# # GENERATED WITH PDL::PP! Don't modify! # package PDL::GSL::RNG; our @EXPORT_OK = qw( ); our %EXPORT_TAGS = (Func=>\@EXPORT_OK); use PDL::Core qw/ zeroes long barf /; use PDL::Exporter; use DynaLoader; our @ISA = ( 'PDL::Exporter','DynaLoader' ); push @PDL::Core::PP, __PACKAGE__; bootstrap PDL::GSL::RNG ; #line 10 "gsl_random.pd" use strict; use warnings; =head1 NAME PDL::GSL::RNG - PDL interface to RNG and randist routines in GSL =head1 DESCRIPTION This is an interface to the rng and randist packages present in the GNU Scientific Library. =head1 SYNOPSIS use PDL; use PDL::GSL::RNG; $rng = PDL::GSL::RNG->new('taus'); $rng->set_seed(time()); $x=zeroes(5,5,5) $rng->get_uniform($x); # inplace $y=$rng->get_uniform(3,4,5); # creates new pdl =head1 NOMENCLATURE Throughout this documentation we strive to use the same variables that are present in the original GSL documentation (see L<See Also|"SEE-ALSO">). Oftentimes those variables are called C<a> and C<b>. Since good Perl coding practices discourage the use of Perl variables C<$a> and C<$b>, here we refer to Parameters C<a> and C<b> as C<$pa> and C<$pb>, respectively, and Limits (of domain or integration) as C<$la> and C<$lb>. =head1 FUNCTIONS =head2 new =for ref The new method initializes a new instance of the RNG. The available RNGs are: coveyou cmrg fishman18 fishman20 fishman2x gfsr4 knuthran knuthran2 knuthran2002 lecuyer21 minstd mrg mt19937 mt19937_1999 mt19937_1998 r250 ran0 ran1 ran2 ran3 rand rand48 random128_bsd random128_glibc2 random128_libc5 random256_bsd random256_glibc2 random256_libc5 random32_bsd random32_glibc2 random32_libc5 random64_bsd random64_glibc2 random64_libc5 random8_bsd random8_glibc2 random8_libc5 random_bsd random_glibc2 random_libc5 randu ranf ranlux ranlux389 ranlxd1 ranlxd2 ranlxs0 ranlxs1 ranlxs2 ranmar slatec taus taus2 taus113 transputer tt800 uni uni32 vax waterman14 zuf default The last one (default) uses the environment variable GSL_RNG_TYPE. Note that only a few of these rngs are recommended for general use. Please check the GSL documentation for more information. =for usage Usage: $blessed_ref = PDL::GSL::RNG->new($RNG_name); Example: =for example $rng = PDL::GSL::RNG->new('taus'); =head2 set_seed =for ref Sets the RNG seed. Usage: =for usage $rng->set_seed($integer); # or $rng = PDL::GSL::RNG->new('taus')->set_seed($integer); Example: =for example $rng->set_seed(666); =head2 min =for ref Return the minimum value generable by this RNG. Usage: =for usage $integer = $rng->min(); Example: =for example $min = $rng->min(); $max = $rng->max(); =head2 max =for ref Return the maximum value generable by the RNG. Usage: =for usage $integer = $rng->max(); Example: =for example $min = $rng->min(); $max = $rng->max(); =head2 name =for ref Returns the name of the RNG. Usage: =for usage $string = $rng->name(); Example: =for example $name = $rng->name(); =head2 get =for ref This function creates an ndarray with given dimensions or accepts an existing ndarray and fills it. get() returns integer values between a minimum and a maximum specific to every RNG. Usage: =for usage $ndarray = $rng->get($list_of_integers) $rng->get($ndarray); Example: =for example $x = zeroes 5,6; $o = $rng->get(10,10); $rng->get($x); =head2 get_int =for ref This function creates an ndarray with given dimensions or accepts an existing ndarray and fills it. get_int() returns integer values between 0 and $max. Usage: =for usage $ndarray = $rng->get($max, $list_of_integers) $rng->get($max, $ndarray); Example: =for example $x = zeroes 5,6; $max=100; $o = $rng->get(10,10); $rng->get($x); =head2 get_uniform =for ref This function creates an ndarray with given dimensions or accepts an existing ndarray and fills it. get_uniform() returns values 0<=x<1, Usage: =for usage $ndarray = $rng->get_uniform($list_of_integers) $rng->get_uniform($ndarray); Example: =for example $x = zeroes 5,6; $max=100; $o = $rng->get_uniform(10,10); $rng->get_uniform($x); =head2 get_uniform_pos =for ref This function creates an ndarray with given dimensions or accepts an existing ndarray and fills it. get_uniform_pos() returns values 0<x<1, Usage: =for usage $ndarray = $rng->get_uniform_pos($list_of_integers) $rng->get_uniform_pos($ndarray); Example: =for example $x = zeroes 5,6; $o = $rng->get_uniform_pos(10,10); $rng->get_uniform_pos($x); =head2 ran_shuffle =for ref Shuffles values in ndarray Usage: =for usage $rng->ran_shuffle($ndarray); =head2 ran_shuffle_vec =for ref Shuffles values in ndarray Usage: =for usage $rng->ran_shuffle_vec(@vec); =head2 ran_choose =for ref Chooses values from C<$inndarray> to C<$outndarray>. Usage: =for usage $rng->ran_choose($inndarray,$outndarray); =head2 ran_choose_vec =for ref Chooses C<$n> values from C<@vec>. Usage: =for usage @chosen = $rng->ran_choose_vec($n,@vec); =head2 ran_gaussian =for ref Fills output ndarray with random values from Gaussian distribution with mean zero and standard deviation C<$sigma>. Usage: =for usage $ndarray = $rng->ran_gaussian($sigma,[list of integers = output ndarray dims]); $rng->ran_gaussian($sigma, $output_ndarray); Example: =for example $o = $rng->ran_gaussian($sigma,10,10); $rng->ran_gaussian($sigma,$o); =head2 ran_gaussian_var =for ref This method is similar to L</ran_gaussian> except that it takes the parameters of the distribution as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_gaussian_var($sigma_ndarray); $rng->ran_gaussian_var($sigma_ndarray, $output_ndarray); Example: =for example $sigma_pdl = rvals zeroes 11,11; $o = $rng->ran_gaussian_var($sigma_pdl); =head2 ran_additive_gaussian =for ref Add Gaussian noise of given sigma to an ndarray. Usage: =for usage $rng->ran_additive_gaussian($sigma,$ndarray); Example: =for example $rng->ran_additive_gaussian(1,$image); =head2 ran_bivariate_gaussian =for ref Generates C<$n> bivariate gaussian random deviates. Usage: =for usage $ndarray = $rng->ran_bivariate_gaussian($sigma_x,$sigma_y,$rho,$n); Example: =for example $o = $rng->ran_bivariate_gaussian(1,2,0.5,1000); =head2 ran_poisson =for ref Fills output ndarray by with random integer values from the Poisson distribution with mean C<$mu>. Usage: =for usage $ndarray = $rng->ran_poisson($mu,[list of integers = output ndarray dims]); $rng->ran_poisson($mu,$output_ndarray); =head2 ran_poisson_var =for ref Similar to L</ran_poisson> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_poisson_var($mu_ndarray); =head2 ran_additive_poisson =for ref Add Poisson noise of given C<$mu> to a C<$ndarray>. Usage: =for usage $rng->ran_additive_poisson($mu,$ndarray); Example: =for example $rng->ran_additive_poisson(1,$image); =head2 ran_feed_poisson =for ref This method simulates shot noise, taking the values of ndarray as values for C<$mu> to be fed in the poissonian RNG. Usage: =for usage $rng->ran_feed_poisson($ndarray); Example: =for example $rng->ran_feed_poisson($image); =head2 ran_bernoulli =for ref Fills output ndarray with random values 0 or 1, the result of a Bernoulli trial with probability C<$p>. Usage: =for usage $ndarray = $rng->ran_bernoulli($p,[list of integers = output ndarray dims]); $rng->ran_bernoulli($p,$output_ndarray); =head2 ran_bernoulli_var =for ref Similar to L</ran_bernoulli> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_bernoulli_var($p_ndarray); =head2 ran_beta =for ref Fills output ndarray with random variates from the beta distribution with parameters C<$pa> and C<$pb>. Usage: =for usage $ndarray = $rng->ran_beta($pa,$pb,[list of integers = output ndarray dims]); $rng->ran_beta($pa,$pb,$output_ndarray); =head2 ran_beta_var =for ref Similar to L</ran_beta> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_beta_var($a_ndarray, $b_ndarray); =head2 ran_binomial =for ref Fills output ndarray with random integer values from the binomial distribution, the number of successes in C<$n> independent trials with probability C<$p>. Usage: =for usage $ndarray = $rng->ran_binomial($p,$n,[list of integers = output ndarray dims]); $rng->ran_binomial($p,$n,$output_ndarray); =head2 ran_binomial_var =for ref Similar to L</ran_binomial> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_binomial_var($p_ndarray, $n_ndarray); =head2 ran_cauchy =for ref Fills output ndarray with random variates from the Cauchy distribution with scale parameter C<$pa>. Usage: =for usage $ndarray = $rng->ran_cauchy($pa,[list of integers = output ndarray dims]); $rng->ran_cauchy($pa,$output_ndarray); =head2 ran_cauchy_var =for ref Similar to L</ran_cauchy> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_cauchy_var($a_ndarray); =head2 ran_chisq =for ref Fills output ndarray with random variates from the chi-squared distribution with C<$nu> degrees of freedom. Usage: =for usage $ndarray = $rng->ran_chisq($nu,[list of integers = output ndarray dims]); $rng->ran_chisq($nu,$output_ndarray); =head2 ran_chisq_var =for ref Similar to L</ran_chisq> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_chisq_var($nu_ndarray); =head2 ran_exponential =for ref Fills output ndarray with random variates from the exponential distribution with mean C<$mu>. Usage: =for usage $ndarray = $rng->ran_exponential($mu,[list of integers = output ndarray dims]); $rng->ran_exponential($mu,$output_ndarray); =head2 ran_exponential_var =for ref Similar to L</ran_exponential> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_exponential_var($mu_ndarray); =head2 ran_exppow =for ref Fills output ndarray with random variates from the exponential power distribution with scale parameter C<$pa> and exponent C<$pb>. Usage: =for usage $ndarray = $rng->ran_exppow($pa,$pb,[list of integers = output ndarray dims]); $rng->ran_exppow($pa,$pb,$output_ndarray); =head2 ran_exppow_var =for ref Similar to L</ran_exppow> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_exppow_var($a_ndarray, $b_ndarray); =head2 ran_fdist =for ref Fills output ndarray with random variates from the F-distribution with degrees of freedom C<$nu1> and C<$nu2>. Usage: =for usage $ndarray = $rng->ran_fdist($nu1, $nu2,[list of integers = output ndarray dims]); $rng->ran_fdist($nu1, $nu2,$output_ndarray); =head2 ran_fdist_var =for ref Similar to L</ran_fdist> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_fdist_var($nu1_ndarray, $nu2_ndarray); =head2 ran_flat =for ref Fills output ndarray with random variates from the flat (uniform) distribution from C<$la> to C<$lb>. Usage: =for usage $ndarray = $rng->ran_flat($la,$lb,[list of integers = output ndarray dims]); $rng->ran_flat($la,$lb,$output_ndarray); =head2 ran_flat_var =for ref Similar to L</ran_flat> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_flat_var($a_ndarray, $b_ndarray); =head2 ran_gamma =for ref Fills output ndarray with random variates from the gamma distribution. Usage: =for usage $ndarray = $rng->ran_gamma($pa,$pb,[list of integers = output ndarray dims]); $rng->ran_gamma($pa,$pb,$output_ndarray); =head2 ran_gamma_var =for ref Similar to L</ran_gamma> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_gamma_var($a_ndarray, $b_ndarray); =head2 ran_geometric =for ref Fills output ndarray with random integer values from the geometric distribution, the number of independent trials with probability C<$p> until the first success. Usage: =for usage $ndarray = $rng->ran_geometric($p,[list of integers = output ndarray dims]); $rng->ran_geometric($p,$output_ndarray); =head2 ran_geometric_var =for ref Similar to L</ran_geometric> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_geometric_var($p_ndarray); =head2 ran_gumbel1 =for ref Fills output ndarray with random variates from the Type-1 Gumbel distribution. Usage: =for usage $ndarray = $rng->ran_gumbel1($pa,$pb,[list of integers = output ndarray dims]); $rng->ran_gumbel1($pa,$pb,$output_ndarray); =head2 ran_gumbel1_var =for ref Similar to L</ran_gumbel1> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_gumbel1_var($a_ndarray, $b_ndarray); =head2 ran_gumbel2 =for ref Fills output ndarray with random variates from the Type-2 Gumbel distribution. Usage: =for usage $ndarray = $rng->ran_gumbel2($pa,$pb,[list of integers = output ndarray dims]); $rng->ran_gumbel2($pa,$pb,$output_ndarray); =head2 ran_gumbel2_var =for ref Similar to L</ran_gumbel2> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_gumbel2_var($a_ndarray, $b_ndarray); =head2 ran_hypergeometric =for ref Fills output ndarray with random integer values from the hypergeometric distribution. If a population contains C<$n1> elements of type 1 and C<$n2> elements of type 2 then the hypergeometric distribution gives the probability of obtaining C<$x> elements of type 1 in C<$t> samples from the population without replacement. Usage: =for usage $ndarray = $rng->ran_hypergeometric($n1, $n2, $t,[list of integers = output ndarray dims]); $rng->ran_hypergeometric($n1, $n2, $t,$output_ndarray); =head2 ran_hypergeometric_var =for ref Similar to L</ran_hypergeometric> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_hypergeometric_var($n1_ndarray, $n2_ndarray, $t_ndarray); =head2 ran_laplace =for ref Fills output ndarray with random variates from the Laplace distribution with width C<$pa>. Usage: =for usage $ndarray = $rng->ran_laplace($pa,[list of integers = output ndarray dims]); $rng->ran_laplace($pa,$output_ndarray); =head2 ran_laplace_var =for ref Similar to L</ran_laplace> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_laplace_var($a_ndarray); =head2 ran_levy =for ref Fills output ndarray with random variates from the Levy symmetric stable distribution with scale C<$c> and exponent C<$alpha>. Usage: =for usage $ndarray = $rng->ran_levy($mu,$x,[list of integers = output ndarray dims]); $rng->ran_levy($mu,$x,$output_ndarray); =head2 ran_levy_var =for ref Similar to L</ran_levy> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_levy_var($mu_ndarray, $a_ndarray); =head2 ran_logarithmic =for ref Fills output ndarray with random integer values from the logarithmic distribution. Usage: =for usage $ndarray = $rng->ran_logarithmic($p,[list of integers = output ndarray dims]); $rng->ran_logarithmic($p,$output_ndarray); =head2 ran_logarithmic_var =for ref Similar to L</ran_logarithmic> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_logarithmic_var($p_ndarray); =head2 ran_logistic =for ref Fills output ndarray with random random variates from the logistic distribution. Usage: =for usage $ndarray = $rng->ran_logistic($m,[list of integers = output ndarray dims]u) $rng->ran_logistic($m,$output_ndarray) =head2 ran_logistic_var =for ref Similar to L</ran_logistic> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_logistic_var($m_ndarray); =head2 ran_lognormal =for ref Fills output ndarray with random variates from the lognormal distribution with parameters C<$mu> (location) and C<$sigma> (scale). Usage: =for usage $ndarray = $rng->ran_lognormal($mu,$sigma,[list of integers = output ndarray dims]); $rng->ran_lognormal($mu,$sigma,$output_ndarray); =head2 ran_lognormal_var =for ref Similar to L</ran_lognormal> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_lognormal_var($mu_ndarray, $sigma_ndarray); =head2 ran_negative_binomial =for ref Fills output ndarray with random integer values from the negative binomial distribution, the number of failures occurring before C<$n> successes in independent trials with probability C<$p> of success. Note that C<$n> is not required to be an integer. Usage: =for usage $ndarray = $rng->ran_negative_binomial($p,$n,[list of integers = output ndarray dims]); $rng->ran_negative_binomial($p,$n,$output_ndarray); =head2 ran_negative_binomial_var =for ref Similar to L</ran_negative_binomial> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_negative_binomial_var($p_ndarray, $n_ndarray); =head2 ran_pareto =for ref Fills output ndarray with random variates from the Pareto distribution of order C<$pa> and scale C<$lb>. Usage: =for usage $ndarray = $rng->ran_pareto($pa,$lb,[list of integers = output ndarray dims]); $rng->ran_pareto($pa,$lb,$output_ndarray); =head2 ran_pareto_var =for ref Similar to L</ran_pareto> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_pareto_var($a_ndarray, $b_ndarray); =head2 ran_pascal =for ref Fills output ndarray with random integer values from the Pascal distribution. The Pascal distribution is simply a negative binomial distribution (see L</ran_negative_binomial>) with an integer value of C<$n>. Usage: =for usage $ndarray = $rng->ran_pascal($p,$n,[list of integers = output ndarray dims]); $rng->ran_pascal($p,$n,$output_ndarray); =head2 ran_pascal_var =for ref Similar to L</ran_pascal> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_pascal_var($p_ndarray, $n_ndarray); =head2 ran_rayleigh =for ref Fills output ndarray with random variates from the Rayleigh distribution with scale parameter C<$sigma>. Usage: =for usage $ndarray = $rng->ran_rayleigh($sigma,[list of integers = output ndarray dims]); $rng->ran_rayleigh($sigma,$output_ndarray); =head2 ran_rayleigh_var =for ref Similar to L</ran_rayleigh> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_rayleigh_var($sigma_ndarray); =head2 ran_rayleigh_tail =for ref Fills output ndarray with random variates from the tail of the Rayleigh distribution with scale parameter C<$sigma> and a lower limit of C<$la>. Usage: =for usage $ndarray = $rng->ran_rayleigh_tail($la,$sigma,[list of integers = output ndarray dims]); $rng->ran_rayleigh_tail($x,$sigma,$output_ndarray); =head2 ran_rayleigh_tail_var =for ref Similar to L</ran_rayleigh_tail> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_rayleigh_tail_var($a_ndarray, $sigma_ndarray); =head2 ran_tdist =for ref Fills output ndarray with random variates from the t-distribution (AKA Student's t-distribution) with C<$nu> degrees of freedom. Usage: =for usage $ndarray = $rng->ran_tdist($nu,[list of integers = output ndarray dims]); $rng->ran_tdist($nu,$output_ndarray); =head2 ran_tdist_var =for ref Similar to L</ran_tdist> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_tdist_var($nu_ndarray); =head2 ran_ugaussian_tail =for ref Fills output ndarray with random variates from the upper tail of a Gaussian distribution with C<standard deviation = 1> (AKA unit Gaussian distribution). Usage: =for usage $ndarray = $rng->ran_ugaussian_tail($tail,[list of integers = output ndarray dims]); $rng->ran_ugaussian_tail($tail,$output_ndarray); =head2 ran_ugaussian_tail_var =for ref Similar to L</ran_ugaussian_tail> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_ugaussian_tail_var($tail_ndarray); =head2 ran_weibull =for ref Fills output ndarray with random variates from the Weibull distribution with scale C<$pa> and exponent C<$pb>. (Some literature uses C<lambda> for C<$pa> and C<k> for C<$pb>.) Usage: =for usage $ndarray = $rng->ran_weibull($pa,$pb,[list of integers = output ndarray dims]); $rng->ran_weibull($pa,$pb,$output_ndarray); =head2 ran_weibull_var =for ref Similar to L</ran_weibull> except that it takes the distribution parameters as an ndarray and returns an ndarray of equal dimensions. Usage: =for usage $ndarray = $rng->ran_weibull_var($a_ndarray, $b_ndarray); =head2 ran_dir =for ref Returns C<$n> random vectors in C<$ndim> dimensions. Usage: =for usage $ndarray = $rng->ran_dir($ndim,$n); Example: =for example $o = $rng->ran_dir($ndim,$n); =head2 ran_discrete_preproc =for ref This method returns a handle that must be used when calling L</ran_discrete>. You specify the probability of the integer number that are returned by L</ran_discrete>. Usage: =for usage $discrete_dist_handle = $rng->ran_discrete_preproc($double_ndarray_prob); Example: =for example $prob = pdl [0.1,0.3,0.6]; $ddh = $rng->ran_discrete_preproc($prob); $o = $rng->ran_discrete($discrete_dist_handle,100); =head2 ran_discrete =for ref Is used to get the desired samples once a proper handle has been enstablished (see ran_discrete_preproc()). Usage: =for usage $ndarray = $rng->ran_discrete($discrete_dist_handle,$num); Example: =for example $prob = pdl [0.1,0.3,0.6]; $ddh = $rng->ran_discrete_preproc($prob); $o = $rng->ran_discrete($discrete_dist_handle,100); =head2 ran_ver =for ref Returns an ndarray with C<$n> values generated by the Verhulst map from C<$x0> and parameter C<$r>. Usage: =for usage $rng->ran_ver($x0, $r, $n); =head2 ran_caos =for ref Returns values from Verhuls map with C<$r=4.0> and randomly chosen C<$x0>. The values are scaled by C<$m>. Usage: =for usage $rng->ran_caos($m,$n); =head1 BUGS Feedback is welcome. Log bugs in the PDL bug database (the database is always linked from L<http://pdl.perl.org/>). =head1 SEE ALSO L<PDL> The GSL documentation for random number distributions is online at L<https://www.gnu.org/software/gsl/doc/html/randist.html> =head1 AUTHOR This file copyright (C) 1999 Christian Pellegrin <chri@infis.univ.trieste.it> Docs mangled by C. Soeller. All rights reserved. There is no warranty. You are allowed to redistribute this software / documentation under certain conditions. For details, see the file COPYING in the PDL distribution. If this file is separated from the PDL distribution, the copyright notice should be included in the file. The GSL RNG and randist modules were written by James Theiler. =cut #line 1282 "RNG.pm" #line 1310 "gsl_random.pd" use strict; # PDL::GSL::RNG::nullcreate just creates a null PDL. Used # for the GSL functions that create PDLs sub nullcreate{ my ($type,$arg) = @_; PDL->nullcreate($arg); } #line 1302 "RNG.pm" #line 1324 "gsl_random.pd" sub get_uniform { my ($obj,@var) = @_;if (ref($var[0]) eq 'PDL') { gsl_get_uniform_meat($var[0],$$obj); return $var[0]; } else { my $p; $p = zeroes @var; gsl_get_uniform_meat($p,$$obj); return $p; } } #line 1321 "RNG.pm" #line 1325 "gsl_random.pd" sub get_uniform_pos { my ($obj,@var) = @_;if (ref($var[0]) eq 'PDL') { gsl_get_uniform_pos_meat($var[0],$$obj); return $var[0]; } else { my $p; $p = zeroes @var; gsl_get_uniform_pos_meat($p,$$obj); return $p; } } #line 1340 "RNG.pm" #line 1326 "gsl_random.pd" sub get { my ($obj,@var) = @_;if (ref($var[0]) eq 'PDL') { gsl_get_meat($var[0],$$obj); return $var[0]; } else { my $p; $p = zeroes @var; gsl_get_meat($p,$$obj); return $p; } } #line 1359 "RNG.pm" #line 1327 "gsl_random.pd" sub get_int { my ($obj,$n,@var) = @_;if (!($n>0)) {barf("first parameter must be an int >0")};if (ref($var[0]) eq 'PDL') { gsl_get_int_meat($var[0],$n,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; gsl_get_int_meat($p,$n,$$obj); return $p; } } #line 1378 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *gsl_get_uniform_meat = \&PDL::GSL::RNG::gsl_get_uniform_meat; #line 1384 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *gsl_get_uniform_pos_meat = \&PDL::GSL::RNG::gsl_get_uniform_pos_meat; #line 1390 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *gsl_get_meat = \&PDL::GSL::RNG::gsl_get_meat; #line 1396 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *gsl_get_int_meat = \&PDL::GSL::RNG::gsl_get_int_meat; #line 1402 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_gaussian_meat = \&PDL::GSL::RNG::ran_gaussian_meat; #line 1408 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_gaussian { my ($obj,$a,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_gaussian_meat($var[0],$a,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_gaussian_meat($p,$a,$$obj); return $p; } } #line 1428 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_gaussian_var_meat = \&PDL::GSL::RNG::ran_gaussian_var_meat; #line 1434 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_gaussian_var { my ($obj,@var) = @_; if (scalar(@var) != 1) {barf("Bad number of parameters!");} return ran_gaussian_var_meat(@var,$$obj); } #line 1445 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_ugaussian_tail_meat = \&PDL::GSL::RNG::ran_ugaussian_tail_meat; #line 1451 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_ugaussian_tail { my ($obj,$a,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_ugaussian_tail_meat($var[0],$a,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_ugaussian_tail_meat($p,$a,$$obj); return $p; } } #line 1471 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_ugaussian_tail_var_meat = \&PDL::GSL::RNG::ran_ugaussian_tail_var_meat; #line 1477 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_ugaussian_tail_var { my ($obj,@var) = @_; if (scalar(@var) != 1) {barf("Bad number of parameters!");} return ran_ugaussian_tail_var_meat(@var,$$obj); } #line 1488 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_exponential_meat = \&PDL::GSL::RNG::ran_exponential_meat; #line 1494 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_exponential { my ($obj,$a,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_exponential_meat($var[0],$a,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_exponential_meat($p,$a,$$obj); return $p; } } #line 1514 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_exponential_var_meat = \&PDL::GSL::RNG::ran_exponential_var_meat; #line 1520 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_exponential_var { my ($obj,@var) = @_; if (scalar(@var) != 1) {barf("Bad number of parameters!");} return ran_exponential_var_meat(@var,$$obj); } #line 1531 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_laplace_meat = \&PDL::GSL::RNG::ran_laplace_meat; #line 1537 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_laplace { my ($obj,$a,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_laplace_meat($var[0],$a,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_laplace_meat($p,$a,$$obj); return $p; } } #line 1557 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_laplace_var_meat = \&PDL::GSL::RNG::ran_laplace_var_meat; #line 1563 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_laplace_var { my ($obj,@var) = @_; if (scalar(@var) != 1) {barf("Bad number of parameters!");} return ran_laplace_var_meat(@var,$$obj); } #line 1574 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_exppow_meat = \&PDL::GSL::RNG::ran_exppow_meat; #line 1580 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_exppow { my ($obj,$a,$b,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_exppow_meat($var[0],$a,$b,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_exppow_meat($p,$a,$b,$$obj); return $p; } } #line 1600 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_exppow_var_meat = \&PDL::GSL::RNG::ran_exppow_var_meat; #line 1606 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_exppow_var { my ($obj,@var) = @_; if (scalar(@var) != 2) {barf("Bad number of parameters!");} return ran_exppow_var_meat(@var,$$obj); } #line 1617 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_cauchy_meat = \&PDL::GSL::RNG::ran_cauchy_meat; #line 1623 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_cauchy { my ($obj,$a,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_cauchy_meat($var[0],$a,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_cauchy_meat($p,$a,$$obj); return $p; } } #line 1643 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_cauchy_var_meat = \&PDL::GSL::RNG::ran_cauchy_var_meat; #line 1649 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_cauchy_var { my ($obj,@var) = @_; if (scalar(@var) != 1) {barf("Bad number of parameters!");} return ran_cauchy_var_meat(@var,$$obj); } #line 1660 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_rayleigh_meat = \&PDL::GSL::RNG::ran_rayleigh_meat; #line 1666 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_rayleigh { my ($obj,$a,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_rayleigh_meat($var[0],$a,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_rayleigh_meat($p,$a,$$obj); return $p; } } #line 1686 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_rayleigh_var_meat = \&PDL::GSL::RNG::ran_rayleigh_var_meat; #line 1692 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_rayleigh_var { my ($obj,@var) = @_; if (scalar(@var) != 1) {barf("Bad number of parameters!");} return ran_rayleigh_var_meat(@var,$$obj); } #line 1703 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_rayleigh_tail_meat = \&PDL::GSL::RNG::ran_rayleigh_tail_meat; #line 1709 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_rayleigh_tail { my ($obj,$a,$b,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_rayleigh_tail_meat($var[0],$a,$b,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_rayleigh_tail_meat($p,$a,$b,$$obj); return $p; } } #line 1729 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_rayleigh_tail_var_meat = \&PDL::GSL::RNG::ran_rayleigh_tail_var_meat; #line 1735 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_rayleigh_tail_var { my ($obj,@var) = @_; if (scalar(@var) != 2) {barf("Bad number of parameters!");} return ran_rayleigh_tail_var_meat(@var,$$obj); } #line 1746 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_levy_meat = \&PDL::GSL::RNG::ran_levy_meat; #line 1752 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_levy { my ($obj,$a,$b,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_levy_meat($var[0],$a,$b,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_levy_meat($p,$a,$b,$$obj); return $p; } } #line 1772 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_levy_var_meat = \&PDL::GSL::RNG::ran_levy_var_meat; #line 1778 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_levy_var { my ($obj,@var) = @_; if (scalar(@var) != 2) {barf("Bad number of parameters!");} return ran_levy_var_meat(@var,$$obj); } #line 1789 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_gamma_meat = \&PDL::GSL::RNG::ran_gamma_meat; #line 1795 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_gamma { my ($obj,$a,$b,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_gamma_meat($var[0],$a,$b,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_gamma_meat($p,$a,$b,$$obj); return $p; } } #line 1815 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_gamma_var_meat = \&PDL::GSL::RNG::ran_gamma_var_meat; #line 1821 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_gamma_var { my ($obj,@var) = @_; if (scalar(@var) != 2) {barf("Bad number of parameters!");} return ran_gamma_var_meat(@var,$$obj); } #line 1832 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_flat_meat = \&PDL::GSL::RNG::ran_flat_meat; #line 1838 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_flat { my ($obj,$a,$b,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_flat_meat($var[0],$a,$b,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_flat_meat($p,$a,$b,$$obj); return $p; } } #line 1858 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_flat_var_meat = \&PDL::GSL::RNG::ran_flat_var_meat; #line 1864 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_flat_var { my ($obj,@var) = @_; if (scalar(@var) != 2) {barf("Bad number of parameters!");} return ran_flat_var_meat(@var,$$obj); } #line 1875 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_lognormal_meat = \&PDL::GSL::RNG::ran_lognormal_meat; #line 1881 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_lognormal { my ($obj,$a,$b,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_lognormal_meat($var[0],$a,$b,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_lognormal_meat($p,$a,$b,$$obj); return $p; } } #line 1901 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_lognormal_var_meat = \&PDL::GSL::RNG::ran_lognormal_var_meat; #line 1907 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_lognormal_var { my ($obj,@var) = @_; if (scalar(@var) != 2) {barf("Bad number of parameters!");} return ran_lognormal_var_meat(@var,$$obj); } #line 1918 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_chisq_meat = \&PDL::GSL::RNG::ran_chisq_meat; #line 1924 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_chisq { my ($obj,$a,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_chisq_meat($var[0],$a,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_chisq_meat($p,$a,$$obj); return $p; } } #line 1944 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_chisq_var_meat = \&PDL::GSL::RNG::ran_chisq_var_meat; #line 1950 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_chisq_var { my ($obj,@var) = @_; if (scalar(@var) != 1) {barf("Bad number of parameters!");} return ran_chisq_var_meat(@var,$$obj); } #line 1961 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_fdist_meat = \&PDL::GSL::RNG::ran_fdist_meat; #line 1967 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_fdist { my ($obj,$a,$b,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_fdist_meat($var[0],$a,$b,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_fdist_meat($p,$a,$b,$$obj); return $p; } } #line 1987 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_fdist_var_meat = \&PDL::GSL::RNG::ran_fdist_var_meat; #line 1993 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_fdist_var { my ($obj,@var) = @_; if (scalar(@var) != 2) {barf("Bad number of parameters!");} return ran_fdist_var_meat(@var,$$obj); } #line 2004 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_tdist_meat = \&PDL::GSL::RNG::ran_tdist_meat; #line 2010 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_tdist { my ($obj,$a,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_tdist_meat($var[0],$a,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_tdist_meat($p,$a,$$obj); return $p; } } #line 2030 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_tdist_var_meat = \&PDL::GSL::RNG::ran_tdist_var_meat; #line 2036 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_tdist_var { my ($obj,@var) = @_; if (scalar(@var) != 1) {barf("Bad number of parameters!");} return ran_tdist_var_meat(@var,$$obj); } #line 2047 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_beta_meat = \&PDL::GSL::RNG::ran_beta_meat; #line 2053 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_beta { my ($obj,$a,$b,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_beta_meat($var[0],$a,$b,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_beta_meat($p,$a,$b,$$obj); return $p; } } #line 2073 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_beta_var_meat = \&PDL::GSL::RNG::ran_beta_var_meat; #line 2079 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_beta_var { my ($obj,@var) = @_; if (scalar(@var) != 2) {barf("Bad number of parameters!");} return ran_beta_var_meat(@var,$$obj); } #line 2090 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_logistic_meat = \&PDL::GSL::RNG::ran_logistic_meat; #line 2096 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_logistic { my ($obj,$a,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_logistic_meat($var[0],$a,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_logistic_meat($p,$a,$$obj); return $p; } } #line 2116 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_logistic_var_meat = \&PDL::GSL::RNG::ran_logistic_var_meat; #line 2122 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_logistic_var { my ($obj,@var) = @_; if (scalar(@var) != 1) {barf("Bad number of parameters!");} return ran_logistic_var_meat(@var,$$obj); } #line 2133 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_pareto_meat = \&PDL::GSL::RNG::ran_pareto_meat; #line 2139 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_pareto { my ($obj,$a,$b,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_pareto_meat($var[0],$a,$b,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_pareto_meat($p,$a,$b,$$obj); return $p; } } #line 2159 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_pareto_var_meat = \&PDL::GSL::RNG::ran_pareto_var_meat; #line 2165 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_pareto_var { my ($obj,@var) = @_; if (scalar(@var) != 2) {barf("Bad number of parameters!");} return ran_pareto_var_meat(@var,$$obj); } #line 2176 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_weibull_meat = \&PDL::GSL::RNG::ran_weibull_meat; #line 2182 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_weibull { my ($obj,$a,$b,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_weibull_meat($var[0],$a,$b,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_weibull_meat($p,$a,$b,$$obj); return $p; } } #line 2202 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_weibull_var_meat = \&PDL::GSL::RNG::ran_weibull_var_meat; #line 2208 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_weibull_var { my ($obj,@var) = @_; if (scalar(@var) != 2) {barf("Bad number of parameters!");} return ran_weibull_var_meat(@var,$$obj); } #line 2219 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_gumbel1_meat = \&PDL::GSL::RNG::ran_gumbel1_meat; #line 2225 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_gumbel1 { my ($obj,$a,$b,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_gumbel1_meat($var[0],$a,$b,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_gumbel1_meat($p,$a,$b,$$obj); return $p; } } #line 2245 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_gumbel1_var_meat = \&PDL::GSL::RNG::ran_gumbel1_var_meat; #line 2251 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_gumbel1_var { my ($obj,@var) = @_; if (scalar(@var) != 2) {barf("Bad number of parameters!");} return ran_gumbel1_var_meat(@var,$$obj); } #line 2262 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_gumbel2_meat = \&PDL::GSL::RNG::ran_gumbel2_meat; #line 2268 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_gumbel2 { my ($obj,$a,$b,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_gumbel2_meat($var[0],$a,$b,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_gumbel2_meat($p,$a,$b,$$obj); return $p; } } #line 2288 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_gumbel2_var_meat = \&PDL::GSL::RNG::ran_gumbel2_var_meat; #line 2294 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_gumbel2_var { my ($obj,@var) = @_; if (scalar(@var) != 2) {barf("Bad number of parameters!");} return ran_gumbel2_var_meat(@var,$$obj); } #line 2305 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_poisson_meat = \&PDL::GSL::RNG::ran_poisson_meat; #line 2311 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_poisson { my ($obj,$a,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_poisson_meat($var[0],$a,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_poisson_meat($p,$a,$$obj); return $p; } } #line 2331 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_poisson_var_meat = \&PDL::GSL::RNG::ran_poisson_var_meat; #line 2337 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_poisson_var { my ($obj,@var) = @_; if (scalar(@var) != 1) {barf("Bad number of parameters!");} return ran_poisson_var_meat(@var,$$obj); } #line 2348 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_bernoulli_meat = \&PDL::GSL::RNG::ran_bernoulli_meat; #line 2354 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_bernoulli { my ($obj,$a,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_bernoulli_meat($var[0],$a,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_bernoulli_meat($p,$a,$$obj); return $p; } } #line 2374 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_bernoulli_var_meat = \&PDL::GSL::RNG::ran_bernoulli_var_meat; #line 2380 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_bernoulli_var { my ($obj,@var) = @_; if (scalar(@var) != 1) {barf("Bad number of parameters!");} return ran_bernoulli_var_meat(@var,$$obj); } #line 2391 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_binomial_meat = \&PDL::GSL::RNG::ran_binomial_meat; #line 2397 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_binomial { my ($obj,$a,$b,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_binomial_meat($var[0],$a,$b,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_binomial_meat($p,$a,$b,$$obj); return $p; } } #line 2417 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_binomial_var_meat = \&PDL::GSL::RNG::ran_binomial_var_meat; #line 2423 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_binomial_var { my ($obj,@var) = @_; if (scalar(@var) != 2) {barf("Bad number of parameters!");} return ran_binomial_var_meat(@var,$$obj); } #line 2434 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_negative_binomial_meat = \&PDL::GSL::RNG::ran_negative_binomial_meat; #line 2440 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_negative_binomial { my ($obj,$a,$b,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_negative_binomial_meat($var[0],$a,$b,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_negative_binomial_meat($p,$a,$b,$$obj); return $p; } } #line 2460 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_negative_binomial_var_meat = \&PDL::GSL::RNG::ran_negative_binomial_var_meat; #line 2466 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_negative_binomial_var { my ($obj,@var) = @_; if (scalar(@var) != 2) {barf("Bad number of parameters!");} return ran_negative_binomial_var_meat(@var,$$obj); } #line 2477 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_pascal_meat = \&PDL::GSL::RNG::ran_pascal_meat; #line 2483 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_pascal { my ($obj,$a,$b,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_pascal_meat($var[0],$a,$b,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_pascal_meat($p,$a,$b,$$obj); return $p; } } #line 2503 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_pascal_var_meat = \&PDL::GSL::RNG::ran_pascal_var_meat; #line 2509 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_pascal_var { my ($obj,@var) = @_; if (scalar(@var) != 2) {barf("Bad number of parameters!");} return ran_pascal_var_meat(@var,$$obj); } #line 2520 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_geometric_meat = \&PDL::GSL::RNG::ran_geometric_meat; #line 2526 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_geometric { my ($obj,$a,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_geometric_meat($var[0],$a,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_geometric_meat($p,$a,$$obj); return $p; } } #line 2546 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_geometric_var_meat = \&PDL::GSL::RNG::ran_geometric_var_meat; #line 2552 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_geometric_var { my ($obj,@var) = @_; if (scalar(@var) != 1) {barf("Bad number of parameters!");} return ran_geometric_var_meat(@var,$$obj); } #line 2563 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_hypergeometric_meat = \&PDL::GSL::RNG::ran_hypergeometric_meat; #line 2569 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_hypergeometric { my ($obj,$a,$b,$c,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_hypergeometric_meat($var[0],$a,$b,$c,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_hypergeometric_meat($p,$a,$b,$c,$$obj); return $p; } } #line 2589 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_hypergeometric_var_meat = \&PDL::GSL::RNG::ran_hypergeometric_var_meat; #line 2595 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_hypergeometric_var { my ($obj,@var) = @_; if (scalar(@var) != 3) {barf("Bad number of parameters!");} return ran_hypergeometric_var_meat(@var,$$obj); } #line 2606 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_logarithmic_meat = \&PDL::GSL::RNG::ran_logarithmic_meat; #line 2612 "RNG.pm" #line 1408 "gsl_random.pd" sub ran_logarithmic { my ($obj,$a,@var) = @_; if (ref($var[0]) eq 'PDL') { ran_logarithmic_meat($var[0],$a,$$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_logarithmic_meat($p,$a,$$obj); return $p; } } #line 2632 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_logarithmic_var_meat = \&PDL::GSL::RNG::ran_logarithmic_var_meat; #line 2638 "RNG.pm" #line 1432 "gsl_random.pd" sub ran_logarithmic_var { my ($obj,@var) = @_; if (scalar(@var) != 1) {barf("Bad number of parameters!");} return ran_logarithmic_var_meat(@var,$$obj); } #line 2649 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_additive_gaussian_meat = \&PDL::GSL::RNG::ran_additive_gaussian_meat; #line 2655 "RNG.pm" #line 1522 "gsl_random.pd" sub ran_additive_gaussian { my ($obj,$sigma,$var) = @_; barf("In additive gaussian mode you must specify an ndarray!") if ref($var) ne 'PDL'; ran_additive_gaussian_meat($var,$sigma,$$obj); return $var; } #line 2669 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_additive_poisson_meat = \&PDL::GSL::RNG::ran_additive_poisson_meat; #line 2675 "RNG.pm" #line 1538 "gsl_random.pd" sub ran_additive_poisson { my ($obj,$sigma,$var) = @_; barf("In additive poisson mode you must specify an ndarray!") if ref($var) ne 'PDL'; ran_additive_poisson_meat($var,$sigma,$$obj); return $var; } #line 2689 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_feed_poisson_meat = \&PDL::GSL::RNG::ran_feed_poisson_meat; #line 2695 "RNG.pm" #line 1554 "gsl_random.pd" sub ran_feed_poisson { my ($obj,$var) = @_; barf("In poisson mode you must specify an ndarray!") if ref($var) ne 'PDL'; ran_feed_poisson_meat($var,$$obj); return $var; } #line 2709 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_bivariate_gaussian_meat = \&PDL::GSL::RNG::ran_bivariate_gaussian_meat; #line 2715 "RNG.pm" #line 1575 "gsl_random.pd" sub ran_bivariate_gaussian { my ($obj,$sigma_x,$sigma_y,$rho,$n) = @_; barf("Not enough parameters for gaussian bivariate!") if $n<=0; my $p = zeroes(2,$n); ran_bivariate_gaussian_meat($p,$sigma_x,$sigma_y,$rho,$$obj); return $p; } #line 2729 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_dir_2d_meat = \&PDL::GSL::RNG::ran_dir_2d_meat; #line 2735 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_dir_3d_meat = \&PDL::GSL::RNG::ran_dir_3d_meat; #line 2741 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_dir_nd_meat = \&PDL::GSL::RNG::ran_dir_nd_meat; #line 2747 "RNG.pm" #line 1619 "gsl_random.pd" sub ran_dir { my ($obj,$ndim,$n) = @_; barf("Not enough parameters for random vectors!") if $n<=0; my $p = zeroes($ndim,$n); if ($ndim==2) { ran_dir_2d_meat($p,$$obj); } elsif ($ndim==3) { ran_dir_3d_meat($p,$$obj); } elsif ($ndim>=4 && $ndim<=100) { ran_dir_nd_meat($p,$ndim,$$obj); } else { barf("Bad number of dimensions!"); } return $p; } #line 2764 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_discrete_meat = \&PDL::GSL::RNG::ran_discrete_meat; #line 2770 "RNG.pm" #line 1639 "gsl_random.pd" sub ran_discrete { my ($obj, $rdt, @var) = @_; if (ref($var[0]) eq 'PDL') { ran_discrete_meat($var[0], $$rdt, $$obj); return $var[0]; } else { my $p; $p = zeroes @var; ran_discrete_meat($p, $$rdt, $$obj); return $p; } } #line 2790 "RNG.pm" #line 1656 "gsl_random.pd" sub ran_shuffle_vec { my ($obj,@in) = @_; my (@out,$i,$p); $p = long [0..$#in]; $obj->ran_shuffle($p); for($i=0;$i<scalar(@in);$i++) { $out[$p->at($i)]=$in[$i]; } return @out; } #line 2807 "RNG.pm" #line 1670 "gsl_random.pd" sub ran_choose_vec { my ($obj,$nout,@in) = @_; my (@out,$i,$pin,$pout); $pin = long [0..$#in]; $pout = long [0..($nout-1)]; $obj->ran_choose($pin,$pout); for($i=0;$i<$nout;$i++) { $out[$i]=$in[$pout->at($i)]; } return @out; } #line 2825 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_ver_meat = \&PDL::GSL::RNG::ran_ver_meat; #line 2831 "RNG.pm" #line 1061 "../../../blib/lib/PDL/PP.pm" *ran_caos_meat = \&PDL::GSL::RNG::ran_caos_meat; #line 2837 "RNG.pm" #line 1704 "gsl_random.pd" sub ran_ver { my ($obj,$x0,$r,$n) = @_; barf("Not enough parameters for ran_ver!") if $n<=0; my $p = zeroes($n); ran_ver_meat($p,$x0,$r,$n,$$obj); return $p; } #line 2851 "RNG.pm" #line 1714 "gsl_random.pd" sub ran_caos { my ($obj,$m,$n) = @_; barf("Not enough parameters for ran_caos!") if $n<=0; my $p = zeroes($n); ran_caos_meat($p,$m,$n,$$obj); return $p; } #line 2865 "RNG.pm" # Exit with OK status 1;