package ICC::Support::spline; use strict; use Carp; our $VERSION = 0.02; # revised 2017-03-29 # # Copyright © 2004-2018 by William B. Birkett # add development directory use lib 'lib'; # inherit from Shared use parent qw(ICC::Shared); # add complex math functions use Math::Complex qw(root sqrt cbrt Im Re); # enable static variables use feature 'state'; # create new spline object # hash keys are: 'input_range', 'output_values' # parameters: ([ref_to_attribute_hash]) # returns: (object_reference) sub new { # get object class my $class = shift(); # create empty spline object my $self = [ {}, # object header [], # input range [], # output values [], # derivative values [], # min/max output values [], # parametric derivative matrix ]; # if one parameter, a hash reference if (@_ == 1 && ref($_[0]) eq 'HASH') { # set object contents from hash _new_from_hash($self, $_[0]); } elsif (@_) { # error croak('invalid parameter(s)'); } # return blessed object return(bless($self, $class)); } # write spline object to ICC profile # note: writes an equivalent curv object # parameters: (ref_to_parent_object, file_handle, ref_to_tag_table_entry) sub write_fh { # get tag reference my $self = shift(); # verify 3 parameters (@_ == 3) || croak('wrong number of parameters'); # write spline data to profile _writeICCspline($self, @_); } # get tag size (for writing to profile) # note: writes an equivalent curv object # returns: (tag_size) sub size { # get parameters my ($self) = @_; # get count value (defaults to 4096, the maximum allowed in an 'mft2' tag) my $n = $self->[0]{'curv_points'} // 4096; # return size return(12 + $n * 2); } # compute curve function # parameters: (input_value) # returns: (output_value) sub transform { # get parameters my ($self, $in) = @_; # if an extrapolated solution (s < 0) if (($self->[1][1] > $self->[1][0] && $in < $self->[1][0]) || ($self->[1][1] < $self->[1][0] && $in > $self->[1][0])) { # return extrapolated value return($self->[2][0] + $self->[3][0] * $#{$self->[2]} * ($in - $self->[1][0])/($self->[1][1] - $self->[1][0])); # if an extrapolated solution (s >= 1) } elsif (($self->[1][1] > $self->[1][0] && $in >= $self->[1][1]) || ($self->[1][1] < $self->[1][0] && $in <= $self->[1][1])) { # return extrapolated value return($self->[2][-1] + $self->[3][-1] * $#{$self->[2]} * ($self->[1][1] - $in)/($self->[1][0] - $self->[1][1])); } else { # return interpolated value return(_fwd($self, POSIX::modf($#{$self->[2]} * ($in - $self->[1][0])/($self->[1][1] - $self->[1][0])))); } } # compute inverse curve function # note: there may be multiple solutions # parameters: (input_value) # returns: (output_value -or- array_of_output_values) sub inverse { # get parameters my ($self, $in) = @_; # local variables my ($n, $sf, @sol, @t); # get number of segments $n = $#{$self->[2]}; # compute scale factor $sf = ($self->[1][1] - $self->[1][0])/$n; # if an extrapolated solution (s < 0) if (($in < $self->[2][0] && $self->[3][0] > 0) || ($in > $self->[2][0] && $self->[3][0] < 0)) { # add solution push(@sol, $self->[1][0] + $sf * ($in - $self->[2][0])/$self->[3][0]); } # for each segment (0 <= s < 1) for my $i (0 .. $n - 1) { # if input is lower knot if ($in == $self->[2][$i]) { # add solution push(@sol, $self->[1][0] + $i * $sf); } # if input lies within the y-value range if ($in >= $self->[4][$i][0] && $in <= $self->[4][$i][1]) { # compute inverse values (t-values) @t = _rev($self, $in, $i); # add solution(s) push(@sol, map {$self->[1][0] + ($i + $_) * $sf} @t); } } # if input is last knot (s == 1) if ($in == $self->[2][-1]) { # add solution push(@sol, $self->[1][1]); } # if an extrapolated solution (s > 1) if (($in > $self->[2][-1] && $self->[3][-1] > 0) || ($in < $self->[2][-1] && $self->[3][-1] < 0)) { # add solution push(@sol, $self->[1][1] + $sf * ($in - $self->[2][-1])/$self->[3][-1]); } # return result (array or first solution) return(wantarray ? @sol : $sol[0]); } # compute curve derivative # parameters: (input_value) # returns: (derivative_value) sub derivative { # get parameters my ($self, $in) = @_; # if an extrapolated solution (s < 0) if (($self->[1][1] > $self->[1][0] && $in < $self->[1][0]) || ($self->[1][1] < $self->[1][0] && $in > $self->[1][0])) { # return endpoint derivative return($self->[3][0] * $#{$self->[2]}/($self->[1][1] - $self->[1][0])); # if an extrapolated solution (s >= 1) } elsif (($self->[1][1] > $self->[1][0] && $in >= $self->[1][1]) || ($self->[1][1] < $self->[1][0] && $in <= $self->[1][1])) { # return endpoint derivative return($self->[3][-1] * $#{$self->[2]}/($self->[1][1] - $self->[1][0])); } else { # return interpolated derivative value return(_derv($self, POSIX::modf($#{$self->[2]} * ($in - $self->[1][0])/($self->[1][1] - $self->[1][0]))) * $#{$self->[2]}/($self->[1][1] - $self->[1][0])); } } # compute parametric partial derivatives # parameters: (input_value) # returns: (partial_derivative_array) sub parametric { # get parameters my ($self, $in) = @_; # local variables my ($low, $t, $tc, $h00, $h01, $h10, $h11, @pj); # update parametric derivative matrix, if necessary _objpara($self) if (! defined($self->[5]) || $#{$self->[5]} != $#{$self->[2]}); # if an extrapolated solution (s < 0) if (($self->[1][1] > $self->[1][0] && $in < $self->[1][0]) || ($self->[1][1] < $self->[1][0] && $in > $self->[1][0])) { # for each output value (parameter) for my $i (0 .. $#{$self->[2]}) { # compute partial derivative $pj[$i] = ($i == 0) + $self->[5][0][$i] * $#{$self->[2]} * ($in - $self->[1][0])/($self->[1][1] - $self->[1][0]); } # if an extrapolated solution (s >= 1) } elsif (($self->[1][1] > $self->[1][0] && $in >= $self->[1][1]) || ($self->[1][1] < $self->[1][0] && $in <= $self->[1][1])) { # for each output value (parameter) for my $i (0 .. $#{$self->[2]}) { # compute partial derivative $pj[$i] = ($i == $#{$self->[2]}) + $self->[5][-1][$i] * $#{$self->[2]} * ($in - $self->[1][1])/($self->[1][1] - $self->[1][0]); } } else { # compute position (0 - 1) and lower knot index ($t, $low) = POSIX::modf($#{$self->[2]} * ($in - $self->[1][0])/($self->[1][1] - $self->[1][0])); # compute Hermite coefficients $tc = 1 - $t; $h00 = (1 + 2 * $t) * $tc * $tc; $h01 = 1 - $h00; $h10 = $t * $tc * $tc; $h11 = -$t * $t * $tc; # for each output value (parameter) for my $i (0 .. $#{$self->[2]}) { # compute partial derivative $pj[$i] = $h00 * ($low == $i) + $h01 * ($low + 1 == $i) + $h10 * $self->[5][$low][$i] + $h11 * $self->[5][$low + 1][$i]; } } # return return(@pj); } # get/set reference to header hash # parameters: ([ref_to_new_hash]) # returns: (ref_to_hash) sub header { # get object reference my $self = shift(); # if there are parameters if (@_) { # if one parameter, a hash reference if (@_ == 1 && ref($_[0]) eq 'HASH') { # set header to copy of hash $self->[0] = Storable::dclone(shift()); } else { # error croak('parameter must be a hash reference'); } } # return reference return($self->[0]); } # get/set input range array reference # parameters: ([ref_to_array]) # returns: (ref_to_array) sub range { # get object reference my $self = shift(); # if one parameter supplied if (@_ == 1) { # verify parameter is an array reference (ref($_[0]) eq 'ARRAY') || croak('parameter not an array reference'); # verify array contents (@{$_[0]} == 2 && (@{$_[0]} == grep {Scalar::Util::looks_like_number($_)} @{$_[0]}) && $_[0]->[0] != $_[0]->[1]) || croak('array must contain 2 unequal numeric values'); # store input range $self->[1] = [@{$_[0]}]; } elsif (@_) { # error croak('too many parameters'); } # return array reference return($self->[1]); } # get/set output value array reference # parameters: ([ref_to_array]) # returns: (ref_to_array) sub array { # get object reference my $self = shift(); # if one parameter supplied if (@_ == 1) { # verify parameter is an array reference (ref($_[0]) eq 'ARRAY') || croak('parameter not an array reference'); # verify array contents (@{$_[0]} >= 2 && (@{$_[0]} == grep {Scalar::Util::looks_like_number($_)} @{$_[0]})) || croak('array must contain 2 or more numeric values'); # store output values $self->[2] = [@{$_[0]}]; # recompute knot derivatives _objderv($self); # recompute segment min/max y-values _minmax($self); } elsif (@_) { # error croak('too many parameters'); } # return array reference return($self->[2]); } # check if monotonic # returns min/max values # returns s-values by default # returns input-values if format is 'x' # returns output-values if format is 'y' # curve is monotonic if no min/max values # parameters: ([format]) # returns: (array_of_values) sub monotonic { # get object reference my ($self, $fmt) = @_; # if format undefined or 's' if (! defined($fmt) || $fmt eq 's') { # return s-values return(_minmax($self)); # if format 'x' } elsif ($fmt eq 'x') { # return x-values return(map {(1 - $_/$#{$self->[2]}) * $self->[1][0] + $_/$#{$self->[2]} * $self->[1][1]} _minmax($self)); # if format 'y' } elsif ($fmt eq 'y') { # return y-values return(map {_fwd($self, POSIX::modf($_))} _minmax($self)); } else { # error croak("unsupported format for min/max values"); } } # make table for 'curv' objects # assumes curve domain/range is (0 - 1) # parameters: (number_of_table_entries, [direction]) # returns: (ref_to_table_array) sub table { # get parameters my ($self, $n, $dir) = @_; # local variables my ($up, $table); # validate number of table entries ($n == int($n) && $n >= 2) || carp('invalid number of table entries'); # purify direction flag $dir = ($dir) ? 1 : 0; # array upper index $up = $n - 1; # for each table entry for my $i (0 .. $up) { # compute table value $table->[$i] = _transform($self, $dir, $i/$up); } # return table reference return($table); } # make 'curv' object # assumes curve domain/range is (0 - 1) # parameters: (number_of_table_entries, [direction]) # returns: (ref_to_curv_object) sub curv { # return 'curv' object reference return(ICC::Profile::curv->new(table(@_))); } # normalize transform # adjusts object values linearly # so that endpoint values are 0 or 1 # adjusts input-range and output-values by default # adjusts input-values if format is 'x' # adjusts output-values if format is 'y' # parameters: ([format]) sub normalize { # get parameters my ($self, $fmt) = @_; # local variables my ($off, $range); # verify flag parameter (! defined($fmt) || $fmt eq 'x' || $fmt eq 'y') || croak('invalid normalize format parameter'); # if range selected if (! defined($fmt) || $fmt eq 'x') { # if range is increasing if ($self->[1][1] > $self->[1][0]) { # set range (0 - 1) $self->[1][0] = 0; $self->[1][1] = 1; } else { # set range (1 - 0) $self->[1][0] = 1; $self->[1][1] = 0; } } # if output values selected if (! defined($fmt) || $fmt eq 'y') { # if output values are increasing if ($self->[2][-1] > $self->[2][0]) { # set offset $off = $self->[2][0]; # compute range $range = ($self->[2][-1] - $self->[2][0]); } else { # set offset $off = $self->[2][-1]; # compute range $range = ($self->[2][0] - $self->[2][-1]); } # verify range ($range != 0) || croak('cannot normalize output values'); # for each output value for my $i (0 .. $#{$self->[2]}) { # adjust using offset and scale factor $self->[2][$i] = ($self->[2][$i] - $off)/$range; } # recompute knot derivatives _objderv($self); # recompute segment min/max y-values _minmax($self); # clear parametric derivative matrix $self->[5] = []; } } # print object contents to string # format is an array structure # parameter: ([format]) # returns: (string) sub sdump { # get parameters my ($self, $p) = @_; # local variables my ($s, $fmt); # resolve parameter to an array reference $p = defined($p) ? ref($p) eq 'ARRAY' ? $p : [$p] : []; # get format string $fmt = defined($p->[0]) && ! ref($p->[0]) ? $p->[0] : 'undef'; # set string to object ID $s = sprintf("'%s' object, (0x%x)\n", ref($self), $self); # return return($s); } # compute parametric partial derivatives # direction: 0 - normal, 1 - inverse # parameters: (object_reference, direction, input_value) # returns: (partial_derivative_array) sub _parametric { # get parameters my ($self, $dir, $in) = @_; # if inverse direction if ($dir) { # unimplemented function error croak('unimplemented function'); } else { # return array of partial derivatives return(parametric($self, $in)); } } # combined derivative # direction: 0 - normal, 1 - inverse # parameters: (object_reference, direction, input_value) # returns: (derivative_value) sub _derivative { # get parameters my ($self, $dir, $in) = @_; # if inverse direction if ($dir) { # unimplemented function error croak('unimplemented function'); } else { # return derivative return(derivative($self, $in)); } } # combined transform # direction: 0 - normal, 1 - inverse # parameters: (object_reference, direction, input_value) # returns: (output_value) sub _transform { # get parameters my ($self, $dir, $in) = @_; # if inverse direction if ($dir) { # return inverse return(scalar(inverse($self, $in))); } else { # return transform return(transform($self, $in)); } } # compute knot derivatives for natural spline # parameters: (ref_to_object) sub _objderv { # get parameter my $self = shift(); # local variables my ($ix, $rhs, $info, $derv); # verify object has two or more knots (($ix = $#{$self->[2]}) > 0) || croak('object must have two or more knots'); # check if ICC::Support::Lapack module is loaded state $lapack = defined($INC{'ICC/Support/Lapack.pm'}); # make empty Math::Matrix object $rhs = bless([], 'Math::Matrix'); # for each input element for my $i (1 .. $ix - 1) { # compute rhs (3 * (y[i + 1] - y[i - 1])) $rhs->[$i][0] = 3 * ($self->[2][$i + 1] - $self->[2][$i - 1]); } # set rhs endpoint values $rhs->[0][0] = 3 * ($self->[2][1] - $self->[2][0]); $rhs->[$ix][0] = 3 * ($self->[2][$ix] - $self->[2][$ix - 1]); # if ICC::Support::Lapack module is loaded if ($lapack) { # solve for derivative matrix ($info, $derv) = ICC::Support::Lapack::trisolve([(1) x $ix], [2, (4) x ($ix - 1), 2], [(1) x $ix], $rhs); # otherwise, use Math::Matrix module } else { # solve for derivative matrix $derv = Math::Matrix->tridiagonal([2, (4) x ($ix - 1), 2])->concat($rhs)->solve(); } # for each knot for my $i (0 .. $ix) { # set derivative value $self->[3][$i] = $derv->[$i][0]; } } # compute partial derivative matrix for natural spline # parameters: (ref_to_object) sub _objpara { # get parameter my $self = shift(); # local variables my ($ix, $rhs, $info, $derv); # verify object has two or more knots (($ix = $#{$self->[2]}) > 0) || croak('object must have two or more knots'); # check if ICC::Support::Lapack module is loaded state $lapack = defined($INC{'ICC/Support/Lapack.pm'}); # make rhs matrix (filled with zeros) $rhs = $lapack ? ICC::Support::Lapack::zeros($ix + 1) : bless([map {[(0) x ($ix + 1)]} (0 .. $ix)], 'Math::Matrix'); # for each row for my $i (1 .. $ix - 1) { # set rhs diagonal values $rhs->[$i - 1][$i] = 3; $rhs->[$i + 1][$i] = -3; } # set rhs endpoint values $rhs->[0][0] = -3; $rhs->[1][0] = -3; $rhs->[$ix][$ix] = 3; $rhs->[$ix - 1][$ix] = 3; # if ICC::Support::Lapack module is loaded if ($lapack) { # solve for derivative matrix ($info, $derv) = ICC::Support::Lapack::trisolve([(1) x $ix], [2, (4) x ($ix - 1), 2], [(1) x $ix], $rhs); # set object $self->[5] = bless($derv, 'Math::Matrix'); # otherwise, use Math::Matrix module } else { # solve for derivative matrix $self->[5] = Math::Matrix->tridiagonal([2, (4) x ($ix - 1), 2])->concat($rhs)->solve(); } } # add local min/max values # parameters: (ref_to_object) # returns: (s-value_array) sub _minmax { # get object reference my $self = shift(); # local variables my (@t, @y, @s); # for each interval for my $i (0 .. $#{$self->[2]} - 1) { # get min/max location(s) @t = _local($self, $i); # compute local min/max y-values @y = map {_fwd($self, $_, $i)} @t; # add the knot values push(@y, ($self->[2][$i], $self->[2][$i + 1])); # sort the values @y = sort {$a <=> $b} @y; # save y-value min/max span $self->[4][$i] = [$y[0], $y[-1]]; # add min/max s-values push(@s, map {$_ + $i} @t); } # return min/max s-values return(sort {$a <=> $b} @s); } # compute local min/max value(s) # values are within the segment (t) # parameters: (ref_to_object, segment) # returns: (t-value_array) sub _local { # get parameters my ($self, $low) = @_; # local variables my ($y1, $y2, $m1, $m2); my ($a, $b, $c, $dscr, @t); # get endpoint values $y1 = $self->[2][$low]; $y2 = $self->[2][$low + 1]; $m1 = $self->[3][$low]; $m2 = $self->[3][$low + 1]; # compute coefficients of quadratic equation (at^2 + bt + c = 0) $a = 6 * ($y1 - $y2) + 3 * ($m1 + $m2); $b = -6 * ($y1 - $y2) - 2 * $m2 - 4 * $m1; $c = $m1; # return if constant return() if (abs($a) < 1E-15 && abs($b) < 1E-15); # if linear equation (a is zero) if (abs($a) < 1E-15) { # add solution push(@t, -$c/$b); # if quadratic equation } else { # compute discriminant $dscr = $b**2 - 4 * $a * $c; # if discriminant > zero if ($dscr > 0) { # add solutions (critical points) push(@t, -($b + sqrt($dscr))/(2 * $a)); push(@t, -($b - sqrt($dscr))/(2 * $a)); } } # return solution(s) within interval (0 < t < 0) return (grep {$_ > 0 && $_ < 1} @t); } # compute second derivative for unit spline segment # parameters: (ref_to_object, t-value, segment) # returns: (second_derivative) sub _derv2 { # get parameters my ($self, $t, $low) = @_; # local variables my ($h00, $h01, $h10, $h11); # compute Hermite derivative coefficients $h00 = 12 * $t - 6; $h01 = - $h00; $h10 = 6 * $t - 4; $h11 = 6 * $t - 2; # interpolate value return($h00 * $self->[2][$low] + $h01 * $self->[2][$low + 1] + $h10 * $self->[3][$low] + $h11 * $self->[3][$low + 1]); } # compute derivative for unit spline segment # parameters: (ref_to_object, t-value, segment) # returns: (derivative) sub _derv { # get parameters my ($self, $t, $low) = @_; # local variables my ($tc, $ttc, $h00, $h01, $h10, $h11); # if position is non-zero if ($t) { # compute Hermite derivative coefficients $tc = (1 - $t); $ttc = -3 * $t * $tc; $h00 = 2 * $ttc; $h01 = -2 * $ttc; $h10 = $ttc + $tc; $h11 = $ttc + $t; # interpolate value return($h00 * $self->[2][$low] + $h01 * $self->[2][$low + 1] + $h10 * $self->[3][$low] + $h11 * $self->[3][$low + 1]); } else { # use lower knot derivative value return($self->[3][$low]); } } # compute transform value # parameters: (ref_to_object, t-value, segment) # returns: (y-value) sub _fwd { # get parameters my ($self, $t, $low) = @_; # local variables my ($tc, $h00, $h01, $h10, $h11); # check if ICC::Support::Lapack module is loaded state $lapack = defined($INC{'ICC/Support/Lapack.pm'}); # if position is non-zero if ($t) { # if ICC::Support::Lapack module is loaded if ($lapack) { # interpolate value (Lapack XS) return(ICC::Support::Lapack::hermite($t, $self->[2][$low], $self->[2][$low + 1], $self->[3][$low], $self->[3][$low + 1])); } else { # compute Hermite coefficients $tc = 1 - $t; $h00 = (1 + 2 * $t) * $tc * $tc; $h01 = 1 - $h00; $h10 = $t * $tc * $tc; $h11 = -$t * $t * $tc; # interpolate value (no Lapack XS) return($h00 * $self->[2][$low] + $h01 * $self->[2][$low + 1] + $h10 * $self->[3][$low] + $h11 * $self->[3][$low + 1]); } } else { # use lower knot output value return($self->[2][$low]); } } # compute inverse value # parameters: (ref_to_object, y-value, segment) # there are 0 to 3 solutions in the range 0 < t < 1 # returns: (t-value_array) sub _rev { # get parameters my ($self, $in, $low) = @_; # local variables my ($y1, $y2, $m1, $m2); my ($a, $b, $c, $d, $dscr, @t); my ($d0, $d1, $cs, $cc, @r, $ccr, $sol, $lim0, $lim1); # get endpoint values $y1 = $self->[2][$low]; $y2 = $self->[2][$low + 1]; $m1 = $self->[3][$low]; $m2 = $self->[3][$low + 1]; # compute coefficients of cubic equation (at^3 + bt^2 + ct + d = 0) $a = 2 * ($y1 - $y2) + $m1 + $m2; $b = -3 * ($y1 - $y2) -2 * $m1 - $m2; $c = $m1; $d = $y1 - $in; # constant equation (a, b, c are zero) if (abs($a) < 5E-15 && abs($b) < 5E-15 && abs($c) < 5E-15) { # add solution push(@t, 0.5) if ($d == 0); # linear equation (a, b are zero) } elsif (abs($a) < 5E-15 && abs($b) < 5E-15) { # add solution push(@t, -$d/$c); # quadratic equation (a is zero) } elsif (abs($a) < 5E-15) { # compute discriminant: > 0 two real, == 0 one real, < 0 two complex $dscr = $c**2 - 4 * $b * $d; # if discriminant is zero if ($dscr == 0) { # add solution (double root) push(@t, -$c/(2 * $b)); # if discriminant > zero } elsif ($dscr > 0) { # add solutions push(@t, -($c + sqrt($dscr))/(2 * $b)); push(@t, -($c - sqrt($dscr))/(2 * $b)); } # cubic equation } else { # compute discriminant: > 0 three real, == 0 one or two real, < 0 one real and two complex $dscr = 18 * $a * $b * $c * $d - 4 * $b**3 * $d + $b**2 * $c**2 - 4 * $a * $c**3 - 27 * $a**2 * $d**2; # compute ∆0 $d0 = $b**2 - 3 * $a * $c; # if discriminant is zero if ($dscr == 0) { # if ∆0 is zero if ($d0 == 0) { # add solution (triple root) push(@t, -$b/(3 * $a)); } else { # add solutions (double root and single root) push(@t, (9 * $a * $d - $b * $c)/(2 * $d0)); push(@t, (4 * $a * $b * $c - 9 * $a**2 * $d - $b**3)/($a * $d0)); } } else { # compute ∆1 $d1 = 2 * $b**3 - 9 * $a * $b * $c + 27 * $a**2 * $d; # compute C (a complex number) $cs = sqrt($d1**2 - 4 * $d0**3); $cc = cbrt($d1 == $cs ? ($d1 + $cs)/2 : ($d1 - $cs)/2); # compute cube roots of 1 (three complex numbers) @r = root(1, 3); # for each root for my $i (0 .. 2) { # multiply by cube root of 1 $ccr = $r[$i] * $cc; # compute solution (a complex number) $sol = ($b + $ccr + $d0/$ccr)/(-3 * $a); # add solution, if real push(@t, Re($sol)) if ($dscr > 0 || abs(Im($sol)) < 1E-15); } } } # set test limits to avoid duplicates at knots $lim0 = ($in == $y1) ? 1E-14 : 0; $lim1 = ($in == $y2) ? (1 - 1E-14) : 1; # return valid solutions return(sort {$ICC::Support::spline::a <=> $ICC::Support::spline::b} grep {$_ > $lim0 && $_ < $lim1} @t); } # set object contents from parameter hash # parameters: (object_reference, ref_to_parameter_hash) sub _new_from_hash { # get parameters my ($self, $hash) = @_; # local variables my ($output, $range); # if 'output_values' is defined if (defined($output = $hash->{'output_values'})) { # verify 'output_values' (two or more numeric values) (ref($output) eq 'ARRAY' && 2 <= @{$output} && (@{$output} == grep {Scalar::Util::looks_like_number($_)} @{$output})) || croak('invalid output values'); # set 'output_values' $self->[2] = [@{$output}]; } else { # use default $self->[2] = [0, 1]; } # if 'input_range' is defined if (defined($range = $hash->{'input_range'})) { # verify 'input_range' (two unequal numeric values) (ref($range) eq 'ARRAY' && 2 == @{$range} && (2 == grep {Scalar::Util::looks_like_number($_)} @{$range}) && $range->[0] != $range->[1]) || croak('invalid input range'); # set 'input_range' $self->[1] = [@{$range}]; } else { # use default $self->[1] = [0, 1]; } # compute knot derivatives _objderv($self); # add segment min/max y-values _minmax($self); } # write spline object to ICC profile # note: writes an equivalent curv object # parameters: (ref_to_object, ref_to_parent_object, file_handle, ref_to_tag_table_entry) sub _writeICCspline { # get parameters my ($self, $parent, $fh, $tag) = @_; # local variables my ($n, $up, @table); # get count value (defaults to 4096, the maximum allowed in an 'mft2' tag) $n = $self->[0]{'curv_points'} // 4096; # validate number of table entries ($n == int($n) && $n >= 2) || carp('invalid number of table entries'); # array upper index $up = $n - 1; # for each table entry for my $i (0 .. $up) { # transform value $table[$i] = transform($self, $i/$up); } # seek start of tag seek($fh, $tag->[1], 0); # write tag type signature and count print $fh pack('a4 x4 N', 'curv', $n); # write array print $fh pack('n*', map {$_ < 0 ? 0 : ($_ > 1 ? 65535 : $_ * 65535 + 0.5)} @table); } 1;