#
# GENERATED WITH PDL::PP! Don't modify!
#
package PDL::FFT;

our @EXPORT_OK = qw(fft ifft fftnd ifftnd fftconvolve realfft realifft kernctr );
our %EXPORT_TAGS = (Func=>\@EXPORT_OK);

use PDL::Core;
use PDL::Exporter;
use DynaLoader;


   
   our @ISA = ( 'PDL::Exporter','DynaLoader' );
   push @PDL::Core::PP, __PACKAGE__;
   bootstrap PDL::FFT ;






#line 7 "fft.pd"
=head1 NAME

PDL::FFT - FFTs for PDL

=head1 DESCRIPTION

!!!!!!!!!!!!!!!!!!!!!!!!!!WARNING!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
As of PDL-2.006_04, the direction of the FFT/IFFT has been
reversed to match the usage in the FFTW library and the convention
in use generally.
!!!!!!!!!!!!!!!!!!!!!!!!!!WARNING!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

FFTs for PDL.  These work for arrays of any dimension, although ones
with small prime factors are likely to be the quickest.  The forward
FFT is unnormalized while the inverse FFT is normalized so that the
IFFT of the FFT returns the original values.

For historical reasons, these routines work in-place and do not recognize
the in-place flag.  That should be fixed.

=head1 SYNOPSIS

        use PDL::FFT qw/:Func/;

	fft($real, $imag);
	ifft($real, $imag);
	realfft($real);
	realifft($real);

	fftnd($real,$imag);
	ifftnd($real,$imag);

	$kernel = kernctr($image,$smallk);
	fftconvolve($image,$kernel);

=head1 DATA TYPES

The underlying C library upon which this module is based performs FFTs
on both single precision and double precision floating point ndarrays.
The PP functions are defined to only take those data types.
Therefore, if you pass in an ndarray of integer datatype (byte, short,
ushort, long) to any of the routines in PDL::FFT, your data will be
promoted to a double-precision ndarray.  If you pass in a float, the
single-precision FFT will be performed.

=head1 FREQUENCIES

For even-sized input arrays, the frequencies are packed like normal
for FFTs (where N is the size of the array and D is the physical step
size between elements):

 0, 1/ND, 2/ND, ..., (N/2-1)/ND, 1/2D, -(N/2-1)/ND, ..., -1/ND.

which can easily be obtained (taking the Nyquist frequency to be
positive) using

C<< $kx = $real->xlinvals(-($N/2-1)/$N/$D,1/2/$D)->rotate(-($N/2 -1)); >>

For odd-sized input arrays the Nyquist frequency is not directly
acessible, and the frequencies are

 0, 1/ND, 2/ND, ..., (N/2-0.5)/ND, -(N/2-0.5)/ND, ..., -1/ND.

which can easily be obtained using

C<< $kx = $real->xlinvals(-($N/2-0.5)/$N/$D,($N/2-0.5)/$N/$D)->rotate(-($N-1)/2); >>


=head1 ALTERNATIVE FFT PACKAGES

Various other modules - such as L<PDL::FFTW3> and L<PDL::Slatec> -
contain FFT routines.
However, unlike PDL::FFT, these modules are optional,
and so may not be installed.

=cut
#line 102 "FFT.pm"






=head1 FUNCTIONS

=cut




#line 1059 "/home/osboxes/.perlbrew/libs/perl-5.32.0@normal/lib/perl5/x86_64-linux/PDL/PP.pm"


=head2 fft

=for sig

  Signature: ([io]real(n); [io]imag(n))

=for ref

Complex 1-D FFT of the "real" and "imag" arrays [inplace]. A single
cfloat/cdouble input ndarray can also be used.

=for usage

  fft($real,$imag);
  fft($complex);


=for bad

fft does not process bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.


=cut
#line 143 "FFT.pm"



#line 1060 "/home/osboxes/.perlbrew/libs/perl-5.32.0@normal/lib/perl5/x86_64-linux/PDL/PP.pm"
sub PDL::fft {
	# Convert the first argument to decimal and check for trouble.
	my ($re, $im) = @_;
	if (!$re->type->real) {
		$im=$re->im;
		$re=$re->re;
	}
	eval {	todecimal($re);	};
	if ($@) {
		$@ =~ s/ at .*//s;
		barf("Error in FFT with first argument: $@");
	}
	# Convert the second argument to decimal and check for trouble.
	eval {	todecimal($im);	};
	if ($@) {
		$@ =~ s/ at .*//s;
		my $message = "Error in FFT with second argument: $@";
		$message .= '. Did you forget to supply the second (imaginary) ndarray?'
			if ($message =~ /undefined value/);
		barf($message);
	}
	PDL::_fft_int($re,$im);
	if (!$_[0]->type->real) {
		$_[0]= czip($re, $im);
	} else {
		$_[0]=$re,$_[1]=$im;
	}
}
#line 176 "FFT.pm"



#line 1061 "/home/osboxes/.perlbrew/libs/perl-5.32.0@normal/lib/perl5/x86_64-linux/PDL/PP.pm"
*fft = \&PDL::fft;
#line 182 "FFT.pm"



#line 1059 "/home/osboxes/.perlbrew/libs/perl-5.32.0@normal/lib/perl5/x86_64-linux/PDL/PP.pm"


=head2 ifft

=for sig

  Signature: ([io]real(n); [io]imag(n))

=for ref

Complex inverse 1-D FFT of the "real" and "imag" arrays [inplace]. A single
cfloat/cdouble input ndarray can also be used.

=for usage

  ifft($real,$imag);
  ifft($complex);


=for bad

ifft does not process bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.


=cut
#line 213 "FFT.pm"



#line 1060 "/home/osboxes/.perlbrew/libs/perl-5.32.0@normal/lib/perl5/x86_64-linux/PDL/PP.pm"
sub PDL::ifft {
	# Convert the first argument to decimal and check for trouble.
	my ($re, $im) = @_;
	if (!$re->type->real) {
		$im=$re->im;
		$re=$re->re;
	}
	eval {	todecimal($re);	};
	if ($@) {
		$@ =~ s/ at .*//s;
		barf("Error in FFT with first argument: $@");
	}
	# Convert the second argument to decimal and check for trouble.
	eval {	todecimal($im);	};
	if ($@) {
		$@ =~ s/ at .*//s;
		my $message = "Error in FFT with second argument: $@";
		$message .= '. Did you forget to supply the second (imaginary) ndarray?'
			if ($message =~ /undefined value/);
		barf($message);
	}
	PDL::_ifft_int($re,$im);
	if (!$_[0]->type->real) {
		$_[0]= czip($re, $im);
	} else {
		$_[0]=$re,$_[1]=$im;
	}
}
#line 246 "FFT.pm"



#line 1061 "/home/osboxes/.perlbrew/libs/perl-5.32.0@normal/lib/perl5/x86_64-linux/PDL/PP.pm"
*ifft = \&PDL::ifft;
#line 252 "FFT.pm"



#line 186 "fft.pd"
use Carp;
use PDL::Core qw/:Func/;
use PDL::Basic qw/:Func/;
use PDL::Types;
use PDL::ImageND qw/kernctr/; # moved to ImageND since FFTW uses it too
use PDL::Ops qw/czip/;

sub todecimal {
    my ($arg) = @_;
    $arg = $arg->double if $arg->type->integer;
    $_[0] = $arg;
1;}

=head2 realfft()

=for ref

One-dimensional FFT of real function [inplace].

The real part of the transform ends up in the first half of the array
and the imaginary part of the transform ends up in the second half of
the array.

=for usage

	realfft($real);

=cut

*realfft = \&PDL::realfft;

sub PDL::realfft {
    barf("Usage: realfft(real(*)") if $#_ != 0;
    my ($x) = @_;
    todecimal($x);
# FIX: could eliminate $y
    my ($y) = 0*$x;
    fft($x,$y);
    my ($n) = int((($x->dims)[0]-1)/2); my($t);
    ($t=$x->slice("-$n:-1")) .= $y->slice("1:$n");
    undef;
}

=head2 realifft()

=for ref

Inverse of one-dimensional realfft routine [inplace].

=for usage

	realifft($real);

=cut

*realifft = \&PDL::realifft;

sub PDL::realifft {
    use PDL::Ufunc 'max';
    barf("Usage: realifft(xfm(*)") if $#_ != 0;
    my ($x) = @_;
    todecimal($x);
    my ($n) = int((($x->dims)[0]-1)/2); my($t);
# FIX: could eliminate $y
    my ($y) = 0*$x;
    ($t=$y->slice("1:$n")) .= $x->slice("-$n:-1");
    ($t=$x->slice("-$n:-1")) .= $x->slice("$n:1");
    ($t=$y->slice("-$n:-1")) .= -$y->slice("$n:1");
    ifft($x,$y);
# Sanity check -- shouldn't happen
    carp "Bad inverse transform in realifft" if max(abs($y)) > 1e-6*max(abs($x));
    undef;
}

=head2 fftnd()

=for ref

N-dimensional FFT over all pdl dims of input (inplace) 

=for example

	fftnd($real,$imag);

=cut

*fftnd = \&PDL::fftnd;

sub PDL::fftnd {
    my ($r,$i) = @_;
    barf "Must have real and imaginary parts or complex for fftnd"
      if $r->type->real and @_ != 2;
    if (!$r->type->real) {
	$i=$r->im;
	$r=$r->re;
    }
    my ($n) = $r->getndims;
    barf "Dimensions of real and imag must be the same for fft"
        if ($n != $i->getndims);
    $n--;
    todecimal($r);
    todecimal($i);
    # need the copy in case $r and $i point to same memory
    $i = $i->copy;
    foreach (0..$n) {
      fft($r,$i);
      $r = $r->mv(0,$n);
      $i = $i->mv(0,$n);
    }
    if (!$_[0]->type->real) {
	$_[0]= czip($r, $i);
    } else {
	$_[0] = $r; $_[1] = $i;
    }
    undef;
}

=head2 ifftnd()

=for ref

N-dimensional inverse FFT over all pdl dims of input (inplace) 

=for example

	ifftnd($real,$imag);

=cut

*ifftnd = \&PDL::ifftnd;

sub PDL::ifftnd {
    my ($r,$i) = @_;
    barf "Must have real and imaginary parts or complex for ifftnd"
      if $r->type->real and @_ != 2;
    if (!$r->type->real) {
	$i=$r->im;
	$r=$r->re;
    }
    my ($n) = $r->getndims;
    barf "Dimensions of real and imag must be the same for ifft"
        if ($n != $i->getndims);
    todecimal($r);
    todecimal($i);
    # need the copy in case $r and $i point to same memory
    $i = $i->copy;
    $n--;
    foreach (0..$n) {
      ifft($r,$i);
      $r = $r->mv(0,$n);
      $i = $i->mv(0,$n);
    }
    if (!$_[0]->type->real) {
	$_[0]= czip($r, $i);
    } else {
	$_[0] = $r; $_[1] = $i;
    }
    undef;
}

=head2 fftconvolve()

=for ref

N-dimensional convolution with periodic boundaries (FFT method)

=for usage

	$kernel = kernctr($image,$smallk);
	fftconvolve($image,$kernel);

fftconvolve works inplace, and returns an error array in kernel as an
accuracy check -- all the values in it should be negligible.

See also L<PDL::ImageND::convolveND|PDL::ImageND/convolveND>, which 
performs speed-optimized convolution with a variety of boundary conditions.

The sizes of the image and the kernel must be the same.
L<kernctr|PDL::ImageND/kernctr> centres a small kernel to emulate the
behaviour of the direct convolution routines.

The speed cross-over between using straight convolution 
(L<PDL::Image2D::conv2d()|PDL::Image2D/conv2d>) and
these fft routines is for kernel sizes roughly 7x7.

=cut

*fftconvolve = \&PDL::fftconvolve;

sub PDL::fftconvolve {
    barf "Must have image & kernel for fftconvolve" if $#_ != 1;
    my ($im, $k) = map $_->r2C, @_;
    fftnd($im);
    fftnd($k);
    my $c = $im * $k;
    ifftnd($c);
    $_[0] = $c->re->sever;
    $_[1] = $c->im->sever;
    @_;
}
#line 457 "FFT.pm"





#line 389 "fft.pd"
=head1 BUGS

Where the source is marked `FIX', could re-implement using phase-shift
factors on the transforms and some real-space bookkeeping, to save
some temporary space and redundant transforms.

=head1 AUTHOR

This file copyright (C) 1997, 1998 R.J.R. Williams
(rjrw@ast.leeds.ac.uk), Karl Glazebrook (kgb@aaoepp.aao.gov.au),
Tuomas J. Lukka, (lukka@husc.harvard.edu).  All rights reserved. There
is no warranty. You are allowed to redistribute this software /
documentation under certain conditions. For details, see the file
COPYING in the PDL distribution. If this file is separated from the
PDL distribution, the copyright notice should be included in the file.

=cut
#line 481 "FFT.pm"




# Exit with OK status

1;