar right-triangles
SierpinskiCurveStair self-similar right-triangles, stair-step
HIndexing self-similar right-triangles, squared up
KochCurve replicating triangular notches
KochPeaks two replicating notches
KochSnowflakes concentric notched 3-sided rings
KochSquareflakes concentric notched 4-sided rings
QuadricCurve eight segment zig-zag
QuadricIslands rings of those zig-zags
SierpinskiTriangle self-similar triangle by rows
SierpinskiArrowhead self-similar triangle connectedly
SierpinskiArrowheadCentres likewise, but centres of triangles
Rows fixed-width rows
Columns fixed-height columns
Diagonals diagonals down from the Y to X axes
DiagonalsAlternating diagonals Y to X and back again
DiagonalsOctant diagonals from Y axis to X=Y centre
Staircase stairs down from the Y to X axes
StaircaseAlternating stairs Y to X and back again
Corner expanding stripes around a corner
PyramidRows expanding stacked rows pyramid
PyramidSides along the sides of a 45-degree pyramid
CellularRule cellular automaton by rule number
CellularRule54 cellular automaton rows pattern
CellularRule57 cellular automaton (rule 99 mirror too)
CellularRule190 cellular automaton (rule 246 mirror too)
UlamWarburton cellular automaton diamonds
UlamWarburtonQuarter cellular automaton quarter-plane
DiagonalRationals rationals X/Y by diagonals
FactorRationals rationals X/Y by prime factorization
GcdRationals rationals X/Y by rows with GCD integer
RationalsTree rationals X/Y by tree
FractionsTree fractions 0<X/Y<1 by tree
CoprimeColumns coprime X,Y
DivisibleColumns X divisible by Y
WythoffArray Fibonacci recurrences
PowerArray powers in rows
File points from a disk file
The paths are object oriented to allow parameters, though many have none. See examples/numbers.pl
in the Math-PlanePath sources for a cute sample printout of the numbering for selected paths or for all paths.
Number Types
The $n
and $x,$y
parameters can be either integers or floating point. The paths are meant to do something sensible with fractions. But expect rounding-off for big floating point exponents.
Floating point infinities (when available) give nan or infinite returns of some kind (some unspecified kind as yet). n_to_xy()
on negative infinity is an empty return, the same as other negative $n
. Calculations which break an input into digits of some base shouldn't loop infinitely on infinities.
Floating point nans (when available) give nan, infinite, or empty/undef returns, but again of some unspecified kind as yet, though in any case not going into infinite loops.
Many of the classes can operate on overloaded number types as inputs and give corresponding outputs.
Math::BigInt maybe perl 5.8 up, for ** operator
Math::BigRat
Math::BigFloat
Number::Fraction 1.14 or higher (for abs())
This is slightly experimental and some classes might truncate a bignum or a fraction to a float as yet. In general the intention is to make the code generic enough that it can act on sensible number types. Recent versions of the bignum modules might be required, perhaps Perl 5.8 or higher for the **
exponentiation operator in particular.
For reference, an undef
input to $n
, $x,$y
, etc, is meant to provoke an uninitialized value warnings (when warnings are enabled), but currently doesn't croak etc. Perhaps that will change, but the warning at least prevents bad inputs going unnoticed.
FUNCTIONS
In the following Foo
is one of the various subclasses, see the list above and under "SEE ALSO".
$path = Math::PlanePath::Foo->new (key=>value, ...)
-
Create and return a new path object. Optional key/value parameters may control aspects of the object.
($x,$y) = $path->n_to_xy ($n)
-
Return X,Y coordinates of point
$n
on the path. If there's no point$n
then the return is an empty list, so for examplemy ($x,$y) = $path->n_to_xy (-123) or next; # no negatives in $path
Paths start from
$path->n_start
below, though some will give a position for N=0 or N=-0.5 too. $rsquared = $path->n_to_rsquared ($n)
-
Return the radial distance R^2 of point
$n
, orundef
if there's no point$n
. This is simply$x**2+$y**2
but for a few paths this can be calculated with less work than$x,$y
. $n = $path->xy_to_n ($x,$y)
-
Return the N point number at coordinates
$x,$y
. If there's nothing at$x,$y
then returnundef
.my $n = $path->xy_to_n(20,20); if (! defined $n) { next; # nothing at this X,Y }
$x
and$y
can be fractional and the path classes will give an integer$n
which contains$x,$y
within a unit square, circle, or intended figure centred on the integer$n
.For paths which completely tile the plane there's always an
$n
to return, but for the spread-out paths an$x,$y
position may fall in between (no$n
close enough). @n_list = $path->xy_to_n_list ($x,$y)
-
Return a list of N point numbers at coordinates
$x,$y
. If there's nothing at$x,$y
then return a empty list.my @n_list = $path->xy_to_n(20,20);
Most paths have just a single N for a given X,Y, but for those like DragonCurve and TerdragonCurve where multiple N's give the same X,Y this method returns the list of those N values.
($n_lo, $n_hi) = $path->rect_to_n_range ($x1,$y1, $x2,$y2)
-
Return a range of N values covering or exceeding a rectangle with corners at
$x1
,$y1
and$x2
,$y2
. The range is inclusive. For example,my ($n_lo, $n_hi) = $path->rect_to_n_range (-5,-5, 5,5); foreach my $n ($n_lo .. $n_hi) { my ($x, $y) = $path->n_to_xy($n) or next; print "$n $x,$y"; }
The return may be an over-estimate of the range, and many of the points between
$n_lo
and$n_hi
might be outside the rectangle. But the range at least bounds the N values which occur in the rectangle. Classes which can guarantee an exact lo/hi range say so in their docs.$n_hi
is usually no more than an extra partial row, revolution, or self-similar level.$n_lo
is often merely the starting$path->n_start()
, which is fine if the origin is in the desired rectangle but something away from the origin might actually start higher.$x1
,$y1
and$x2
,$y2
can be fractional and if they partly overlap some N figures then those N's are included in the return.If there's no points in the rectangle then the return can be a "crossed" range like
$n_lo=1
,$n_hi=0
(which makes aforeach
do no loops). Butrect_to_n_range()
might not notice there's no points in the rectangle and instead over-estimate the range. $n = $path->n_start()
-
Return the first N in the path. In the current classes this is either 0 or 1.
Some classes have secret dubious undocumented support for N values below this (zero or negative), but
n_start()
is the intended starting point. $f = $path->n_frac_discontinuity()
-
Return the fraction of N at which there's discontinuities in the path. For example if there's a jump in the coordinates between N=7.4999 and N=7.5 then the returned
$f
is 0.5. Or$f
is 0 if there's a discontinuity between 6.999 and 7.0.If there's no discontinuities in the path, so that for example fractions between N=7 to N=8 give smooth X,Y values (of some kind) then the return is
undef
.This is mainly of interest for drawing line segments between successive N points. If there's discontinuities then the idea is to draw from say N=7.0 to N=7.499 and then another line from N=7.5 to N=8. The returned
$f
is whether there's discontinuities anywhere in$path
. $bool = $path->x_negative()
$bool = $path->y_negative()
-
Return true if the path extends into negative X coordinates and/or negative Y coordinates respectively.
$bool = Math::PlanePath::Foo->class_x_negative()
$bool = Math::PlanePath::Foo->class_y_negative()
$bool = $path->class_x_negative()
$bool = $path->class_y_negative()
-
Return true if any paths made by this class extend into negative X coordinates and/or negative Y coordinates, respectively.
For some classes the X or Y extent may depend on parameter values.
$arms = $path->arms_count()
-
Return the number of arms in a "multi-arm" path.
For example in SquareArms this is 4 and each arm increments in turn, so the first arm is N=1,5,9,13, etc, starting from
$path->n_start()
and incrementing by 4 each time. $str = $path->figure()
-
Return a string name of the figure (shape) intended to be drawn at each
$n
position. This is currently either"square" side 1 centred on $x,$y "circle" diameter 1 centred on $x,$y
Of course this is only a suggestion since PlanePath doesn't draw anything itself. A figure like a diamond for instance can look good too.
$aref = Math::PlanePath::Foo->parameter_info_array()
@list = Math::PlanePath::Foo->parameter_info_list()
-
Return an arrayref of list describing the parameters taken by a given class. This meant to help making widgets etc for user interaction in a GUI. Each element is a hashref
{ name => parameter key arg for new() share_key => string, or undef description => human readable string type => string "integer","boolean","enum" etc default => value minimum => number, or undef maximum => number, or undef width => integer, suggested display size choices => for enum, an arrayref }
type
is a string, one of"integer" "enum" "boolean" "string" "filename"
"filename" is separate from "string" since it might require subtly different handling to reach Perl as a byte string, whereas a "string" type might in principle take Perl wide chars.
For "enum" the
choices
field is the possible values, such as{ name => "flavour", type => "enum", choices => ["strawberry","chocolate"], }
minimum
and/ormaximum
are omitted if there's no hard limit on the parameter.share_key
is designed to indicate when parameters from different NumSeq classes can done by a single control widget in a GUI etc. Normally thename
is enough, but when the same name has slightly different meanings in different classes ashare_key
allows the same meanings to be matched up. $hashref = Math::PlanePath::Foo->parameter_info_hash()
-
Return a hashref mapping parameter names
$info->{'name'}
to their$info
records.{ wider => { name => "wider", type => "integer", ... }, }
GENERAL CHARACTERISTICS
The classes are mostly based on integer $n
positions and those designed for a square grid turn an integer $n
into integer $x,$y
. Usually they give in-between positions for fractional $n
too. Classes not on a square grid but instead giving fractional X,Y such as SacksSpiral and VogelFloret are designed for a unit circle at each $n
but they too can give in-between positions on request.
All X,Y positions are calculated by separate n_to_xy()
calls. To follow a path use successive $n
values starting from $path->n_start()
.
foreach my $n ($path->n_start .. 100) {
my ($x,$y) = $path->n_to_xy($n);
print "$n $x,$y\n";
}
The separate n_to_xy()
calls were motivated by plotting just some N points of a path, such as just the primes or the perfect squares. Successive positions in paths might be done in an iterator style more efficiently. The paths with a quadratic "step" are not much worse than a sqrt()
to break N into a segment and offset, but the self-similar paths which chop N into digits of some radix might increment instead of recalculate.
A disadvantage of an iterator is that if you're only interested in a particular rectangule or similar region then the iteration may stray outside for a long time, making it much less useful than it seems. For wild paths it can be better to apply xy_to_n()
by rows or similar.
Scaling and Orientation
The paths generally make a first move horizontally to the right and/or around from the X axis anti-clockwise, unless there's some more natural orientation. Anti-clockwise is the usual direction for mathematical spirals.
There's no parameters for scaling, offset or reflection as those things are thought better left to a general coordinate transformer, for example to expand or invert for display. But some easy transformations can be had just from the X,Y with
-X,Y flip horizontally (mirror image)
X,-Y flip vertically (across the X axis)
-Y,X rotate +90 degrees (anti-clockwise)
Y,-X rotate -90 degrees (clockwise)
-X,-Y rotate 180 degrees
Flip vertically makes the spirals go clockwise instead of anti-clockwise, or a flip horizontally the same but starting on the left at the negative X axis. See "Triangular Lattice" below for 60 degree rotations of the triangular grid paths.
The Rows and Columns paths are exceptions to the rule of not having rotated versions of paths. They began as ways to pass in width and height as generic parameters and let the path use the one or the other.
For scaling and shifting see Transform::Canvas, and to rotate as well see Geometry::AffineTransform.
Loop Step
The paths can be characterized by how much longer each loop or repetition is than the preceding one. For example each cycle around the SquareSpiral is 8 more N points than the preceding.
Step Path
---- ----
0 Rows, Columns (fixed widths)
2/2 DiagonalsOctant (2 rows for +2)
1 Diagonals
2 SacksSpiral, PyramidSides, Corner, PyramidRows (default)
4 DiamondSpiral, AztecDiamondRings, Staircase
4/2 CellularRule54, CellularRule57,
DiagonalsAlternating (2 rows for +4)
5 PentSpiral, PentSpiralSkewed
5.65 PixelRings (average about 4*sqrt(2))
6 HexSpiral, HexSpiralSkewed, MPeaks,
MultipleRings (default)
6/2 CellularRule190 (2 rows for +6)
6.28 ArchimedeanChords (approaching 2*pi),
FilledRings (average)
7 HeptSpiralSkewed
8 SquareSpiral, PyramidSpiral
16/2 StaircaseAlternating (up and back for +16)
9 TriangleSpiral, TriangleSpiralSkewed
12 AnvilSpiral
16 OctagramSpiral
19.74 TheodorusSpiral (approaching 2*pi^2)
32/4 KnightSpiral (4 loops 2-wide for +32)
64 DiamondArms (each arm)
72 GreekKeySpiral
128 SquareArms (each arm)
128/4 CretanLabyrinth (4 loops for +128)
216 HexArms (each arm)
totient CoprimeColumns, DiagonalRationals
divcount DivisibleColumns
various CellularRule
parameter MultipleRings, PyramidRows
The step determines which quadratic number sequences make straight lines. For example the gap between successive perfect squares increases by 2 each time (4 to 9 is +5, 9 to 16 is +7, 16 to 25 is +9, etc), so the perfect squares make a straight line in the paths of step 2.
In general straight lines on stepped paths are quadratics
N = a*k^2 + b*k + c where a=step/2
The polygonal numbers are like this, with the (step+2)-gonal numbers making a straight line on a "step" path. For example the 7-gonals (heptagonals) are 5/2*k^2-3/2*k and make a straight line on the step=5 PentSpiral. Or the 8-gonal octagonal numbers 6/2*k^2-4/2*k on the step=6 HexSpiral.
There are various interesting properties of primes in quadratic progressions. Some quadratics seem to have more primes than others. For example see "Lucky Numbers of Euler" in Math::PlanePath::PyramidSides. Many quadratics have no primes at all, or none above a certain point, either trivially if always a multiple of 2 etc, or by a more sophisticated reasoning. See "Step 3 Pentagonals" in Math::PlanePath::PyramidRows for a factorization on the roots making a no-primes gap.
A 4*step path splits a straight line in two, so for example the perfect squares are a straight line on the step=2 "Corner" path, and then on the step=8 SquareSpiral they instead fall on two lines (lower left and upper right). In the bigger step there's one line of the even squares (2k)^2 == 4*k^2 and another of the odd squares (2k+1)^2. The gap between successive even squares increases by 8 each time and likewise between odd squares.
Self-Similar Powers
The self-similar patterns such as PeanoCurve generally have a base pattern which repeats at powers N=base^level. Or some multiple or relationship to such a power for things like KochPeaks and GosperIslands.
Base Path
---- ----
2 HilbertCurve, HilbertSpiral, ZOrderCurve (default),
GrayCode (default), BetaOmega, AR2W2Curve,
SierpinskiCurve, HIndexing, SierpinskiCurveStair,
ImaginaryBase (default), ImaginaryHalf (default),
CubicBase (default) CornerReplicate,
ComplexMinus (default), ComplexPlus (default),
ComplexRevolving, DragonCurve, DragonRounded,
DragonMidpoint, AlternatePaper, CCurve,
DigitGroups (default), PowerArray (default)
3 PeanoCurve (default), WunderlichSerpentine (default),
WunderlichMeander, KochelCurve,
GosperIslands, GosperSide
SierpinskiTriangle, SierpinskiArrowhead,
SierpinskiArrowheadCentres,
TerdragonCurve, TerdragonRounded, TerdragonMidpoint,
UlamWarburton, UlamWarburtonQuarter (each level)
4 KochCurve, KochPeaks, KochSnowflakes, KochSquareflakes,
LTiling
5 QuintetCurve, QuintetCentres, QuintetReplicate,
CincoCurve, R5DragonCurve, R5DragonMidpoint
7 Flowsnake, FlowsnakeCentres, GosperReplicate
8 QuadricCurve, QuadricIslands
9 SquareReplicate
Fibonacci FibonacciWordFractal, WythoffArray
parameter PeanoCurve, WunderlichSerpentine, ZOrderCurve, GrayCode,
ImaginaryBase, ImaginaryHalf, CubicBase, ComplexPlus,
ComplexMinus, DigitGroups, PowerArray
Many number sequences plotted on these paths tend to be fairly random, or merely show the tiling or path layout rather than much about the number sequence. Sequences related to the base can make holes or patterns picking out parts of the path. For example numbers without a particular digit (or digits) in the relevant base show up as holes. See for example "Power of 2 Values" in Math::PlanePath::ZOrderCurve.
Triangular Lattice
Some paths are on triangular or "A2" lattice points like
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
These are done in integer X,Y on a square grid by using every second square and offsetting alternate rows. This means X and Y are either both even or both odd, not of opposite parity.
. * . * . * . * . * . *
* . * . * . * . * . * .
. * . * . * . * . * . *
* . * . * . * . * . * .
. * . * . * . * . * . *
* . * . * . * . * . * .
The X axis and diagonals X=Y and X=-Y divide the plane into six equal parts in this grid.
X=-Y X=Y
\ /
\ /
\ /
----------------- X=0
/ \
/ \
/ \
The diagonal X=3*Y is the middle of the first sixth, representing a twelfth of the plane.
The resulting triangles are flatter than they should be. The triangle base is width=2 and top is height=1, whereas it would be height=sqrt(3) for an equilateral triangle. That sqrt(3) factor can be applied if desired,
X, Y*sqrt(3) side length 2
X/2, Y*sqrt(3)/2 side length 1
Integer Y values have the advantage of fitting pixels on the usual kind of raster computer screen, and not losing precision in floating point results.
If doing a general-purpose coordinate rotation then be sure to apply the sqrt(3) scale factor first, otherwise any rotation will be wrong. 60 degree rotations can be made within the integer X,Y coordinates directly as follows, all giving integer X,Y results.
(X-3Y)/2, (X+Y)/2 rotate +60 (anti-clockwise)
(X+3Y)/2, (Y-X)/2 rotate -60 (clockwise)
-(X+3Y)/2, (X-Y)/2 rotate +120
(3Y-X)/2, -(X+Y)/2 rotate -120
-X,-Y rotate 180
(X+3Y)/2, (X-Y)/2 mirror across the X=3*Y twelfth line
The sqrt(3) factor can be worked into a hypotenuse radial distance calculation as follows if comparing distances from the origin.
hypot = sqrt(X*X + 3*Y*Y)
See for instance TriangularHypot which is triangular points ordered by this radial distance.
FORMULAS
Triangular Calculations
For a triangular lattice the rotation formulas above allow calculations to be done in the rectangular X,Y coordinates which are the inputs and outputs of the PlanePath functions. An alternative is to number vertically on a 60 degree angle with coordinates i,j,
...
* * * 2
* * * 1
* * * j=0
i=0 1 2
Such coordinates are sometimes used for hexagonal grids in board games etc, and using this internally can simplify rotations a little,
-j, i+j rotate +60 (anti-clockwise)
i+j, -i rotate -60 (clockwise)
-i-j, i rotate +120
j, -i-j rotate -120
-i, -j rotate 180
Conversions between i,j and the rectangular X,Y are
X = 2*i + j i = (X-Y)/2
Y = j j = Y
A third coordinate k at a +120 degrees angle can be used too,
k=0 k=1 k=2
* * *
* * *
* * *
0 1 2
This is redundant in that it doesn't number anything i,j alone can't already, but it has the advantage of turning rotations into just sign changes and swaps,
-k, i, j rotate +60
j, k, -i rotate -60
-j, -k, i rotate +120
k, -i, -j rotate -120
-i, -j, -k rotate 180
The conversions between i,j,k and the rectangular X,Y are like the i,j above but with k worked in too.
X = 2i + j - k i = (X-Y)/2 i = (X+Y)/2
Y = j + k j = Y or j = 0
k = 0 k = Y
SEE ALSO
Math::PlanePath::SquareSpiral, Math::PlanePath::PyramidSpiral, Math::PlanePath::TriangleSpiral, Math::PlanePath::TriangleSpiralSkewed, Math::PlanePath::DiamondSpiral, Math::PlanePath::PentSpiral, Math::PlanePath::PentSpiralSkewed, Math::PlanePath::HexSpiral, Math::PlanePath::HexSpiralSkewed, Math::PlanePath::HeptSpiralSkewed, Math::PlanePath::AnvilSpiral, Math::PlanePath::OctagramSpiral, Math::PlanePath::KnightSpiral, Math::PlanePath::CretanLabyrinth
Math::PlanePath::HexArms, Math::PlanePath::SquareArms, Math::PlanePath::DiamondArms, Math::PlanePath::AztecDiamondRings, Math::PlanePath::GreekKeySpiral, Math::PlanePath::MPeaks
Math::PlanePath::SacksSpiral, Math::PlanePath::VogelFloret, Math::PlanePath::TheodorusSpiral, Math::PlanePath::ArchimedeanChords, Math::PlanePath::MultipleRings, Math::PlanePath::PixelRings, Math::PlanePath::FilledRings, Math::PlanePath::Hypot, Math::PlanePath::HypotOctant, Math::PlanePath::TriangularHypot, Math::PlanePath::PythagoreanTree
Math::PlanePath::PeanoCurve, Math::PlanePath::WunderlichSerpentine, Math::PlanePath::WunderlichMeander, Math::PlanePath::HilbertCurve, Math::PlanePath::HilbertSpiral, Math::PlanePath::ZOrderCurve, Math::PlanePath::GrayCode, Math::PlanePath::AR2W2Curve, Math::PlanePath::BetaOmega, Math::PlanePath::KochelCurve, Math::PlanePath::CincoCurve,
Math::PlanePath::ImaginaryBase, Math::PlanePath::ImaginaryHalf, Math::PlanePath::CubicBase, Math::PlanePath::SquareReplicate, Math::PlanePath::CornerReplicate, Math::PlanePath::LTiling, Math::PlanePath::DigitGroups, Math::PlanePath::FibonacciWordFractal
Math::PlanePath::Flowsnake, Math::PlanePath::FlowsnakeCentres, Math::PlanePath::GosperReplicate, Math::PlanePath::GosperIslands, Math::PlanePath::GosperSide
Math::PlanePath::QuintetCurve, Math::PlanePath::QuintetCentres, Math::PlanePath::QuintetReplicate
Math::PlanePath::KochCurve, Math::PlanePath::KochPeaks, Math::PlanePath::KochSnowflakes, Math::PlanePath::KochSquareflakes
Math::PlanePath::QuadricCurve, Math::PlanePath::QuadricIslands
Math::PlanePath::SierpinskiCurve, Math::PlanePath::SierpinskiCurveStair, Math::PlanePath::HIndexing
Math::PlanePath::SierpinskiTriangle, Math::PlanePath::SierpinskiArrowhead, Math::PlanePath::SierpinskiArrowheadCentres
Math::PlanePath::DragonCurve, Math::PlanePath::DragonRounded, Math::PlanePath::DragonMidpoint, Math::PlanePath::AlternatePaper, Math::PlanePath::TerdragonCurve, Math::PlanePath::TerdragonRounded, Math::PlanePath::TerdragonMidpoint, Math::PlanePath::R5DragonCurve, Math::PlanePath::R5DragonMidpoint, Math::PlanePath::CCurve
Math::PlanePath::ComplexPlus, Math::PlanePath::ComplexMinus, Math::PlanePath::ComplexRevolving
Math::PlanePath::Rows, Math::PlanePath::Columns, Math::PlanePath::Diagonals, Math::PlanePath::DiagonalsAlternating, Math::PlanePath::DiagonalsOctant, Math::PlanePath::Staircase, Math::PlanePath::StaircaseAlternating, Math::PlanePath::Corner
Math::PlanePath::PyramidRows, Math::PlanePath::PyramidSides, Math::PlanePath::CellularRule, Math::PlanePath::CellularRule54, Math::PlanePath::CellularRule57, Math::PlanePath::CellularRule190, Math::PlanePath::UlamWarburton, Math::PlanePath::UlamWarburtonQuarter
Math::PlanePath::DiagonalRationals, Math::PlanePath::FactorRationals, Math::PlanePath::GcdRationals, Math::PlanePath::RationalsTree, Math::PlanePath::FractionsTree, Math::PlanePath::CoprimeColumns, Math::PlanePath::DivisibleColumns, Math::PlanePath::WythoffArray, Math::PlanePath::PowerArray, Math::PlanePath::File
Math::NumSeq::PlanePathCoord, Math::NumSeq::PlanePathDelta
math-image, displaying various sequences on these paths.
examples/numbers.pl in the Math-PlanePath source code, to print all the paths.
Math::Fractal::Curve, Math::Curve::Hilbert, Algorithm::SpatialIndex::Strategy::QuadTree
PerlMagick (Image::Magick) demo scripts lsys.pl and tree.pl
HOME PAGE
http://user42.tuxfamily.org/math-planepath/index.html
http://user42.tuxfamily.org/math-planepath/gallery.html
LICENSE
Copyright 2010, 2011, 2012 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version.
Math-PlanePath is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.