NAME

Math::PlanePath::DragonRounded -- dragon curve, with rounded corners

SYNOPSIS

use Math::PlanePath::DragonRounded;
my $path = Math::PlanePath::DragonRounded->new;
my ($x, $y) = $path->n_to_xy (123);

DESCRIPTION

This is a version of the dragon curve by Heighway, Harter, et al, done with two points per edge and skipping vertices so as to make rounded-off corners,

                      17-16              9--8                 6
                     /     \           /     \
                   18       15       10        7              5
                    |        |        |        |
                   19       14       11        6              4
                     \        \     /           \
                      20-21    13-12              5--4        3
                           \                          \
                            22                          3     2
                             |                          |
                            23                          2     1
                           /                          /
    33-32             25-24                    .  0--1       Y=0
   /     \           /
 34       31       26                                        -1
  |        |        |
 35       30       27                                        -2
   \        \     /
    36-37    29-28    44-45                                  -3
         \           /     \
          38       43       46                               -4
           |        |        |
          39       42       47                               -5
            \     /        /
             40-41    49-48                                  -6
                     /
                   50                                        -7
                    |
                   ...


  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
-15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3 ...

The two points on an edge have one of X or Y a multiple of 3 and the other Y or X at 1 mod 3 or 2 mod 3. For example N=19 and N=20 are on the X=-9 edge (a multiple of 3), and at Y=4 and Y=5 (1 and 2 mod 3).

The "rounding" of the corners ensures that for example N=13 and N=21 don't touch as they approach X=-6,Y=3. The curve always approaches vertices like this and never crosses itself.

Arms

The dragon curve fills a quarter of the plane and four copies mesh together rotated by 90, 180 and 270 degrees. The arms parameter can choose 1 to 4 curve arms, successively advancing. For example arms => 4 gives

            36-32             59-...          6
           /     \           /
...      40       28       55                 5
 |        |        |        |
56       44       24       51                 4
  \     /           \        \
   52-48    13--9    20-16    47-43           3
           /     \        \        \
         17        5       12       39        2
          |        |        |        |
         21        1        8       35        1
        /                 /        /
   29-25     6--2     0--4    27-31       <- Y=0
  /        /                 /
33       10        3       23                -1
 |        |        |        |
37       14        7       19                -2
  \        \        \     /
   41-45    18-22    11-15    50-54          -3
        \        \           /     \
         49       26       46       58       -4
          |        |        |        |
         53       30       42       ...      -5
        /           \     /
  ...-57             34-38                   -6



 ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
-6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6

With 4 arms like this all 3x3 blocks are visited, using 4 out of 9 points in each.

Midpoint

The points of this rounded curve correspond to the DragonMidpoint with a little squish to turn each 6x6 block into a 4x4 block. For instance in the following N=2,3 are pushed to the left, and N=6 through N=11 shift down and squashes up horizontally.

 DragonRounded               DragonMidpoint

    9--8                     
   /    \
 10      7                     9---8         
  |      |                     |   |         
 11      6                    10   7         
/         \                    |   |         
           5--4      <=>     -11   6---5---4 
               \                           | 
                3                          3 
                |                          | 
                2                          2 
               /                           | 
         . 0--1                        0---1 
                        

FUNCTIONS

See "FUNCTIONS" in Math::PlanePath for behaviour common to all path classes.

$path = Math::PlanePath::DragonRounded->new ()
$path = Math::PlanePath::DragonRounded->new (arms => $aa)

Create and return a new path object.

The optional arms parameter makes a multi-arm curve. The default is 1 for just one arm.

($x,$y) = $path->n_to_xy ($n)

Return the X,Y coordinates of point number $n on the path. Points begin at 0 and if $n < 0 then the return is an empty list.

$n = $path->n_start()

Return 0, the first N in the path.

FORMULAS

X,Y to N

The correspondence with the DragonMidpoint noted above allows the method from that module to be used for the rounded xy_to_n().

The correspondence essentially reckons each point on the rounded curve as the midpoint of a dragon curve of one greater level of detail, and segments on 45-degree angles.

The coordinate conversion turns each 6x6 block of DragonRounded to a 4x4 block of DragonMidpoint. There's no rotations or anything.

Xmid = X - floor(X/3) - Xadj[X%6][Y%6]
Ymid = Y - floor(Y/3) - Yadj[X%6][Y%6]

N = DragonMidpoint n_to_xy of Xmid,Ymid

Xadj[][] is a 6x6 table of 0 or 1 or undef
Yadj[][] is a 6x6 table of -1 or 0 or undef

The Xadj,Yadj tables are a handy place to notice X,Y points not on the DragonRounded style 4 of 9 points. Or 16 of 36 points since the tables are 6x6.

SEE ALSO

Math::PlanePath, Math::PlanePath::DragonCurve, Math::PlanePath::DragonMidpoint, Math::PlanePath::TerdragonRounded

HOME PAGE

http://user42.tuxfamily.org/math-planepath/index.html

LICENSE

Copyright 2011, 2012 Kevin Ryde

Math-PlanePath is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version.

Math-PlanePath is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.