package PDLA::Core; # Core routines for PDLA module use strict; use warnings; use PDLA::Exporter; use DynaLoader; our @ISA = qw( PDLA::Exporter DynaLoader ); our $VERSION = "2.013007"; bootstrap PDLA::Core $VERSION; use PDLA::Types ':All'; our @EXPORT = qw( piddle pdl null barf ); # Only stuff always exported! my @convertfuncs = map PDLA::Types::typefld($_,'convertfunc'), PDLA::Types::typesrtkeys(); my @exports_internal = qw(howbig threadids topdl); my @exports_normal = (@EXPORT, @convertfuncs, qw(nelem dims shape null convert inplace zeroes zeros ones list listindices unpdl set at flows thread_define over reshape dog cat barf type diagonal dummy mslice approx flat sclr squeeze get_autopthread_targ set_autopthread_targ get_autopthread_actual get_autopthread_size set_autopthread_size) ); our @EXPORT_OK = (@exports_internal, @exports_normal); our %EXPORT_TAGS = ( Func => [@exports_normal], Internal => [@exports_internal] ); our ($level, @dims, $sep, $sep2, $match); # Important variables (place in PDLA namespace) # (twice to eat "used only once" warning) $PDLA::debug = # Debugging info $PDLA::debug = 0; $PDLA::verbose = # Functions provide chatty information $PDLA::verbose = 0; $PDLA::use_commas = 0; # Whether to insert commas when printing arrays $PDLA::floatformat = "%7g"; # Default print format for long numbers $PDLA::doubleformat = "%10.8g"; $PDLA::undefval = 0; # Value to use instead of undef when creating PDLAs $PDLA::toolongtoprint = 10000; # maximum pdl size to stringify for printing ################ Exportable functions of the Core ###################### # log10() is now defined in ops.pd *howbig = \&PDLA::howbig; *unpdl = \&PDLA::unpdl; *nelem = \&PDLA::nelem; *inplace = \&PDLA::inplace; *dims = \&PDLA::dims; *list = \&PDLA::list; *threadids = \&PDLA::threadids; *listindices = \&PDLA::listindices; *null = \&PDLA::null; *set = \&PDLA::set; *at = \&PDLA::at; *flows = \&PDLA::flows; *sclr = \&PDLA::sclr; *shape = \&PDLA::shape; for (map { [ PDLA::Types::typefld($_,'convertfunc'), PDLA::Types::typefld($_,'numval') ] } PDLA::Types::typesrtkeys()) { my ($conv, $val) = @$_; no strict 'refs'; *$conv = *{"PDLA::$conv"} = sub { return bless [$val], "PDLA::Type" unless @_; convert(alltopdl('PDLA', (scalar(@_)>1 ? [@_] : shift)), $val); }; } BEGIN { *thread_define = \&PDLA::thread_define; *convert = \&PDLA::convert; *over = \&PDLA::over; *dog = \&PDLA::dog; *cat = \&PDLA::cat; *type = \&PDLA::type; *approx = \&PDLA::approx; *diagonal = \&PDLA::diagonal; *dummy = \&PDLA::dummy; *mslice = \&PDLA::mslice; *isempty = \&PDLA::isempty; *string = \&PDLA::string; } =head1 NAME PDLA::Core - fundamental PDLA functionality and vectorization/threading =head1 DESCRIPTION Methods and functions for type conversions, PDLA creation, type conversion, threading etc. =head1 SYNOPSIS use PDLA::Core; # Normal routines use PDLA::Core ':Internal'; # Hairy routines =head1 VECTORIZATION/THREADING: METHOD AND NOMENCLATURE PDLA provides vectorized operations via a built-in engine. Vectorization is called "threading" for historical reasons. The threading engine implements simple rules for each operation. Each PDLA object has a "shape" that is a generalized N-dimensional rectangle defined by a "dim list" of sizes in an arbitrary set of dimensions. A PDLA with shape 2x3 has 6 elements and is said to be two-dimensional, or may be referred to as a 2x3-PDLA. The dimensions are indexed numerically starting at 0, so a 2x3-PDLA has a dimension 0 (or "dim 0") with size 2 and a 1 dimension (or "dim 1") with size 3. PDLA generalizes *all* mathematical operations with the notion of "active dims": each operator has zero or more active dims that are used in carrying out the operation. Simple scalar operations like scalar multiplication ('*') have 0 active dims. More complicated operators can have more active dims. For example, matrix multiplication ('x') has 2 active dims. Additional dims are automatically vectorized across -- e.g. multiplying a 2x5-PDLA with a 2x5-PDLA requires 10 simple multiplication operations, and yields a 2x5-PDLA result. =head2 Threading rules In any PDLA expression, the active dims appropriate for each operator are used starting at the 0 dim and working forward through the dim list of each object. All additional dims after the active dims are "thread dims". The thread dims do not have to agree exactly: they are coerced to agree according to simple rules: =over 3 =item * Null PDLAs match any dim list (see below). =item * Dims with sizes other than 1 must all agree in size. =item * Dims of size 1 are expanded as necessary. =item * Missing dims are expanded appropriately. =back The "size 1" rule implements "generalized scalar" operation, by analogy to scalar multiplication. The "missing dims" rule acknowledges the ambiguity between a missing dim and a dim of size 1. =head2 Null PDLAs PDLAs on the left-hand side of assignment can have the special value "Null". A null PDLA has no dim list and no set size; its shape is determined by the computed shape of the expression being assigned to it. Null PDLAs contain no values and can only be assigned to. When assigned to (e.g. via the C<.=> operator), they cease to be null PDLAs. To create a null PDLA, use C<PDLA-E<gt>null()>. =head2 Empty PDLAs PDLAs can represent the empty set using "structured Empty" variables. An empty PDLA is not a null PDLA. Any dim of a PDLA can be set explicitly to size 0. If so, the PDLA contains zero values (because the total number of values is the product of all the sizes in the PDLA's shape or dimlist). Scalar PDLAs are zero-dimensional and have no entries in the dim list, so they cannot be empty. 1-D and higher PDLAs can be empty. Empty PDLAs are useful for set operations, and are most commonly encountered in the output from selection operators such as L<which|PDLA::Primitive> and L<whichND|PDLA::Primitive>. Not all empty PDLAs have the same threading properties -- e.g. a 2x0-PDLA represents a collection of 2-vectors that happens to contain no elements, while a simple 0-PDLA represents a collection of scalar values (that also happens to contain no elements). Note that 0 dims are not adjustable via the threading rules -- a dim with size 0 can only match a corresponding dim of size 0 or 1. =head2 Thread rules and assignments Versions of PDLA through 2.4.10 have some irregularity with threading and assignments. Currently the threading engine performs a full expansion of both sides of the computed assignment operator C<.=> (which assigns values to a pre-existing PDLA). This leads to counter-intuitive behavior in some cases: =over 3 =item * Generalized scalars and computed assignment If the PDLA on the left-hand side of C<.=> has a dim of size 1, it can be treated as a generalized scalar, as in: $a = sequence(2,3); $b = zeroes(1,3); $b .= $a; In this case, C<$b> is automatically treated as a 2x3-PDLA during the threading operation, but half of the values from C<$a> silently disappear. The output is, as Kernighan and Ritchie would say, "undefined". Further, if the value on the right of C<.=> is empty, then C<.=> becomes a silent no-op: $a = zeroes(0); $b = zeroes(1); $b .= $a+1; print $b; will print C<[0]>. In this case, "$a+1" is empty, and "$b" is a generalized scalar that is adjusted to be empty, so the assignment is carried out for zero elements (a no-op). Both of these behaviors are considered harmful and should not be relied upon: they may be patched away in a future version of PDLA. =item * Empty PDLAs and generalized scalars Generalized scalars (PDLAs with a dim of size 1) can match any size in the corresponding dim, including 0. Thus, $a = ones(2,0); $b = sequence(2,1); $c = $a * $b; print $c; prints C<Empty[2,0]>. This behavior is counterintuitive but desirable, and will be preserved in future versions of PDLA. =back =head1 VARIABLES These are important variables of B<global> scope and are placed in the PDLA namespace. =head3 C<$PDLA::debug> =over 4 When true, PDLA debugging information is printed. =back =head3 C<$PDLA::verbose> =over 4 When true, PDLA functions provide chatty information. =back =head3 C<$PDLA::use_commas> =over 4 Whether to insert commas when printing pdls =back =head3 C<$PDLA::floatformat>, C<$PDLA::doubleformat> =over 4 The default print format for floats and doubles, repectively. The default default values are: $PDLA::floatformat = "%7g"; $PDLA::doubleformat = "%10.8g"; =back =head3 C<$PDLA::undefval> =over 4 The value to use instead of C<undef> when creating pdls. =back =head3 C<$PDLA::toolongtoprint> =over 4 The maximal size pdls to print (defaults to 10000 elements) =back =head1 FUNCTIONS =head2 barf =for ref Standard error reporting routine for PDLA. C<barf()> is the routine PDLA modules should call to report errors. This is because C<barf()> will report the error as coming from the correct line in the module user's script rather than in the PDLA module. For now, barf just calls Carp::confess() Remember C<barf()> is your friend. *Use* it! =for example At the perl level: barf("User has too low an IQ!"); In C or XS code: barf("You have made %d errors", count); Note: this is one of the few functions ALWAYS exported by PDLA::Core =cut use Carp; sub barf { goto &Carp::confess } sub cluck { goto &Carp::cluck } *PDLA::barf = \&barf; *PDLA::cluck = \&cluck; ########## Set Auto-PThread Based On Environment Vars ############ PDLA::set_autopthread_targ( $ENV{PDLA_AUTOPTHREAD_TARG} ) if( defined ( $ENV{PDLA_AUTOPTHREAD_TARG} ) ); PDLA::set_autopthread_size( $ENV{PDLA_AUTOPTHREAD_SIZE} ) if( defined ( $ENV{PDLA_AUTOPTHREAD_SIZE} ) ); ################################################################## =head2 pdl =for ref PDLA constructor - creates new piddle from perl scalars/arrays, piddles, and strings =for usage $a = pdl(SCALAR|ARRAY REFERENCE|ARRAY|STRING); =for example $a = pdl [1..10]; # 1D array $a = pdl ([1..10]); # 1D array $a = pdl (1,2,3,4); # Ditto $b = pdl [[1,2,3],[4,5,6]]; # 2D 3x2 array $b = pdl "[[1,2,3],[4,5,6]]"; # Ditto (slower) $b = pdl "[1 2 3; 4 5 6]"; # Ditto $b = pdl q[1 2 3; 4 5 6]; # Ditto, using the q quote operator $b = pdl "1 2 3; 4 5 6"; # Ditto, less obvious, but still works $b = pdl 42 # 0-dimensional scalar $c = pdl $a; # Make a new copy $a = pdl([1,2,3],[4,5,6]); # 2D $a = pdl([[1,2,3],[4,5,6]]); # 2D Note the last two are equivalent - a list is automatically converted to a list reference for syntactic convenience. i.e. you can omit the outer C<[]> You can mix and match arrays, array refs, and PDLAs in your argument list, and C<pdl> will sort them out. You get back a PDLA whose last (slowest running) dim runs across the top level of the list you hand in, and whose first (fastest running) dim runs across the deepest level that you supply. At the moment, you cannot mix and match those arguments with string arguments, though we can't imagine a situation in which you would really want to do that. The string version of pdl also allows you to use the strings C<bad>, C<inf>, and C<nan>, and it will insert the values that you mean (and set the bad flag if you use C<bad>). You can mix and match case, though you shouldn't. Here are some examples: $bad = pdl q[1 2 3 bad 5 6]; # Set fourth element to the bad value $bad = pdl q[1 2 3 BAD 5 6]; # ditto $bad = pdl q[1 2 inf bad 5]; # now third element is IEEE infinite value $bad = pdl q[nan 2 inf -inf]; # first value is IEEE nan value The default constructor uses IEEE double-precision floating point numbers. You can use other types, but you will get a warning if you try to use C<nan> with integer types (it will be replaced with the C<bad> value) and you will get a fatal error if you try to use C<inf>. Throwing a PDLA into the mix has the same effect as throwing in a list ref: pdl(pdl(1,2),[3,4]) is the same as pdl([1,2],[3,4]). All of the dimensions in the list are "padded-out" with undefval to meet the widest dim in the list, so (e.g.) $a = pdl([[1,2,3],[2]]) gives you the same answer as $a = pdl([[1,2,3],[2,undef,undef]]); C<pdl()> is a functional synonym for the 'new' constructor, e.g.: $x = new PDLA [1..10]; In order to control how undefs are handled in converting from perl lists to PDLAs, one can set the variable C<$PDLA::undefval>. For example: $foo = [[1,2,undef],[undef,3,4]]; $PDLA::undefval = -999; $f = pdl $foo; print $f [ [ 1 2 -999] [-999 3 4] ] C<$PDLA::undefval> defaults to zero. As a final note, if you include an Empty PDLA in the list of objects to construct into a PDLA, it is kept as a placeholder pane -- so if you feed in (say) 7 objects, you get a size of 7 in the 0th dim of the output PDLA. The placeholder panes are completely padded out. But if you feed in only a single Empty PDLA, you get back the Empty PDLA (no padding). =cut sub pdl {PDLA->pdl(@_)} sub piddle {PDLA->pdl(@_)} =head2 null =for ref Returns a 'null' piddle. =for usage $x = null; C<null()> has a special meaning to L<PDLA::PP|PDLA::PP>. It is used to flag a special kind of empty piddle, which can grow to appropriate dimensions to store a result (as opposed to storing a result in an existing piddle). =for example pdla> sumover sequence(10,10), $ans=null;p $ans [45 145 245 345 445 545 645 745 845 945] =cut sub PDLA::null{ my $class = scalar(@_) ? shift : undef; # if this sub called with no # class ( i.e. like 'null()', instead # of '$obj->null' or 'CLASS->null', setup if( defined($class) ){ $class = ref($class) || $class; # get the class name } else{ $class = 'PDLA'; # set class to the current package name if null called # with no arguments } return $class->initialize(); } =head2 nullcreate =for ref Returns a 'null' piddle. =for usage $x = PDLA->nullcreate($arg) This is an routine used by many of the threading primitives (i.e. L<sumover|PDLA::Ufunc/sumover>, L<minimum|PDLA::Ufunc/minimum>, etc.) to generate a null piddle for the function's output that will behave properly for derived (or subclassed) PDLA objects. For the above usage: If C<$arg> is a PDLA, or a derived PDLA, then C<$arg-E<gt>null> is returned. If C<$arg> is a scalar (i.e. a zero-dimensional PDLA) then C<PDLA-E<gt>null> is returned. =for example PDLA::Derived->nullcreate(10) returns PDLA::Derived->null. PDLA->nullcreate($pdlderived) returns $pdlderived->null. =cut sub PDLA::nullcreate{ my ($type,$arg) = @_; return ref($arg) ? $arg->null : $type->null ; } =head2 nelem =for ref Return the number of elements in a piddle =for usage $n = nelem($piddle); $n = $piddle->nelem; =for example $mean = sum($data)/nelem($data); =head2 dims =for ref Return piddle dimensions as a perl list =for usage @dims = $piddle->dims; @dims = dims($piddle); =for example pdla> p @tmp = dims zeroes 10,3,22 10 3 22 See also L<shape|shape> which returns a piddle instead. =head2 shape =for ref Return piddle dimensions as a piddle =for usage $shape = $piddle->shape; $shape = shape($piddle); =for example pdla> p $shape = shape zeroes 10,3,22 [10 3 22] See also L<dims|dims> which returns a perl list. =head2 ndims =for ref Returns the number of dimensions in a piddle. Alias for L<getndims|PDLA::Core/getndims>. =head2 getndims =for ref Returns the number of dimensions in a piddle =for usage $ndims = $piddle->getndims; =for example pdla> p zeroes(10,3,22)->getndims 3 =head2 dim =for ref Returns the size of the given dimension of a piddle. Alias for L<getdim|PDLA::Core/getdim>. =head2 getdim =for ref Returns the size of the given dimension. =for usage $dim0 = $piddle->getdim(0); =for example pdla> p zeroes(10,3,22)->getdim(1) 3 Negative indices count from the end of the dims array. Indices beyond the end will return a size of 1. This reflects the idea that any pdl is equivalent to an infinitely dimensional array in which only a finite number of dimensions have a size different from one. For example, in that sense a 3D piddle of shape [3,5,2] is equivalent to a [3,5,2,1,1,1,1,1,....] piddle. Accordingly, print $a->getdim(10000); will print 1 for most practically encountered piddles. =head2 topdl =for ref alternate piddle constructor - ensures arg is a piddle =for usage $a = topdl(SCALAR|ARRAY REFERENCE|ARRAY); The difference between L<pdl()|/pdl> and C<topdl()> is that the latter will just 'fall through' if the argument is already a piddle. It will return a reference and I<NOT> a new copy. This is particulary useful if you are writing a function which is doing some fiddling with internals and assumes a piddle argument (e.g. for method calls). Using C<topdl()> will ensure nothing breaks if passed with '2'. Note that C<topdl()> is not exported by default (see example below for usage). =for example use PDLA::Core ':Internal'; # use the internal routines of # the Core module $a = topdl 43; # $a is piddle with value '43' $b = topdl $piddle; # fall through $a = topdl (1,2,3,4); # Convert 1D array =head2 PDLA::get_datatype =for ref Internal: Return the numeric value identifying the piddle datatype =for usage $x = $piddle->get_datatype; Mainly used for internal routines. NOTE: get_datatype returns 'just a number' not any special type object, unlike L<type|/type>. =head2 howbig =for ref Returns the sizeof a piddle datatype in bytes. Note that C<howbig()> is not exported by default (see example below for usage). =for usage use PDLA::Core ':Internal'; # use the internal routines of # the Core module $size = howbig($piddle->get_datatype); Mainly used for internal routines. NOTE: NOT a method! This is because get_datatype returns 'just a number' not any special object. =for example pdla> p howbig(ushort([1..10])->get_datatype) 2 =head2 get_dataref =for ref Return the internal data for a piddle, as a perl SCALAR ref. Most piddles hold their internal data in a packed perl string, to take advantage of perl's memory management. This gives you direct access to the string, which is handy when you need to manipulate the binary data directly (e.g. for file I/O). If you modify the string, you'll need to call L<upd_data|upd_data> afterward, to make sure that the piddle points to the new location of the underlying perl variable. Calling C<get_dataref> automatically physicalizes your piddle (see L<make_physical|/PDLA::make_physical>). You definitely don't want to do anything to the SV to truncate or deallocate the string, unless you correspondingly call L<reshape|/reshape> to make the PDLA match its new data dimension. You definitely don't want to use get_dataref unless you know what you are doing (or are trying to find out): you can end up scrozzling memory if you shrink or eliminate the string representation of the variable. Here be dragons. =head2 upd_data =for ref Update the data pointer in a piddle to match its perl SV. This is useful if you've been monkeying with the packed string representation of the PDLA, which you probably shouldn't be doing anyway. (see L<get_dataref|get_dataref>.) =cut sub topdl {PDLA->topdl(@_)} ####################### Overloaded operators ####################### # This is to used warn if an operand is non-numeric or non-PDLA. sub warn_non_numeric_op_wrapper { my ($cb, $op_name) = @_; return sub { my ($op1, $op2) = @_; unless( Scalar::Util::looks_like_number($op2) || ( Scalar::Util::blessed($op2) && $op2->isa('PDLA') ) ) { warn "'$op2' is not numeric nor a PDLA in operator $op_name"; }; $cb->(@_); } } { package PDLA; # use UNIVERSAL 'isa'; # need that later in info function use Carp; use overload ( "+" => \&PDLA::plus, # in1, in2 "*" => \&PDLA::mult, # in1, in2 "-" => \&PDLA::minus, # in1, in2, swap if true "/" => \&PDLA::divide, # in1, in2, swap if true "+=" => sub { PDLA::plus ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true "*=" => sub { PDLA::mult ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true "-=" => sub { PDLA::minus ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true "/=" => sub { PDLA::divide ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true ">" => \&PDLA::gt, # in1, in2, swap if true "<" => \&PDLA::lt, # in1, in2, swap if true "<=" => \&PDLA::le, # in1, in2, swap if true ">=" => \&PDLA::ge, # in1, in2, swap if true "==" => \&PDLA::eq, # in1, in2 "eq" => PDLA::Core::warn_non_numeric_op_wrapper(\&PDLA::eq, 'eq'), # in1, in2 "!=" => \&PDLA::ne, # in1, in2 "<<" => \&PDLA::shiftleft, # in1, in2, swap if true ">>" => \&PDLA::shiftright, # in1, in2, swap if true "|" => \&PDLA::or2, # in1, in2 "&" => \&PDLA::and2, # in1, in2 "^" => \&PDLA::xor, # in1, in2 "<<=" => sub { PDLA::shiftleft ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true ">>=" => sub { PDLA::shiftright($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true "|=" => sub { PDLA::or2 ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true "&=" => sub { PDLA::and2 ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true "^=" => sub { PDLA::xor ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true "**=" => sub { PDLA::power ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true "%=" => sub { PDLA::modulo ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true "sqrt" => sub { PDLA::sqrt ($_[0]); }, "abs" => sub { PDLA::abs ($_[0]); }, "sin" => sub { PDLA::sin ($_[0]); }, "cos" => sub { PDLA::cos ($_[0]); }, "!" => sub { PDLA::not ($_[0]); }, "~" => sub { PDLA::bitnot ($_[0]); }, "log" => sub { PDLA::log ($_[0]); }, "exp" => sub { PDLA::exp ($_[0]); }, "**" => \&PDLA::power, # in1, in2, swap if true "atan2" => \&PDLA::atan2, # in1, in2, swap if true "%" => \&PDLA::modulo, # in1, in2, swap if true "<=>" => \&PDLA::spaceship, # in1, in2, swap if true "=" => sub {$_[0]}, # Don't deep copy, just copy reference ".=" => sub { my @args = reverse &PDLA::Core::rswap; PDLA::Ops::assgn(@args); return $args[1]; }, 'x' => sub{my $foo = $_[0]->null(); PDLA::Primitive::matmult(@_[0,1],$foo); $foo;}, 'bool' => sub { return 0 if $_[0]->isnull; croak("multielement piddle in conditional expression") unless $_[0]->nelem == 1; $_[0]->clump(-1)->at(0); }, "\"\"" => \&PDLA::Core::string ); } sub rswap { if($_[2]) { return @_[1,0]; } else { return @_[0,1]; } } ##################### Data type/conversion stuff ######################## # XXX Optimize! sub PDLA::dims { # Return dimensions as @list my $pdl = PDLA->topdl (shift); my @dims = (); for(0..$pdl->getndims()-1) {push @dims,($pdl->getdim($_))} return @dims; } sub PDLA::shape { # Return dimensions as a pdl my $pdl = PDLA->topdl (shift); my @dims = (); for(0..$pdl->getndims()-1) {push @dims,($pdl->getdim($_))} return pdl(\@dims); } sub PDLA::howbig { my $t = shift; if("PDLA::Type" eq ref $t) {$t = $t->[0]} PDLA::howbig_c($t); } =head2 PDLA::threadids =for ref Returns the piddle thread IDs as a perl list Note that C<threadids()> is not exported by default (see example below for usage). =for usage use PDLA::Core ':Internal'; # use the internal routines of # the Core module @ids = threadids $piddle; =cut sub PDLA::threadids { # Return dimensions as @list my $pdl = PDLA->topdl (shift); my @dims = (); for(0..$pdl->getnthreadids()) {push @dims,($pdl->getthreadid($_))} return @dims; } ################# Creation/copying functions ####################### sub PDLA::pdl { my $x = shift; return $x->new(@_) } =head2 doflow =for ref Turn on/off dataflow =for usage $x->doflow; doflow($x); =cut sub PDLA::doflow { my $this = shift; $this->set_dataflow_f(1); $this->set_dataflow_b(1); } =head2 flows =for ref Whether or not a piddle is indulging in dataflow =for usage something if $x->flows; $hmm = flows($x); =cut sub PDLA::flows { my $this = shift; return ($this->fflows || $this->bflows); } =head2 PDLA::new =for ref new piddle constructor method =for usage $x = PDLA->new(SCALAR|ARRAY|ARRAY REF|STRING); =for example $x = PDLA->new(42); # new from a Perl scalar $x = new PDLA 42; # ditto $y = PDLA->new(@list_of_vals); # new from Perl list $y = new PDLA @list_of_vals; # ditto $z = PDLA->new(\@list_of_vals); # new from Perl list reference $w = PDLA->new("[1 2 3]"); # new from Perl string, using # Matlab constructor syntax Constructs piddle from perl numbers and lists and strings with Matlab/Octave style constructor syntax. The string input is fairly versatile though not performance optimized. The goal is to make it easy to copy and paste code from PDLA output and to offer a familiar Matlab syntax for piddle construction. As of May, 2010, it is a new feature, so feel free to report bugs or suggest new features. See documentation for L<pdl> for more examples of usage. =cut use Scalar::Util; # for looks_like_number test use Carp 'carp'; # for carping (warnings in caller's context) # This is the code that handles string arguments. It has now gotten quite large, # so here's the basic explanation. I want to allow expressions like 2, 1e3, +4, # bad, nan, inf, and more. Checking this can get tricky. This croaks when it # finds: # 1) strings of e or E that are longer than 1 character long (like eeee) # 2) non-supported characters or strings # 3) expressions that are syntactically erroneous, like '1 2 3 ]', which has an # extra bracket # 4) use of inf when the data type does not support inf (i.e. the integers) sub PDLA::Core::new_pdl_from_string { my ($new, $original_value, $this, $type) = @_; my $value = $original_value; # Check for input that would generate empty piddles as output: my @types = PDLA::Types::types; return zeroes($types[$type], 1)->where(zeroes(1) < 0) if ($value eq '' or $value eq '[]'); # I check for invalid characters later, but arbitrary strings of e will # pass that check, so I'll check for that here, first. # croak("PDLA::Core::new_pdl_from_string: I found consecutive copies of e but\n" # . " I'm not sure what you mean. You gave me $original_value") # if ($value =~ /ee/i); croak("PDLA::Core::new_pdl_from_string: found 'e' as part of a larger word in $original_value") if $value =~ /e\p{IsAlpha}/ or $value =~ /\p{IsAlpha}e/; # Only a few characters are allowed in the expression, but we want to allow # expressions like 'inf' and 'bad'. As such, convert those values to internal # representations that will pass the invalid-character check. We'll replace # them with Perl-evalute-able strings in a little bit. Here, I represent # bad => EE # nan => ee # inf => Ee # pi => eE # --( Bad )-- croak("PDLA::Core::new_pdl_from_string: found 'bad' as part of a larger word in $original_value") if $value =~ /bad\B/ or $value =~ /\Bbad/; my ($has_bad) = ($value =~ s/\bbad\b/EE/gi); # --( nan )-- my ($has_nan) = 0; croak("PDLA::Core::new_pdl_from_string: found 'nan' as part of a larger word in $original_value") if $value =~ /\Bnan/ or $value =~ /nan\B/; $has_nan++ if ($value =~ s/\bnan\b/ee/gi); # Strawberry Perl compatibility: croak("PDLA::Core::new_pdl_from_string: found '1.#IND' as part of a larger word in $original_value") if $value =~ /IND\B/i; $has_nan++ if ($value =~ s/1\.\#IND/ee/gi); # --( inf )-- my ($has_inf) = 0; # Strawberry Perl compatibility: croak("PDLA::Core::new_pdl_from_string: found '1.#INF' as part of a larger word in $original_value") if $value =~ /INF\B/i; $has_inf++ if ($value =~ s/1\.\#INF/Ee/gi); # Other platforms: croak("PDLA::Core::new_pdl_from_string: found 'inf' as part of a larger word in $original_value") if $value =~ /inf\B/ or $value =~ /\Binf/; $has_inf++ if ($value =~ s/\binf\b/Ee/gi); # --( pi )-- croak("PDLA::Core::new_pdl_from_string: found 'pi' as part of a larger word in $original_value") if $value =~ /pi\B/ or $value =~ /\Bpi/; $value =~ s/\bpi\b/eE/gi; # Some data types do not support nan and inf, so check for and warn or croak, # as appropriate: if ($has_nan and not $types[$type]->usenan) { carp("PDLA::Core::new_pdl_from_string: no nan for type $types[$type]; converting to bad value"); $value =~ s/ee/EE/g; $has_bad += $has_nan; $has_nan = 0; } croak("PDLA::Core::new_pdl_from_string: type $types[$type] does not support inf") if ($has_inf and not $types[$type]->usenan); # Make the white-space uniform and see if any not-allowed characters are # present: $value =~ s/\s+/ /g; if (my ($disallowed) = ($value =~ /([^\[\]\+\-0-9;,.eE ]+)/)) { croak("PDLA::Core::new_pdl_from_string: found disallowed character(s) '$disallowed' in $original_value"); } # Wrap the string in brackets [], so that the following works: # $a = new PDLA q[1 2 3]; # We'll have to check for dimensions of size one after we've parsed # the string and built a PDLA from the resulting array. $value = '[' . $value . ']'; # Make sure that each closing bracket followed by an opening bracket # has a comma in between them: $value =~ s/\]\s*\[/],[/g; # Semicolons indicate 'start a new row' and require special handling: if ($value =~ /;/) { $value =~ s/(\[[^\]]+;[^\]]+\])/[$1]/g; $value =~ s/;/],[/g; } # Remove ending decimal points and insert zeroes in front of starting # decimal points. This makes the white-space-to-comma replacement # in the next few lines much simpler. $value =~ s/(\d\.)(z|[^\d])/${1}0$2/g; $value =~ s/(\A|[^\d])\./${1}0./g; # Remove whitspace between signs and the numbers that follow them: $value =~ s/([+\-])\s+/$1/g; # # make unambiguous addition/subtraction (white-space on both sides # # of operator) by removing white-space from both sides # $value =~ s/([\dEe])\s+([+\-])\s+(?=[Ee\d])/$1$2/g; # Replace white-space separators with commas: $value =~ s/([.\deE])\s+(?=[+\-eE\d])/$1,/g; # Remove all other white space: $value =~ s/\s+//g; # Croak on operations with bad values. It might be nice to simply replace # these with bad values, but that is more difficult that I like, so I'm just # going to disallow that here: croak("PDLA::Core::new_pdl_from_string: Operations with bad values are not supported") if($value =~ /EE[+\-]/ or $value =~ /[+\-]EE/); # Check for things that will evaluate as functions and croak if found if (my ($disallowed) = ($value =~ /((\D+|\A)[eE]\d+)/)) { croak("PDLA::Core::new_pdl_from_string: syntax error, looks like an improper exponentiation: $disallowed\n" . "You originally gave me $original_value\n"); } # Replace the place-holder strings with strings that will evaluate to their # correct numerical values when we run the eval: $value =~ s/\bEE\b/bad/g; my $bad = $types[$type]->badvalue; $value =~ s/\bee\b/nan/g; my $inf = -pdl(0)->log; $value =~ s/\bEe\b/inf/g; my $nnan = $inf - $inf; my $nan= $this->initialize(); $nan->set_datatype($nnan->get_datatype); $nan->setdims([]); # pack("d*", "nan") will work here only on perls that numify the string "nan" to a NaN. # pack( "d*", (-1.0) ** 0.5 ) will hopefully work in more places, though it seems both # pack("d*", "nan") and pack( "d*", (-1.0) ** 0.5 ) fail on *old* MS Compilers (MSVC++ 6.0 and earlier). # sisyphus 4 Jan 2013. ${$nan->get_dataref} = pack( "d*", (-1.0) ** 0.5 ); $nan->upd_data(); $value =~ s/\beE\b/pi/g; my $val = eval{ # Install the warnings handler: my $old_warn_handler = $SIG{__WARN__}; local $SIG{__WARN__} = sub { if ($_[0] =~ /(Argument ".*" isn't numeric)/) { # Send the error through die. This is *always* get caught, so keep # it simple. die "Incorrectly formatted input: $1\n"; } elsif ($old_warn_handler) { $old_warn_handler->(@_); } else { warn @_; } }; # Let's see if we can parse it as an array-of-arrays: local $_ = $value; return PDLA::Core::parse_basic_string ($inf, $nan, $nnan, $bad); }; # Respect BADVAL_USENAN require PDLA::Config; $has_bad += $has_inf + $has_nan if $PDLA::Config{BADVAL_USENAN}; if (ref $val eq 'ARRAY') { my $to_return = PDLA::Core::pdl_avref($val,$this,$type); if( $to_return->dim(-1) == 1 ) { if( $to_return->dims > 1 ) { # remove potentially spurious last dimension $to_return = $to_return->mv(-1,1)->clump(2); } elsif( $to_return->dims == 1 ) { # fix scalar values $to_return->setdims([]); } } # Mark bad if appropriate $to_return->badflag($has_bad > 0); return $to_return; } else { my @message = ("PDLA::Core::new_pdl_from_string: string input='$original_value', string output='$value'" ); if ($@) { push @message, $@; } else { push @message, "Internal error: unexpected output type ->$val<- is not ARRAY ref"; } croak join("\n ", @message); } } sub PDLA::Core::parse_basic_string { # Assumes $_ holds the string of interest, and modifies that value # in-place. use warnings; # Takes a string with proper bracketing, etc, and returns an array-of-arrays # filled with numbers, suitable for use with pdl_avref. It uses recursive # descent to handle the nested nature of the data. The string should have # no whitespace and should be something that would evaluate into a Perl # array-of-arrays (except that strings like 'inf', etc, are allowed). my ($inf, $nan, $nnan, $bad) = @_; # First character should be a bracket: die "Internal error: input string -->$_<-- did not start with an opening bracket\n" unless s/^\[//; my @to_return; # Loop until we run into our closing bracket: my $sign = 1; my $expects_number = 0; SYMBOL: until (s/^\]//) { # If we have a bracket, then go recursive: if (/^\[/) { die "Expected a number but found a bracket at ... ", substr ($_, 0, 10), "...\n" if $expects_number; push @to_return, PDLA::Core::parse_basic_string(@_); next SYMBOL; } elsif (s/^\+//) { die "Expected number but found a plus sign at ... ", substr ($_, 0, 10), "...\n" if $expects_number; $expects_number = 1; redo SYMBOL; } elsif (s/^\-//) { die "Expected number but found a minus sign at ... ", substr ($_, 0, 10), "...\n" if $expects_number; $sign = -1; $expects_number = 1; redo SYMBOL; } elsif (s/^bad//i) { push @to_return, $bad; } elsif (s/^inf//i or s/1\.\#INF//i) { push @to_return, $sign * $inf; } elsif (s/^nan//i or s/^1\.\#IND//i) { if ($sign == -1) { push @to_return, $nnan; } else { push @to_return, $nan; } } elsif (s/^pi//i) { push @to_return, $sign * 4 * atan2(1, 1); } elsif (s/^e//i) { push @to_return, $sign * exp(1); } elsif (s/^([\d+\-e.]+)//i) { # Note that improper numbers are handled by the warning signal # handler push @to_return, $sign * $1; } else { die "Incorrectly formatted input at:\n ", substr ($_, 0, 10), "...\n"; } } # Strip off any commas continue { $sign = 1; $expects_number = 0; s/^,//; } return \@to_return; } sub PDLA::new { # print "in PDLA::new\n"; my $this = shift; return $this->copy if ref($this); my $type = ref($_[0]) eq 'PDLA::Type' ? ${shift @_}[0] : $PDLA_D; my $value = (@_ >1 ? [@_] : shift); # ref thyself unless(defined $value) { if($PDLA::debug && $PDLA::undefval) { print STDERR "Warning: PDLA::new converted undef to $PDLA::undefval ($PDLA::undefval)\n"; } $value = $PDLA::undefval+0 } return pdl_avref($value,$this,$type) if ref($value) eq "ARRAY"; my $new = $this->initialize(); $new->set_datatype($type); if (ref(\$value) eq "SCALAR") { # The string processing is extremely slow. Benchmarks indicated that it # takes 10x longer to process a scalar number compared with normal Perl # conversion of a string to a number. So, only use the string processing # if the input looks like a real string, i.e. it doesn't look like a plain # number. Note that for our purposes, looks_like_number incorrectly # handles the strings 'inf' and 'nan' on Windows machines. We want to send # those to the string processing, so this checks for them in a way that # short-circuits the looks_like_number check. if (PDLA::Core::is_scalar_SvPOK($value) and ($value =~ /inf/i or $value =~ /nan/i or !Scalar::Util::looks_like_number($value))) { # new was passed a string argument that doesn't look like a number # so we can process as a Matlab-style data entry format. return PDLA::Core::new_pdl_from_string($new,$value,$this,$type); } else { $new->setdims([]); ${$new->get_dataref} = pack( $pack[$new->get_datatype], $value ); $new->upd_data(); } } elsif (blessed($value)) { # Object $new = $value->copy; } else { barf("Can not interpret argument $value of type ".ref($value) ); } return $new; } =head2 copy =for ref Make a physical copy of a piddle =for usage $new = $old->copy; Since C<$new = $old> just makes a new reference, the C<copy> method is provided to allow real independent copies to be made. =cut # Inheritable copy method # # XXX Must be fixed # Inplace is handled by the op currently. sub PDLA::copy { my $value = shift; barf("Argument is an ".ref($value)." not an object") unless blessed($value); my $option = shift; $option = "" if !defined $option; if ($value->is_inplace) { # Copy protection $value->set_inplace(0); return $value; } # threadI(-1,[]) is just an identity vafftrans with threadId copying ;) my $new = $value->threadI(-1,[])->sever; return $new; } =head2 PDLA::hdr_copy =for ref Return an explicit copy of the header of a PDLA. hdr_copy is just a wrapper for the internal routine _hdr_copy, which takes the hash ref itself. That is the routine which is used to make copies of the header during normal operations if the hdrcpy() flag of a PDLA is set. General-purpose deep copies are expensive in perl, so some simple optimization happens: If the header is a tied array or a blessed hash ref with an associated method called C<copy>, then that ->copy method is called. Otherwise, all elements of the hash are explicitly copied. References are recursively deep copied. This routine seems to leak memory. =cut sub PDLA::hdr_copy { my $pdl = shift; my $hdr = $pdl->gethdr; return PDLA::_hdr_copy($hdr); } # Same as hdr_copy but takes a hash ref instead of a PDLA. sub PDLA::_hdr_copy { my $hdr = shift; my $tobj; print "called _hdr_copy\n" if($PDLA::debug); unless( (ref $hdr)=~m/HASH/ ) { print"returning undef\n" if($PDLA::debug); return undef ; } if($tobj = tied %$hdr) { # print "tied..."if($PDLA::debug); if(UNIVERSAL::can($tobj,"copy")) { my %rhdr; tie(%rhdr, ref $tobj, $tobj->copy); print "returning\n" if($PDLA::debug); return \%rhdr; } # Astro::FITS::Header is special for now -- no copy method yet # but it is recognized. Once it gets a copy method this will become # vestigial: if(UNIVERSAL::isa($tobj,"Astro::FITS::Header")) { print "Astro::FITS::Header..." if($PDLA::debug); my @cards = $tobj->cards; my %rhdr; tie(%rhdr,"Astro::FITS::Header", new Astro::FITS::Header(Cards=>\@cards)); print "returning\n" if($PDLA::debug); return \%rhdr; } } elsif(UNIVERSAL::can($hdr,"copy")) { print "found a copy method\n" if($PDLA::debug); return $hdr->copy; } # We got here if it's an unrecognized tie or if it's a vanilla hash. print "Making a hash copy..." if($PDLA::debug); return PDLA::_deep_hdr_copy($hdr); } # # Sleazy deep-copier that gets most cases # --CED 14-April-2003 # sub PDLA::_deep_hdr_copy { my $val = shift; if(ref $val eq 'HASH') { my (%a,$key); for $key(keys %$val) { my $value = $val->{$key}; $a{$key} = (ref $value) ? PDLA::_deep_hdr_copy($value) : $value; } return \%a; } if(ref $val eq 'ARRAY') { my (@a,$z); for $z(@$val) { push(@a,(ref $z) ? PDLA::_deep_hdr_copy($z) : $z); } return \@a; } if(ref $val eq 'SCALAR') { my $a = $$val; return \$a; } if(ref $val eq 'REF') { my $a = PDLA::_deep_hdr_copy($$val); return \$a; } # Special case for PDLAs avoids potential nasty header recursion... if(UNIVERSAL::isa($val,'PDLA')) { my $h; $val->hdrcpy(0) if($h = $val->hdrcpy); # assignment my $out = $val->copy; $val->hdrcpy($h) if($h); return $out; } if(UNIVERSAL::can($val,'copy')) { return $val->copy; } $val; } =head2 PDLA::unwind =for ref Return a piddle which is the same as the argument except that all threadids have been removed. =for usage $y = $x->unwind; =head2 PDLA::make_physical =for ref Make sure the data portion of a piddle can be accessed from XS code. =for example $a->make_physical; $a->call_my_xs_method; Ensures that a piddle gets its own allocated copy of data. This obviously implies that there are certain piddles which do not have their own data. These are so called I<virtual> piddles that make use of the I<vaffine> optimisation (see L<PDLA::Indexing|PDLA::Indexing>). They do not have their own copy of data but instead store only access information to some (or all) of another piddle's data. Note: this function should not be used unless absolutely neccessary since otherwise memory requirements might be severly increased. Instead of writing your own XS code with the need to call C<make_physical> you might want to consider using the PDLA preprocessor (see L<PDLA::PP|PDLA::PP>) which can be used to transparently access virtual piddles without the need to physicalise them (though there are exceptions). =cut sub PDLA::unwind { my $value = shift; my $foo = $value->null(); $foo .= $value->unthread(); return $foo; } =head2 dummy =for ref Insert a 'dummy dimension' of given length (defaults to 1) No relation to the 'Dungeon Dimensions' in Discworld! Negative positions specify relative to last dimension, i.e. C<dummy(-1)> appends one dimension at end, C<dummy(-2)> inserts a dummy dimension in front of the last dim, etc. If you specify a dimension position larger than the existing dimension list of your PDLA, the PDLA gets automagically padded with extra dummy dimensions so that you get the dim you asked for, in the slot you asked for. This could cause you trouble if, for example, you ask for $a->dummy(5000,1) because $a will get 5,000 dimensions, each of rank 1. Because padding at the beginning of the dimension list moves existing dimensions from slot to slot, it's considered unsafe, so automagic padding doesn't work for large negative indices -- only for large positive indices. =for usage $y = $x->dummy($position[,$dimsize]); =for example pdla> p sequence(3)->dummy(0,3) [ [0 0 0] [1 1 1] [2 2 2] ] pdla> p sequence(3)->dummy(3,2) [ [ [0 1 2] ] [ [0 1 2] ] ] pdla> p sequence(3)->dummy(-3,2) Runtime error: PDLA: For safety, <pos> < -(dims+1) forbidden in dummy. min=-2, pos=-3 =cut sub PDLA::dummy($$;$) { my ($pdl,$dim,$size) = @_; barf("Missing position argument to dummy()") unless defined $dim; # required argument $dim = $pdl->getndims+1+$dim if $dim < 0; $size = defined($size) ? (1 * $size) : 1; # make $size a number (sf feature # 3479009) barf("For safety, <pos> < -(dims+1) forbidden in dummy. min=" . -($pdl->getndims+1).", pos=". ($dim-1-$pdl->getndims) ) if($dim<0); # Avoid negative repeat count warning that came with 5.21 and later. my $dim_diff = $dim - $pdl->getndims; my($s) = ',' x ( $dim_diff > 0 ? $pdl->getndims : $dim ); $s .= '*1,' x ( $dim_diff > 0 ? $dim_diff : 0 ); $s .= "*$size"; $pdl->slice($s); } ## Cheesy, slow way # while ($dim>$pdl->getndims){ # print STDERR "."; flush STDERR; # $pdl = $pdl->dummy($pdl->getndims,1); # } # # barf ("too high/low dimension in call to dummy, allowed min/max=0/" # . $_[0]->getndims) # if $dim>$pdl->getndims || $dim < 0; # # $_[2] = 1 if ($#_ < 2); # $pdl->slice((','x$dim)."*$_[2]"); =head2 clump =for ref "clumps" several dimensions into one large dimension If called with one argument C<$n> clumps the first C<$n> dimensions into one. For example, if C<$a> has dimensions C<(5,3,4)> then after =for example $b = $a->clump(2); # Clump 2 first dimensions the variable C<$b> will have dimensions C<(15,4)> and the element C<$b-E<gt>at(7,3)> refers to the element C<$a-E<gt>at(1,2,3)>. Use C<clump(-1)> to flatten a piddle. The method L<flat|PDLA::Core/flat> is provided as a convenient alias. Clumping with a negative dimension in general leaves that many dimensions behind -- e.g. clump(-2) clumps all of the first few dimensions into a single one, leaving a 2-D piddle. If C<clump> is called with an index list with more than one element it is treated as a list of dimensions that should be clumped together into one. The resulting clumped dim is placed at the position of the lowest index in the list. This convention ensures that C<clump> does the expected thing in the usual cases. The following example demonstrates typical usage: $a = sequence 2,3,3,3,5; # 5D piddle $c = $a->clump(1..3); # clump all the dims 1 to 3 into one print $c->info; # resulting 3D piddle has clumped dim at pos 1 PDLA: Double D [2,27,5] =cut sub PDLA::clump { my $ndims = $_[0]->getndims; if ($#_ < 2) { return &PDLA::_clump_int($_[0],$_[1]) # Truncate clumping to actual dims if $_[1] > $ndims; return &PDLA::_clump_int(@_); } else { my ($this,@dims) = @_; my $targd = $ndims-1; my @dimmark = (0..$ndims-1); barf "too many dimensions" if @dims > $ndims; for my $dim (@dims) { barf "dimension index $dim larger than greatest dimension" if $dim > $ndims-1 ; $targd = $dim if $targd > $dim; barf "duplicate dimension $dim" if $dimmark[$dim]++ > $dim; } my $clumped = $this->thread(@dims)->unthread(0)->clump(scalar @dims); $clumped = $clumped->mv(0,$targd) if $targd > 0; return $clumped; } } =head2 thread_define =for ref define functions that support threading at the perl level =for example thread_define 'tline(a(n);b(n))', over { line $_[0], $_[1]; # make line compliant with threading }; C<thread_define> provides some support for threading (see L<PDLA::Indexing>) at the perl level. It allows you to do things for which you normally would have resorted to PDLA::PP (see L<PDLA::PP>); however, it is most useful to wrap existing perl functions so that the new routine supports PDLA threading. C<thread_define> is used to define new I<threading aware> functions. Its first argument is a symbolic repesentation of the new function to be defined. The string is composed of the name of the new function followed by its signature (see L<PDLA::Indexing> and L<PDLA::PP>) in parentheses. The second argument is a subroutine that will be called with the slices of the actual runtime arguments as specified by its signature. Correct dimension sizes and minimal number of dimensions for all arguments will be checked (assuming the rules of PDLA threading, see L<PDLA::Indexing>). The actual work is done by the C<signature> class which parses the signature string, does runtime dimension checks and the routine C<threadover> that generates the loop over all appropriate slices of pdl arguments and creates pdls as needed. Similar to C<pp_def> and its C<OtherPars> option it is possible to define the new function so that it accepts normal perl args as well as piddles. You do this by using the C<NOtherPars> parameter in the signature. The number of C<NOtherPars> specified will be passed unaltered into the subroutine given as the second argument of C<thread_define>. Let's illustrate this with an example: PDLA::thread_define 'triangles(inda();indb();indc()), NOtherPars => 2', PDLA::over { ${$_[3]} .= $_[4].join(',',map {$_->at} @_[0..2]).",-1,\n"; }; This defines a function C<triangles> that takes 3 piddles as input plus 2 arguments which are passed into the routine unaltered. This routine is used to collect lists of indices into a perl scalar that is passed by reference. Each line is preceded by a prefix passed as C<$_[4]>. Here is typical usage: $txt = ''; triangles(pdl(1,2,3),pdl(1),pdl(0),\$txt," "x10); print $txt; resulting in the following output 1,1,0,-1, 2,1,0,-1, 3,1,0,-1, which is used in L<PDLA::Graphics::TriD::VRML|PDLA::Graphics::TriD::VRML> to generate VRML output. Currently, this is probably not much more than a POP (proof of principle) but is hoped to be useful enough for some real life work. Check L<PDLA::PP|PDLA::PP> for the format of the signature. Currently, the C<[t]> qualifier and all type qualifiers are ignored. =cut sub PDLA::over (&) { $_[0] } sub PDLA::thread_define ($$) { require PDLA::PP::Signature; my ($str,$sub) = @_; my $others = 0; if ($str =~ s/[,]*\s*NOtherPars\s*=>\s*([0-9]+)\s*[,]*//) {$others = $1} barf "invalid string $str" unless $str =~ /\s*([^(]+)\((.+)\)\s*$/x; my ($name,$sigstr) = ($1,$2); print "defining '$name' with signature '$sigstr' and $others extra args\n" if $PDLA::debug; my $sig = new PDLA::PP::Signature($sigstr); my $args = @{$sig->names}; # number of piddle arguments barf "no piddle args" if $args == 0; $args--; # TODO: $sig->dimcheck(@_) + proper creating generation my $def = "\@_[0..$args] = map {PDLA::Core::topdl(\$_)} \@_[0..$args];\n". '$sig->checkdims(@_); PDLA::threadover($others,@_,$sig->realdims,$sig->creating,$sub)'; my $package = caller; local $^W = 0; # supress the 'not shared' warnings print "defining...\nsub $name { $def }\n" if $PDLA::debug; eval ("package $package; sub $name { $def }"); barf "error defining $name: $@\n" if $@; } =head2 PDLA::thread =for ref Use explicit threading over specified dimensions (see also L<PDLA::Indexing>) =for usage $b = $a->thread($dim,[$dim1,...]) =for example $a = zeroes 3,4,5; $b = $a->thread(2,0); Same as L<PDLA::thread1|/PDLA::thread1>, i.e. uses thread id 1. =cut sub PDLA::thread { my $var = shift; $var->threadI(1,\@_); } =head2 diagonal =for ref Returns the multidimensional diagonal over the specified dimensions. =for usage $d = $x->diagonal(dim1, dim2,...) =for example pdla> $a = zeroes(3,3,3); pdla> ($b = $a->diagonal(0,1))++; pdla> p $a [ [ [1 0 0] [0 1 0] [0 0 1] ] [ [1 0 0] [0 1 0] [0 0 1] ] [ [1 0 0] [0 1 0] [0 0 1] ] ] =cut sub PDLA::diagonal { my $var = shift; $var->diagonalI(\@_); } =head2 PDLA::thread1 =for ref Explicit threading over specified dims using thread id 1. =for usage $xx = $x->thread1(3,1) =for example Wibble Convenience function interfacing to L<PDLA::Slices::threadI|PDLA::Slices/threadI>. =cut sub PDLA::thread1 { my $var = shift; $var->threadI(1,\@_); } =head2 PDLA::thread2 =for ref Explicit threading over specified dims using thread id 2. =for usage $xx = $x->thread2(3,1) =for example Wibble Convenience function interfacing to L<PDLA::Slices::threadI|PDLA::Slices/threadI>. =cut sub PDLA::thread2 { my $var = shift; $var->threadI(2,\@_); } =head2 PDLA::thread3 =for ref Explicit threading over specified dims using thread id 3. =for usage $xx = $x->thread3(3,1) =for example Wibble Convenience function interfacing to L<PDLA::Slices::threadI|PDLA::Slices/threadI>. =cut sub PDLA::thread3 { my $var = shift; $var->threadI(3,\@_); } my %info = ( D => { Name => 'Dimension', Sub => \&PDLA::Core::dimstr, }, T => { Name => 'Type', Sub => sub { return $_[0]->type->shortctype; }, }, S => { Name => 'State', Sub => sub { my $state = ''; $state .= 'P' if $_[0]->allocated; $state .= 'V' if $_[0]->vaffine && !$_[0]->allocated; # apparently can be both? $state .= '-' if $state eq ''; # lazy eval $state .= 'C' if $_[0]->anychgd; $state .= 'B' if $_[0]->badflag; $state; }, }, F => { Name => 'Flow', Sub => sub { my $flows = ''; $flows = ($_[0]->bflows ? 'b':'') . '~' . ($_[0]->fflows ? 'f':'') if ($_[0]->flows); $flows; }, }, M => { Name => 'Mem', Sub => sub { my ($size,$unit) = ($_[0]->allocated ? $_[0]->nelem* PDLA::howbig($_[0]->get_datatype)/1024 : 0, 'KB'); if ($size > 0.01*1024) { $size /= 1024; $unit = 'MB' }; return sprintf "%6.2f%s",$size,$unit; }, }, C => { Name => 'Class', Sub => sub { ref $_[0] } }, A => { Name => 'Address', Sub => sub { use Config; my $ivdformat = $Config{ivdformat}; $ivdformat =~ s/"//g; sprintf "%$ivdformat", $_[0]->address } }, ); my $allowed = join '',keys %info; # print the dimension information about a pdl in some appropriate form sub dimstr { my $this = shift; my @dims = $this->dims; my @ids = $this->threadids; my ($nids,$i) = ($#ids - 1,0); my $dstr = 'D ['. join(',',@dims[0..($ids[0]-1)]) .']'; if ($nids > 0) { for $i (1..$nids) { $dstr .= " T$i [". join(',',@dims[$ids[$i]..$ids[$i+1]-1]) .']'; } } return $dstr; } =head2 sever =for ref sever any links of this piddle to parent piddles In PDLA it is possible for a piddle to be just another view into another piddle's data. In that case we call this piddle a I<virtual piddle> and the original piddle owning the data its parent. In other languages these alternate views sometimes run by names such as I<alias> or I<smart reference>. Typical functions that return such piddles are C<slice>, C<xchg>, C<index>, etc. Sometimes, however, you would like to separate the I<virtual piddle> from its parent's data and just give it a life of its own (so that manipulation of its data doesn't change the parent). This is simply achieved by using C<sever>. For example, =for example $a = $pdl->index(pdl(0,3,7))->sever; $a++; # important: $pdl is not modified! In many (but not all) circumstances it acts therefore similar to L<copy|PDLA::Core/copy>. However, in general performance is better with C<sever> and secondly, C<sever> doesn't lead to futile copying when used on piddles that already have their own data. On the other hand, if you really want to make sure to work on a copy of a piddle use L<copy|PDLA::Core/copy>. $a = zeroes(20); $a->sever; # NOOP since $a is already its own boss! Again note: C<sever> I<is not> the same as L<copy|PDLA::Core/copy>! For example, $a = zeroes(1); # $a does not have a parent, i.e. it is not a slice etc $b = $a->sever; # $b is now pointing to the same piddle as $a $b++; print $a; [1] but $a = zeroes(1); $b = $a->copy; # $b is now pointing to a new piddle $b++; print $a; [0] =head2 PDLA::info =for ref Return formatted information about a piddle. =for usage $x->info($format_string); =for example print $x->info("Type: %T Dim: %-15D State: %S"); Returns a string with info about a piddle. Takes an optional argument to specify the format of information a la sprintf. Format specifiers are in the form C<%E<lt>widthE<gt>E<lt>letterE<gt>> where the width is optional and the letter is one of =over 7 =item T Type =item D Formatted Dimensions =item F Dataflow status =item S Some internal flags (P=physical,V=Vaffine,C=changed,B=may contain bad data) =item C Class of this piddle, i.e. C<ref $pdl> =item A Address of the piddle struct as a unique identifier =item M Calculated memory consumption of this piddle's data area =back =cut sub PDLA::info { my ($this,$str) = @_; $str = "%C: %T %D" unless defined $str; return ref($this)."->null" if PDLA::Core::dimstr($this) =~ /D \[0\]/; my @hash = split /(%[-,0-9]*[.]?[0-9]*\w)/, $str; my @args = (); my $nstr = ''; for my $form (@hash) { if ($form =~ s/^%([-,0-9]*[.]?[0-9]*)(\w)$/%$1s/) { barf "unknown format specifier $2" unless defined $info{$2}; push @args, &{$info{$2}->{Sub}}($this); } $nstr .= $form; } return sprintf $nstr, @args; } =head2 approx =for ref test for approximately equal values (relaxed C<==>) =for example # ok if all corresponding values in # piddles are within 1e-8 of each other print "ok\n" if all approx $a, $b, 1e-8; C<approx> is a relaxed form of the C<==> operator and often more appropriate for floating point types (C<float> and C<double>). Usage: =for usage $res = approx $a, $b [, $eps] The optional parameter C<$eps> is remembered across invocations and initially set to 1e-6, e.g. approx $a, $b; # last $eps used (1e-6 initially) approx $a, $b, 1e-10; # 1e-10 approx $a, $b; # also 1e-10 =cut my $approx = 1e-6; # a reasonable init value sub PDLA::approx { my ($a,$b,$eps) = @_; $eps = $approx unless defined $eps; # the default eps $approx = $eps; # remember last eps # NOTE: ($a-$b)->abs breaks for non-piddle inputs return abs($a-$b) < $eps; } =head2 mslice =for ref Convenience interface to L<slice|PDLA::Slices/slice>, allowing easier inclusion of dimensions in perl code. =for usage $a = $x->mslice(...); =for example # below is the same as $x->slice("5:7,:,3:4:2") $a = $x->mslice([5,7],X,[3,4,2]); =cut # called for colon-less args # preserves parens if present sub intpars { $_[0] =~ /\(.*\)/ ? '('.int($_[0]).')' : int $_[0] } sub PDLA::mslice { my($pdl) = shift; return $pdl->slice(join ',',(map { !ref $_ && $_ eq "X" ? ":" : ref $_ eq "ARRAY" ? $#$_ > 1 && @$_[2] == 0 ? "(".int(@$_[0]).")" : join ':', map {int $_} @$_ : !ref $_ ? intpars $_ : die "INVALID SLICE DEF $_" } @_)); } =head2 nslice_if_pdl =for ref If C<$self> is a PDLA, then calls C<slice> with all but the last argument, otherwise $self->($_[-1]) is called where $_[-1} is the original argument string found during PDLA::NiceSlice filtering. DEVELOPER'S NOTE: this routine is found in Core.pm.PL but would be better placed in Slices/slices.pd. It is likely to be moved there and/or changed to "slice_if_pdl" for PDLA 3.0. =for usage $a = $x->nslice_if_pdl(...,'(args)'); =cut sub PDLA::nslice_if_pdl { my ($pdl) = shift; my ($orig_args) = pop; # warn "PDLA::nslice_if_pdl called with (@_) args, originally ($orig_args)\n"; if (ref($pdl) eq 'CODE') { # barf('PDLA::nslice_if_pdl tried to process a sub ref, please use &$subref() syntax') @_ = eval $orig_args; goto &$pdl; } unshift @_, $pdl; goto &PDLA::slice; } =head2 nslice =for ref c<nslice> was an internally used interface for L<PDLA::NiceSlice|PDLA::NiceSlice>, but is now merely a springboard to L<PDLA::Slice|PDLA::Slice>. It is deprecated and likely to disappear in PDLA 3.0. =cut sub PDLA::nslice { unless($PDLA::nslice_warning_issued) { $PDLA::nslice_warning_issued = 1; warn "WARNING: deprecated call to PDLA::nslice detected. Use PDLA::slice instead.\n (Warning will be issued only once per session)\n"; } goto &PDLA::slice; } sub blessed { my $ref = ref(shift); return $ref =~ /^(REF|SCALAR|ARRAY|HASH|CODE|GLOB||)$/ ? 0 : 1; } # Convert numbers to PDLA if not already sub PDLA::topdl { return $_[0]->new(@_[1..$#_]) if($#_ > 1); # PDLAify an ARRAY return $_[1] if blessed($_[1]); # Fall through return $_[0]->new($_[1]) if ref(\$_[1]) eq 'SCALAR' or ref($_[1]) eq 'ARRAY'; barf("Can not convert a ".ref($_[1])." to a ".$_[0]); 0;} # Convert everything to PDLA if not blessed sub alltopdl { return $_[1] if blessed($_[1]); # Fall through return $_[0]->new($_[1]); 0;} =head2 inplace =for ref Flag a piddle so that the next operation is done 'in place' =for usage somefunc($x->inplace); somefunc(inplace $x); In most cases one likes to use the syntax C<$y = f($x)>, however in many case the operation C<f()> can be done correctly 'in place', i.e. without making a new copy of the data for output. To make it easy to use this, we write C<f()> in such a way that it operates in-place, and use C<inplace> to hint that a new copy should be disabled. This also makes for clear syntax. Obviously this will not work for all functions, and if in doubt see the function's documentation. However one can assume this is true for all elemental functions (i.e. those which just operate array element by array element like C<log10>). =for example pdla> $x = xvals zeroes 10; pdla> log10(inplace $x) pdla> p $x [-inf 0 0.30103 0.47712125 0.60205999 0.69897 0.77815125 0.84509804 0.90308999 0.95424251] =cut # Flag pdl for in-place operations sub PDLA::inplace { my $pdl = PDLA->topdl(shift); $pdl->set_inplace(1); return $pdl; } # Copy if not inplace =head2 is_inplace =for ref Test the in-place flag on a piddle =for usage $out = ($in->is_inplace) ? $in : zeroes($in); $in->set_inplace(0) Provides access to the L<inplace|/inplace> hint flag, within the perl millieu. That way functions you write can be inplace aware... If given an argument the inplace flag will be set or unset depending on the value at the same time. Can be used for shortcut tests that delete the inplace flag while testing: $out = ($in->is_inplace(0)) ? $in : zeroes($in); # test & unset! =head2 set_inplace =for ref Set the in-place flag on a piddle =for usage $out = ($in->is_inplace) ? $in : zeroes($in); $in->set_inplace(0); Provides access to the L<inplace|/inplace> hint flag, within the perl millieu. Useful mainly for turning it OFF, as L<inplace|/inplace> turns it ON more conveniently. =head2 new_or_inplace =for usage $a = new_or_inplace(shift()); $a = new_or_inplace(shift(),$preferred_type); =for ref Return back either the argument pdl or a copy of it depending on whether it be flagged in-place or no. Handy for building inplace-aware functions. If you specify a preferred type (must be one of the usual PDLA type strings, a list ref containing several of them, or a string containing several of them), then the copy is coerced into the first preferred type listed if it is not already one of the preferred types. Note that if the inplace flag is set, no coersion happens even if you specify a preferred type. =cut sub new_or_inplace { my $pdl = shift; my $preferred = shift; my $force = shift; if($pdl->is_inplace) { $pdl->set_inplace(0); return $pdl; } else { unless(defined($preferred)) { return $pdl->copy; } else { $preferred = join(",",@$preferred) if(ref($preferred) eq 'ARRAY'); my $s = "".$pdl->type; if($preferred =~ m/(^|\,)$s(\,|$)/i) { # Got a match - the PDLA is one of the preferred types. return $pdl->copy(); } else { # No match - promote it to the first in the list. $preferred =~ s/\,.*//; my $out = PDLA::new_from_specification('PDLA',new PDLA::Type($preferred),$pdl->dims); $out .= $pdl; return $out; } } } barf "PDLA::Core::new_or_inplace - This can never happen!"; } *PDLA::new_or_inplace = \&new_or_inplace; # Allow specifications like zeroes(10,10) or zeroes($x) # or zeroes(inplace $x) or zeroes(float,4,3) =head2 PDLA::new_from_specification =for ref Internal method: create piddle by specification This is the argument processing method called by L<zeroes|/zeroes> and some other functions which constructs piddles from argument lists of the form: [type], $nx, $ny, $nz,... For C<$nx>, C<$ny>, etc. 0 and 1D piddles are allowed. Giving those has the same effect as if saying C<$arg-E<gt>list>, e.g. 1, pdl(5,2), 4 is equivalent to 1, 5, 2, 4 Note, however, that in all functions using C<new_from_specification> calling C<func $piddle> will probably not do what you want. So to play safe use (e.g. with zeroes) $pdl = zeroes $dimpdl->list; Calling $pdl = zeroes $dimpdl; will rather be equivalent to $pdl = zeroes $dimpdl->dims; However, $pdl = zeroes ushort, $dimpdl; will again do what you intended since it is interpreted as if you had said $pdl = zeroes ushort, $dimpdl->list; This is unfortunate and confusing but no good solution seems obvious that would not break existing scripts. =cut sub PDLA::new_from_specification{ my $class = shift; my $type = ref($_[0]) eq 'PDLA::Type' ? ${shift @_}[0] : $PDLA_D; my $nelems = 1; my @dims; for (@_) { if (ref $_) { barf "Trying to use non-piddle as dimensions?" unless $_->isa('PDLA'); barf "Trying to use multi-dim piddle as dimensions?" if $_->getndims > 1; warn "creating > 10 dim piddle (piddle arg)!" if $_->nelem > 10; for my $dim ($_->list) {$nelems *= $dim; push @dims, $dim} } else { if ($_) { # quiet warnings when $_ is the empty string barf "Dimensions must be non-negative" if $_<0; $nelems *= $_; push @dims, $_ } else { $nelems *= 0; push @dims, 0; } } } my $pdl = $class->initialize(); $pdl->set_datatype($type); $pdl->setdims([@dims]); print "Dims: ",(join ',',@dims)," DLen: ",(length $ {$pdl->get_dataref}),"\n" if $PDLA::debug; return $pdl; } =head2 isnull =for ref Test whether a piddle is null =for usage croak("Input piddle mustn't be null!") if $input_piddle->isnull; This function returns 1 if the piddle is null, zero if it is not. The purpose of null piddles is to "tell" any PDLA::PP methods to allocate new memory for an output piddle, but only when that PDLA::PP method is called in full-arg form. Of course, there's no reason you couldn't commandeer the special value for your own purposes, for which this test function would prove most helpful. But in general, you shouldn't need to test for a piddle's nullness. See L</Null PDLAs> for more information. =head2 isempty =for ref Test whether a piddle is empty =for usage print "The piddle has zero dimension\n" if $pdl->isempty; This function returns 1 if the piddle has zero elements. This is useful in particular when using the indexing function which. In the case of no match to a specified criterion, the returned piddle has zero dimension. pdla> $a=sequence(10) pdla> $i=which($a < -1) pdla> print "I found no matches!\n" if ($i->isempty); I found no matches! Note that having zero elements is rather different from the concept of being a null piddle, see the L<PDLA::FAQ|PDLA::FAQ> and L<PDLA::Indexing|PDLA::Indexing> manpages for discussions of this. =cut sub PDLA::isempty { my $pdl=shift; return ($pdl->nelem == 0); } =head2 zeroes =for ref construct a zero filled piddle from dimension list or template piddle. Various forms of usage, (i) by specification or (ii) by template piddle: =for usage # usage type (i): $a = zeroes([type], $nx, $ny, $nz,...); $a = PDLA->zeroes([type], $nx, $ny, $nz,...); $a = $pdl->zeroes([type], $nx, $ny, $nz,...); # usage type (ii): $a = zeroes $b; $a = $b->zeroes zeroes inplace $a; # Equivalent to $a .= 0; $a->inplace->zeroes; # "" =for example pdla> $z = zeroes 4,3 pdla> p $z [ [0 0 0 0] [0 0 0 0] [0 0 0 0] ] pdla> $z = zeroes ushort, 3,2 # Create ushort array [ushort() etc. with no arg returns a PDLA::Types token] See also L<new_from_specification|/PDLA::new_from_specification> for details on using piddles in the dimensions list. =cut sub zeroes { ref($_[0]) && ref($_[0]) ne 'PDLA::Type' ? PDLA::zeroes($_[0]) : PDLA->zeroes(@_) } sub PDLA::zeroes { my $class = shift; my $pdl = scalar(@_)? $class->new_from_specification(@_) : $class->new_or_inplace; $pdl.=0; return $pdl; } # Create convenience aliases for zeroes =head2 zeros =for ref construct a zero filled piddle (see zeroes for usage) =cut *zeros = \&zeroes; *PDLA::zeros = \&PDLA::zeroes; =head2 ones =for ref construct a one filled piddle =for usage $a = ones([type], $nx, $ny, $nz,...); etc. (see 'zeroes') =for example see zeroes() and add one See also L<new_from_specification|/PDLA::new_from_specification> for details on using piddles in the dimensions list. =cut sub ones { ref($_[0]) && ref($_[0]) ne 'PDLA::Type' ? PDLA::ones($_[0]) : PDLA->ones(@_) } sub PDLA::ones { my $class = shift; my $pdl = scalar(@_)? $class->new_from_specification(@_) : $class->new_or_inplace; $pdl.=1; return $pdl; } =head2 reshape =for ref Change the shape (i.e. dimensions) of a piddle, preserving contents. =for usage $x->reshape(NEWDIMS); reshape($x, NEWDIMS); The data elements are preserved, obviously they will wrap differently and get truncated if the new array is shorter. If the new array is longer it will be zero-padded. ***Potential incompatibility with earlier versions of PDLA**** If the list of C<NEWDIMS> is empty C<reshape> will just drop all dimensions of size 1 (preserving the number of elements): $a = sequence(3,4,5); $b = $a(1,3); $b->reshape(); print $b->info; PDLA: Double D [5] Dimensions of size 1 will also be dropped if C<reshape> is invoked with the argument -1: $b = $a->reshape(-1); As opposed to C<reshape> without arguments, C<reshape(-1)> preserves dataflow: $a = ones(2,1,2); $b = $a(0)->reshape(-1); $b++; print $a; [ [ [2 1] ] [ [2 1] ] ] Note: an explicit copy of slices is generally forced - this is the only way (for now) of stopping a crash if C<$x> is a slice. Important: Physical piddles are changed inplace! =for example pdla> $x = sequence(10) pdla> reshape $x,3,4; p $x [ [0 1 2] [3 4 5] [6 7 8] [9 0 0] ] pdla> reshape $x,5; p $x [0 1 2 3 4] =cut *reshape = \&PDLA::reshape; sub PDLA::reshape{ if (@_ == 2 && $_[1] == -1) { # a slicing reshape that drops 1-dims return $_[0]->slice( map { $_==1 ? [0,0,0] : [] } $_[0]->dims); } my $pdl = pdl($_[0]); my $nelem = $pdl->nelem; my @dims = grep defined, @_[1..$#_]; for my $dim(@dims) { barf "reshape: invalid dim size '$dim'" if $dim < 0 } @dims = grep($_ != 1, $pdl->dims) if @dims == 0; # get rid of dims of size 1 $pdl->setdims([@dims]); $pdl->upd_data; if ($pdl->nelem > $nelem) { my $tmp=$pdl->clump(-1)->slice("$nelem:-1"); $tmp .= 0; } $_[0] = $pdl; return $pdl; } =head2 squeeze =for ref eliminate all singleton dimensions (dims of size 1) =for example $b = $a(0,0)->squeeze; Alias for C<reshape(-1)>. Removes all singleton dimensions and preserves dataflow. A more concise interface is provided by L<PDLA::NiceSlice|PDLA::NiceSlice> via modifiers: use PDLA::NiceSlice; $b = $a(0,0;-); # same as $a(0,0)->squeeze =cut *squeeze = \&PDLA::squeeze; sub PDLA::squeeze { return $_[0]->reshape(-1) } =head2 flat =for ref flatten a piddle (alias for C<< $pdl->clump(-1) >>) =for example $srt = $pdl->flat->qsort; Useful method to make a 1D piddle from an arbitrarily sized input piddle. Data flows back and forth as usual with slicing routines. Falls through if argument already E<lt>= 1D. =cut *flat = \&PDLA::flat; sub PDLA::flat { # fall through if < 2D return my $dummy = $_[0]->getndims != 1 ? $_[0]->clump(-1) : $_[0]; } =head2 convert =for ref Generic datatype conversion function =for usage $y = convert($x, $newtypenum); =for example $y = convert $x, long $y = convert $x, ushort C<$newtype> is a type B<number>, for convenience they are returned by C<long()> etc when called without arguments. =cut # type to type conversion functions (with automatic conversion to pdl vars) sub PDLA::convert { # we don't allow inplace conversion at the moment # (not sure what needs to be changed) barf 'Usage: $y = convert($x, $newtypenum)'."\n" if $#_!=1; my ($pdl,$type)= @_; $pdl = pdl($pdl) unless ref $pdl; # Allow normal numbers $type = $type->enum if ref($type) eq 'PDLA::Type'; barf 'Usage: $y = convert($x, $newtypenum)'."\n" unless Scalar::Util::looks_like_number($type); return $pdl if $pdl->get_datatype == $type; # make_physical-call: temporary stopgap to work around core bug my $conv = $pdl->flowconvert($type)->make_physical->sever; return $conv; } =head2 Datatype_conversions =for ref byte|short|ushort|long|longlong|float|double (shorthands to convert datatypes) =for usage $y = double $x; $y = ushort [1..10]; # all of the above listed shorthands behave similarly When called with a piddle argument, they convert to the specific datatype. When called with a numeric, list, listref, or string argument they construct a new piddle. This is a convenience to avoid having to be long-winded and say C<$x = long(pdl(42))> Thus one can say: $a = float(1,2,3,4); # 1D $a = float q[1 2 3; 4 5 6]; # 2D $a = float([1,2,3],[4,5,6]); # 2D $a = float([[1,2,3],[4,5,6]]); # 2D Note the last three give identical results, and the last two are exactly equivalent - a list is automatically converted to a list reference for syntactic convenience. i.e. you can omit the outer C<[]> When called with no arguments, these functions return a special type token. This allows syntactical sugar like: $x = ones byte, 1000,1000; This example creates a large piddle directly as byte datatype in order to save memory. In order to control how undefs are handled in converting from perl lists to PDLAs, one can set the variable C<$PDLA::undefval>; see the function L<pdl()|/pdl> for more details. =for example pdla> p $x=sqrt float [1..10] [1 1.41421 1.73205 2 2.23607 2.44949 2.64575 2.82843 3 3.16228] pdla> p byte $x [1 1 1 2 2 2 2 2 3 3] =head2 byte Convert to byte datatype =head2 short Convert to short datatype =head2 ushort Convert to ushort datatype =head2 long Convert to long datatype =head2 indx Convert to indx datatype =head2 longlong Convert to longlong datatype =head2 float Convert to float datatype =head2 double Convert to double datatype =head2 type =for ref return the type of a piddle as a blessed type object A convenience function for use with the piddle constructors, e.g. =for example $b = PDLA->zeroes($a->type,$a->dims,3); die "must be float" unless $a->type == float; See also the discussion of the C<PDLA::Type> class in L<PDLA::Types>. Note that the C<PDLA::Type> objects have overloaded comparison and stringify operators so that you can compare and print types: $a = $a->float if $a->type < float; $t = $a->type; print "Type is $t\"; =cut sub PDLA::type { return PDLA::Type->new($_[0]->get_datatype); } ##################### Printing #################### # New string routine $PDLA::_STRINGIZING = 0; sub PDLA::string { my($self,$format)=@_; my $to_return = eval { if($PDLA::_STRINGIZING) { return "ALREADY_STRINGIZING_NO_LOOPS"; } local $PDLA::_STRINGIZING = 1; my $ndims = $self->getndims; if($self->nelem > $PDLA::toolongtoprint) { return "TOO LONG TO PRINT"; } if ($ndims==0) { if ( $self->badflag() and $self->isbad() ) { return "BAD"; } else { my @x = $self->at(); return ($format ? sprintf($format, $x[0]) : "$x[0]"); } } return "Null" if $self->isnull; return "Empty[".join("x",$self->dims)."]" if $self->isempty; # Empty piddle local $sep = $PDLA::use_commas ? "," : " "; local $sep2 = $PDLA::use_commas ? "," : ""; if ($ndims==1) { return str1D($self,$format); } else{ return strND($self,$format,0); } }; if ($@) { # Remove reference to this line: $@ =~ s/\s*at .* line \d+\s*\.\n*/./; PDLA::Core::barf("Stringizing problem: $@"); } return $to_return; } ############## Section/subsection functions ################### =head2 list =for ref Convert piddle to perl list =for usage @tmp = list $x; Obviously this is grossly inefficient for the large datasets PDLA is designed to handle. This was provided as a get out while PDLA matured. It should now be mostly superseded by superior constructs, such as PP/threading. However it is still occasionally useful and is provied for backwards compatibility. =for example for (list $x) { # Do something on each value... } If you compile PDLA with bad value support (the default), your machine's docs will also say this: =for bad list converts any bad values into the string 'BAD'. =cut # No threading, just the ordinary dims. sub PDLA::list{ # pdl -> @list barf 'Usage: list($pdl)' if $#_!=0; my $pdl = PDLA->topdl(shift); return () if nelem($pdl)==0; @{listref_c($pdl)}; } =head2 unpdl =for ref Convert piddle to nested Perl array references =for usage $arrayref = unpdl $x; This function returns a reference to a Perl list-of-lists structure equivalent to the input piddle (within the limitation that while values of elements should be preserved, the detailed datatypes will not as perl itself basically has "number" data rather than byte, short, int... E.g., C<< sum($x - pdl( $x->unpdl )) >> should equal 0. Obviously this is grossly inefficient in memory and processing for the large datasets PDLA is designed to handle. Sometimes, however, you really want to move your data back to Perl, and with proper dimensionality, unlike C<list>. =for example use JSON; my $json = encode_json unpdl $pdl; If you compile PDLA with bad value support (the default), your machine's docs will also say this: =cut =for bad unpdl converts any bad values into the string 'BAD'. =cut sub PDLA::unpdl { barf 'Usage: unpdl($pdl)' if $#_ != 0; my $pdl = PDLA->topdl(shift); return [] if $pdl->nelem == 0; return _unpdl_int($pdl); } sub _unpdl_int { my $pdl = shift; if ($pdl->ndims > 1) { return [ map { _unpdl_int($_) } dog $pdl ]; } else { return listref_c($pdl); } } =head2 listindices =for ref Convert piddle indices to perl list =for usage @tmp = listindices $x; C<@tmp> now contains the values C<0..nelem($x)>. Obviously this is grossly inefficient for the large datasets PDLA is designed to handle. This was provided as a get out while PDLA matured. It should now be mostly superseded by superior constructs, such as PP/threading. However it is still occasionally useful and is provied for backwards compatibility. =for example for $i (listindices $x) { # Do something on each value... } =cut sub PDLA::listindices{ # Return list of index values for 1D pdl barf 'Usage: list($pdl)' if $#_!=0; my $pdl = shift; return () if nelem($pdl)==0; barf 'Not 1D' if scalar(dims($pdl)) != 1; return (0..nelem($pdl)-1); } =head2 set =for ref Set a single value inside a piddle =for usage set $piddle, @position, $value C<@position> is a coordinate list, of size equal to the number of dimensions in the piddle. Occasionally useful, mainly provided for backwards compatibility as superseded by use of L<slice|PDLA::Slices/slice> and assigment operator C<.=>. =for example pdla> $x = sequence 3,4 pdla> set $x, 2,1,99 pdla> p $x [ [ 0 1 2] [ 3 4 99] [ 6 7 8] [ 9 10 11] ] =cut sub PDLA::set{ # Sets a particular single value barf 'Usage: set($pdl, $x, $y,.., $value)' if $#_<2; my $self = shift; my $value = pop @_; set_c ($self, [@_], $value); return $self; } =head2 at =for ref Returns a single value inside a piddle as perl scalar. =for usage $z = at($piddle, @position); $z=$piddle->at(@position); C<@position> is a coordinate list, of size equal to the number of dimensions in the piddle. Occasionally useful in a general context, quite useful too inside PDLA internals. =for example pdla> $x = sequence 3,4 pdla> p $x->at(1,2) 7 If you compile PDLA with bad value support (the default), your machine's docs will also say this: =for bad at converts any bad values into the string 'BAD'. =cut sub PDLA::at { # Return value at ($x,$y,$z...) barf 'Usage: at($pdl, $x, $y, ...)' if $#_<0; my $self = shift; at_bad_c ($self, [@_]); } =head2 sclr =for ref return a single value from a piddle as a scalar =for example $val = $a(10)->sclr; $val = sclr inner($a,$b); The C<sclr> method is useful to turn a piddle into a normal Perl scalar. Its main advantage over using C<at> for this purpose is the fact that you do not need to worry if the piddle is 0D, 1D or higher dimensional. Using C<at> you have to supply the correct number of zeroes, e.g. $a = sequence(10); $b = $a->slice('4'); print $b->sclr; # no problem print $b->at(); # error: needs at least one zero C<sclr> is generally used when a Perl scalar is required instead of a one-element piddle. If the input is a multielement piddle the first value is returned as a Perl scalar. You can optionally switch on checks to ensure that the input piddle has only one element: PDLA->sclr({Check => 'warn'}); # carp if called with multi-el pdls PDLA->sclr({Check => 'barf'}); # croak if called with multi-el pdls are the commands to switch on warnings or raise an error if a multielement piddle is passed as input. Note that these options can only be set when C<sclr> is called as a class method (see example above). Use PDLA->sclr({Check=>0}); to switch these checks off again (default setting); When called as a class method the resulting check mode is returned (0: no checking, 1: warn, 2: barf). =cut my $chkmode = 0; # default mode no checks use PDLA::Options; sub PDLA::sclr { my $this = shift; if (ref $this) { # instance method carp "multielement piddle in 'sclr' call" if ($chkmode == 1 && $this->nelem > 1); croak "multielement piddle in 'sclr' call" if ($chkmode == 2 && $this->nelem > 1); return sclr_c($this); } else { # class method my $check = (iparse({Check=>0},ifhref($_[0])))[1]; if (lc($check) eq 'warn') {$chkmode = 1} elsif (lc($check) eq 'barf') {$chkmode = 2} else {$chkmode = $check != 0 ? 1 : 0} return $chkmode; } } =head2 cat =for ref concatenate piddles to N+1 dimensional piddle Takes a list of N piddles of same shape as argument, returns a single piddle of dimension N+1 =for example pdla> $x = cat ones(3,3),zeroes(3,3),rvals(3,3); p $x [ [ [1 1 1] [1 1 1] [1 1 1] ] [ [0 0 0] [0 0 0] [0 0 0] ] [ [1 1 1] [1 0 1] [1 1 1] ] ] If you compile PDLA with bad value support (the default), your machine's docs will also say this: =for bad The output piddle is set bad if any input piddles have their bad flag set. Similar functions include L<append|PDLA::Primitive/append> and L<glue|PDLA::Primitive/glue>. =cut sub PDLA::cat { my $res; my $old_err = $@; $@ = ''; eval { $res = $_[0]->initialize; $res->set_datatype($_[0]->get_datatype); my @resdims = $_[0]->dims; for my $i(0..$#_){ my @d = $_[$i]->dims; for my $j(0..$#d) { $resdims[$j] = $d[$j] if( !defined($resdims[$j]) or $resdims[$j]==1 ); die "mismatched dims\n" if($d[$j] != 1 and $resdims[$j] != $d[$j]); } } $res->setdims( [@resdims,scalar(@_) ]); my ($i,$t); my $s = ":,"x@resdims; for (@_) { $t = $res->slice($s."(".$i++.")"); $t .= $_} # propagate any bad flags for (@_) { if ( $_->badflag() ) { $res->badflag(1); last; } } }; if ($@ eq '') { # Restore the old error and return $@ = $old_err; return $res; } # If we've gotten here, then there's been an error, so check things # and barf out a meaningful message. if ($@ =~ /PDLA::Ops::assgn|mismatched/ or $@ =~ /"badflag"/ or $@ =~ /"initialize"/) { my (@mismatched_dims, @not_a_piddle); my $i = 0; # non-piddles and/or dimension mismatch. The first argument is # ok unless we have the "initialize" error: if ($@ =~ /"initialize"/) { # Handle the special case that there are *no* args passed: barf("Called PDLA::cat without any arguments") unless @_; while ($i < @_ and not eval{ $_[$i]->isa('PDLA')}) { push (@not_a_piddle, $i); $i++; } } # Get the dimensions of the first actual piddle in the argument # list: my $first_piddle_argument = $i; my @dims = $_[$i]->dims if ref($_[$i]) =~ /PDLA/; # Figure out all the ways that the caller screwed up: while ($i < @_) { my $arg = $_[$i]; # Check if not a piddle if (not eval{$arg->isa('PDLA')}) { push @not_a_piddle, $i; } # Check if different number of dimensions elsif (@dims != $arg->ndims) { push @mismatched_dims, $i; } # Check if size of dimensions agree else { DIMENSION: for (my $j = 0; $j < @dims; $j++) { if ($dims[$j] != $arg->dim($j)) { push @mismatched_dims, $i; last DIMENSION; } } } $i++; } # Construct a message detailing the results my $message = "bad arguments passed to function PDLA::cat\n"; if (@mismatched_dims > 1) { # Many dimension mismatches $message .= "The dimensions of arguments " . join(', ', @mismatched_dims[0 .. $#mismatched_dims-1]) . " and $mismatched_dims[-1] do not match the\n" . " dimensions of the first piddle argument (argument $first_piddle_argument).\n"; } elsif (@mismatched_dims) { # One dimension mismatch $message .= "The dimensions of argument $mismatched_dims[0] do not match the\n" . " dimensions of the first piddle argument (argument $first_piddle_argument).\n"; } if (@not_a_piddle > 1) { # many non-piddles $message .= "Arguments " . join(', ', @not_a_piddle[0 .. $#not_a_piddle-1]) . " and $not_a_piddle[-1] are not piddles.\n"; } elsif (@not_a_piddle) { # one non-piddle $message .= "Argument $not_a_piddle[0] is not a piddle.\n"; } # Handle the edge case that something else happened: if (@not_a_piddle == 0 and @mismatched_dims == 0) { barf("cat: unknown error from the internals:\n$@"); } $message .= "(Argument counting starts from zero.)"; croak($message); } else { croak("cat: unknown error from the internals:\n$@"); } } =head2 dog =for ref Opposite of 'cat' :). Split N dim piddle to list of N-1 dim piddles Takes a single N-dimensional piddle and splits it into a list of N-1 dimensional piddles. The breakup is done along the last dimension. Note the dataflown connection is still preserved by default, e.g.: =for example pdla> $p = ones 3,3,3 pdla> ($a,$b,$c) = dog $p pdla> $b++; p $p [ [ [1 1 1] [1 1 1] [1 1 1] ] [ [2 2 2] [2 2 2] [2 2 2] ] [ [1 1 1] [1 1 1] [1 1 1] ] ] =for options Break => 1 Break dataflow connection (new copy) If you compile PDLA with bad value support (the default), your machine's docs will also say this: =for bad The output piddles are set bad if the original piddle has its bad flag set. =cut sub PDLA::dog { my $opt = pop @_ if ref($_[-1]) eq 'HASH'; my $p = shift; my @res; my $s = ":,"x($p->getndims-1); for my $i (0..$p->getdim($p->getndims-1)-1) { $res[$i] = $p->slice($s."(".$i.")"); $res[$i] = $res[$i]->copy if $$opt{Break}; $i++; } return @res; } ###################### Misc internal routines #################### # Recursively pack an N-D array ref in format [[1,1,2],[2,2,3],[2,2,2]] etc # package vars $level and @dims must be initialised first. sub rpack { my ($ptype,$a) = @_; my ($ret,$type); $ret = ""; if (ref($a) eq "ARRAY") { if (defined($dims[$level])) { barf 'Array is not rectangular' unless $dims[$level] == scalar(@$a); }else{ $dims[$level] = scalar(@$a); } $type = ref($$a[0]); if ($type) { $level++; for(@$a) { barf 'Array is not rectangular' unless $type eq ref($_); # Equal types $ret .= rpack($ptype,$_); } $level--; } else { # These are leaf nodes $ret = pack $ptype, map {defined($_) ? $_ : $PDLA::undefval} @$a; } } elsif (ref($a) eq "PDLA") { barf 'Cannot make a new piddle from two or more piddles, try "cat"'; } else { barf "Don't know how to make a PDLA object from passed argument"; } return $ret; } sub rcopyitem { # Return a deep copy of an item - recursively my $x = shift; my ($y, $key, $value); if (ref(\$x) eq "SCALAR") { return $x; }elsif (ref($x) eq "SCALAR") { $y = $$x; return \$y; }elsif (ref($x) eq "ARRAY") { $y = []; for (@$x) { push @$y, rcopyitem($_); } return $y; }elsif (ref($x) eq "HASH") { $y={}; while (($key,$value) = each %$x) { $$y{$key} = rcopyitem($value); } return $y; }elsif (blessed($x)) { return $x->copy; }else{ barf ('Deep copy of object failed - unknown component with type '.ref($x)); } 0;} # N-D array stringifier sub strND { my($self,$format,$level)=@_; # $self->make_physical(); my @dims = $self->dims; # print "STRND, $#dims\n"; if ($#dims==1) { # Return 2D string return str2D($self,$format,$level); } else { # Return list of (N-1)D strings my $secbas = join '',map {":,"} @dims[0..$#dims-1]; my $ret="\n"." "x$level ."["; my $j; for ($j=0; $j<$dims[$#dims]; $j++) { my $sec = $secbas . "($j)"; # print "SLICE: $sec\n"; $ret .= strND($self->slice($sec),$format, $level+1); chop $ret; $ret .= $sep2; } chop $ret if $PDLA::use_commas; $ret .= "\n" ." "x$level ."]\n"; return $ret; } } # String 1D array in nice format sub str1D { my($self,$format)=@_; barf "Not 1D" if $self->getndims()!=1; my $x = listref_c($self); my ($ret,$dformat,$t); $ret = "["; my $dtype = $self->get_datatype(); $dformat = $PDLA::floatformat if $dtype == $PDLA_F; $dformat = $PDLA::doubleformat if $dtype == $PDLA_D; my $badflag = $self->badflag(); for $t (@$x) { if ( $badflag and $t eq "BAD" ) { # do nothing } elsif ($format) { $t = sprintf $format,$t; } else{ # Default if ($dformat && length($t)>7) { # Try smaller $t = sprintf $dformat,$t; } } $ret .= $t.$sep; } chop $ret; $ret.="]"; return $ret; } # String 2D array in nice uniform format sub str2D{ my($self,$format,$level)=@_; # print "STR2D:\n"; $self->printdims(); my @dims = $self->dims(); barf "Not 2D" if scalar(@dims)!=2; my $x = listref_c($self); my ($i, $f, $t, $len, $ret); my $dtype = $self->get_datatype(); my $badflag = $self->badflag(); my $findmax = 1; if (!defined $format || $format eq "") { # Format not given? - find max length of default $len=0; if ( $badflag ) { for (@$x) { if ( $_ eq "BAD" ) { $i = 3; } else { $i = length($_); } $len = $i>$len ? $i : $len; } } else { for (@$x) {$i = length($_); $len = $i>$len ? $i : $len }; } $format = "%".$len."s"; if ($len>7) { # Too long? - perhaps try smaller format if ($dtype == $PDLA_F) { $format = $PDLA::floatformat; } elsif ($dtype == $PDLA_D) { $format = $PDLA::doubleformat; } else { # Stick with default $findmax = 0; } } else { # Default ok $findmax = 0; } } if($findmax) { # Find max length of strings in final format $len=0; if ( $badflag ) { for (@$x) { if ( $_ eq "BAD" ) { $i = 3; } else { $i = length(sprintf $format,$_); } $len = $i>$len ? $i : $len; } } else { for (@$x) { $i = length(sprintf $format,$_); $len = $i>$len ? $i : $len; } } } # if: $findmax $ret = "\n" . " "x$level . "[\n"; { my $level = $level+1; $ret .= " "x$level ."["; for ($i=0; $i<=$#$x; $i++) { if ( $badflag and $$x[$i] eq "BAD" ) { $f = "BAD"; } else { $f = sprintf $format,$$x[$i]; } $t = $len-length($f); $f = " "x$t .$f if $t>0; $ret .= $f; if (($i+1)%$dims[0]) { $ret.=$sep; } else{ # End of output line $ret.="]"; if ($i==$#$x) { # very last number $ret.="\n"; } else{ $ret.= $sep2."\n" . " "x$level ."["; } } } } $ret .= " "x$level."]\n"; return $ret; } # # Sleazy hcpy saves me time typing # sub PDLA::hcpy { $_[0]->hdrcpy($_[1]); $_[0]; } ########## Docs for functions in Core.xs ################## # Pod docs for functions that are imported from Core.xs and are # not documented elsewhere. Currently this is not a complete # list. There are others. =head2 gethdr =for ref Retrieve header information from a piddle =for example $pdl=rfits('file.fits'); $h=$pdl->gethdr; print "Number of pixels in the X-direction=$$h{NAXIS1}\n"; The C<gethdr> function retrieves whatever header information is contained within a piddle. The header can be set with L<sethdr|/sethdr> and is always a hash reference or undef. C<gethdr> returns undef if the piddle has not yet had a header defined; compare with C<hdr> and C<fhdr>, which are guaranteed to return a defined value. Note that gethdr() works by B<reference>: you can modify the header in-place once it has been retrieved: $a = rfits($filename); $ah = $a->gethdr(); $ah->{FILENAME} = $filename; It is also important to realise that in most cases the header is not automatically copied when you copy the piddle. See L<hdrcpy|/hdrcpy> to enable automatic header copying. Here's another example: a wrapper around rcols that allows your piddle to remember the file it was read from and the columns could be easily written (here assuming that no regexp is needed, extensions are left as an exercise for the reader) sub ext_rcols { my ($file, @columns)=@_; my $header={}; $$header{File}=$file; $$header{Columns}=\@columns; @piddles=rcols $file, @columns; foreach (@piddles) { $_->sethdr($header); } return @piddles; } =head2 hdr =for ref Retrieve or set header information from a piddle =for example $pdl->hdr->{CDELT1} = 1; The C<hdr> function allows convenient access to the header of a piddle. Unlike C<gethdr> it is guaranteed to return a defined value, so you can use it in a hash dereference as in the example. If the header does not yet exist, it gets autogenerated as an empty hash. Note that this is usually -- but not always -- What You Want. If you want to use a tied L<Astro::FITS::Header|Astro::FITS::Header> hash, for example, you should either construct it yourself and use C<sethdr> to put it into the piddle, or use L<fhdr|fhdr> instead. (Note that you should be able to write out the FITS file successfully regardless of whether your PDLA has a tied FITS header object or a vanilla hash). =head2 fhdr =for ref Retrieve or set FITS header information from a piddle =for example $pdl->fhdr->{CDELT1} = 1; The C<fhdr> function allows convenient access to the header of a piddle. Unlike C<gethdr> it is guaranteed to return a defined value, so you can use it in a hash dereference as in the example. If the header does not yet exist, it gets autogenerated as a tied L<Astro::FITS::Header|Astro::FITS::Header> hash. Astro::FITS::Header tied hashes are better at matching the behavior of FITS headers than are regular hashes. In particular, the hash keys are CAsE INsEnSItiVE, unlike normal hash keys. See L<Astro::FITS::Header> for details. If you do not have Astro::FITS::Header installed, you get back a normal hash instead of a tied object. =head2 sethdr =for ref Set header information of a piddle =for example $pdl = zeroes(100,100); $h = {NAXIS=>2, NAXIS1=>100, NAXIS=>100, COMMENT=>"Sample FITS-style header"}; # add a FILENAME field to the header $$h{FILENAME} = 'file.fits'; $pdl->sethdr( $h ); The C<sethdr> function sets the header information for a piddle. You must feed in a hash ref or undef, and the header field of the PDLA is set to be a new ref to the same hash (or undefined). The hash ref requirement is a speed bump put in place since the normal use of headers is to store fits header information and the like. Of course, if you want you can hang whatever ugly old data structure you want off of the header, but that makes life more complex. Remember that the hash is not copied -- the header is made into a ref that points to the same underlying data. To get a real copy without making any assumptions about the underlying data structure, you can use one of the following: use PDLA::IO::Dumper; $pdl->sethdr( deep_copy($h) ); (which is slow but general), or $pdl->sethdr( PDLA::_hdr_copy($h) ) (which uses the built-in sleazy deep copier), or (if you know that all the elements happen to be scalars): { my %a = %$h; $pdl->sethdr(\%a); } which is considerably faster but just copies the top level. The C<sethdr> function must be given a hash reference or undef. For further information on the header, see L<gethdr|/gethdr>, L<hdr|/hdr>, L<fhdr|/fhdr> and L<hdrcpy|/hdrcpy>. =head2 hdrcpy =for ref switch on/off/examine automatic header copying =for example print "hdrs will be copied" if $a->hdrcpy; $a->hdrcpy(1); # switch on automatic header copying $b = $a->sumover; # and $b will inherit $a's hdr $a->hdrcpy(0); # and now make $a non-infectious again C<hdrcpy> without an argument just returns the current setting of the flag. See also "hcpy" which returns its PDLA argument (and so is useful in method-call pipelines). Normally, the optional header of a piddle is not copied automatically in pdl operations. Switching on the hdrcpy flag using the C<hdrcpy> method will enable automatic hdr copying. Note that an actual deep copy gets made, which is rather processor-inefficient -- so avoid using header copying in tight loops! Most PDLAs have the C<hdrcpy> flag cleared by default; however, some routines (notably L<rfits|PDLA::IO::FITS/rfits()>) set it by default where that makes more sense. The C<hdrcpy> flag is viral: if you set it for a PDLA, then derived PDLAs will get copies of the header and will also have their C<hdrcpy> flags set. For example: $a = xvals(50,50); $a->hdrcpy(1); $a->hdr->{FOO} = "bar"; $b = $a++; $c = $b++; print $b->hdr->{FOO}, " - ", $c->hdr->{FOO}, "\n"; $b->hdr->{FOO} = "baz"; print $a->hdr->{FOO}, " - ", $b->hdr->{FOO}, " - ", $c->hdr->{FOO}, "\n"; will print: bar - bar bar - baz - bar Performing an operation in which more than one PDLA has its hdrcpy flag causes the resulting PDLA to take the header of the first PDLA: ($a,$b) = sequence(5,2)->dog; $a->hdrcpy(1); $b->hdrcpy(1); $a->hdr->{foo} = 'a'; $b->hdr->{foo} = 'b'; print (($a+$b)->hdr->{foo} , ($b+$a)->hdr->{foo}); will print: a b =head2 hcpy =for ref Switch on/off automatic header copying, with PDLA pass-through =for example $a = rfits('foo.fits')->hcpy(0); $a = rfits('foo.fits')->hcpy(1); C<hcpy> sets or clears the hdrcpy flag of a PDLA, and returns the PDLA itself. That makes it convenient for inline use in expressions. =head2 set_autopthread_targ =for ref Set the target number of processor threads (pthreads) for multi-threaded processing. =for usage set_autopthread_targ($num_pthreads); C<$num_pthreads> is the target number of pthreads the auto-pthread process will try to achieve. See L<PDLA::ParallelCPU> for an overview of the auto-pthread process. =for example # Example turning on auto-pthreading for a target of 2 pthreads and for functions involving # PDLAs with greater than 1M elements set_autopthread_targ(2); set_autopthread_size(1); # Execute a pdl function, processing will split into two pthreads as long as # one of the pdl-threaded dimensions is divisible by 2. $a = minimum($b); # Get the actual number of pthreads that were run. $actual_pthread = get_autopthread_actual(); =cut *set_autopthread_targ = \&PDLA::set_autopthread_targ; =head2 get_autopthread_targ =for ref Get the current target number of processor threads (pthreads) for multi-threaded processing. =for usage $num_pthreads = get_autopthread_targ(); C<$num_pthreads> is the target number of pthreads the auto-pthread process will try to achieve. See L<PDLA::ParallelCPU> for an overview of the auto-pthread process. =cut *get_autopthread_targ = \&PDLA::get_autopthread_targ; =head2 get_autopthread_actual =for ref Get the actual number of pthreads executed for the last pdl processing function. =for usage $autopthread_actual = get_autopthread_actual(); C<$autopthread_actual> is the actual number of pthreads executed for the last pdl processing function. See L<PDLA::ParallelCPU> for an overview of the auto-pthread process. =cut *get_autopthread_actual = \&PDLA::get_autopthread_actual; =head2 set_autopthread_size =for ref Set the minimum size (in M-elements or 2^20 elements) of the largest PDLA involved in a function where auto-pthreading will be performed. For small PDLAs, it probably isn't worth starting multiple pthreads, so this function is used to define a minimum threshold where auto-pthreading won't be attempted. =for usage set_autopthread_size($size); C<$size> is the mimumum size, in M-elements or 2^20 elements (approx 1e6 elements) for the largest PDLA involved in a function. See L<PDLA::ParallelCPU> for an overview of the auto-pthread process. =for example # Example turning on auto-pthreading for a target of 2 pthreads and for functions involving # PDLAs with greater than 1M elements set_autopthread_targ(2); set_autopthread_size(1); # Execute a pdl function, processing will split into two pthreads as long as # one of the pdl-threaded dimensions is divisible by 2. $a = minimum($b); # Get the actual number of pthreads that were run. $actual_pthread = get_autopthread_actual(); =cut *set_autopthread_size = \&PDLA::set_autopthread_size; =head2 get_autopthread_size =for ref Get the current autopthread_size setting. =for usage $autopthread_size = get_autopthread_size(); C<$autopthread_size> is the mimumum size limit for auto_pthreading to occur, in M-elements or 2^20 elements (approx 1e6 elements) for the largest PDLA involved in a function See L<PDLA::ParallelCPU> for an overview of the auto-pthread process. =cut *get_autopthread_size = \&PDLA::get_autopthread_size; =head1 AUTHOR Copyright (C) Karl Glazebrook (kgb@aaoepp.aao.gov.au), Tuomas J. Lukka, (lukka@husc.harvard.edu) and Christian Soeller (c.soeller@auckland.ac.nz) 1997. Modified, Craig DeForest (deforest@boulder.swri.edu) 2002. All rights reserved. There is no warranty. You are allowed to redistribute this software / documentation under certain conditions. For details, see the file COPYING in the PDLA distribution. If this file is separated from the PDLA distribution, the copyright notice should be included in the file. =cut # # Easier to implement in perl than in XS... # -- CED # sub PDLA::fhdr { my $pdl = shift; return $pdl->hdr if( (defined $pdl->gethdr) || !defined $Astro::FITS::Header::VERSION ); # Avoid bug in 1.15 and earlier Astro::FITS::Header my @hdr = ("SIMPLE = T"); my $hdr = new Astro::FITS::Header(Cards=>\@hdr); tie my %hdr, "Astro::FITS::Header", $hdr; $pdl->sethdr(\%hdr); return \%hdr; } use Fcntl; BEGIN { eval 'use File::Map 0.47 qw(:all)'; if ($@) { carp "No File::Map found, using legacy mmap (if available)\n" if $PDLA::verbose; sub sys_map; sub PROT_READ(); sub PROT_WRITE(); sub MAP_SHARED(); sub MAP_PRIVATE(); } } # Implement File::Map::sys_map bug fix. Also, might be possible # to implement without so many external (non-Core perl) modules. # # sub pdl_do_sys_map { # my (undef, $length, $protection, $flags, $fh, $offset) = @_; # my $utf8 = File::Map::_check_layers($fh); # my $fd = ($flags & MAP_ANONYMOUS) ? (-1) : fileno($fh); # $offset ||= 0; # File::Map::_mmap_impl($_[0], $length, $protection, $flags, $fd, $offset, $utf8); # return; # } sub PDLA::set_data_by_file_map { my ($pdl,$name,$len,$shared,$writable,$creat,$mode,$trunc) = @_; my $pdl_dataref = $pdl->get_dataref(); # Assume we have no data to free for now # pdl_freedata($pdl); sysopen(my $fh, $name, ($writable && $shared ? O_RDWR : O_RDONLY) | ($creat ? O_CREAT : 0), $mode) or die "Error opening file '$name'\n"; binmode $fh; if ($trunc) { truncate($fh,0) or die "set_data_by_mmap: truncate('$name',0) failed, $!"; truncate($fh,$len) or die "set_data_by_mmap: truncate('$name',$len) failed, $!"; } if ($len) { #eval { # pdl_do_sys_map( # will croak if the mapping fails if ($PDLA::debug) { printf STDERR "set_data_by_file_map: calling sys_map(%s,%d,%d,%d,%s,%d)\n", $pdl_dataref, $len, PROT_READ | ($writable ? PROT_WRITE : 0), ($shared ? MAP_SHARED : MAP_PRIVATE), $fh, 0; } sys_map( # will croak if the mapping fails ${$pdl_dataref}, $len, PROT_READ | ($writable ? PROT_WRITE : 0), ($shared ? MAP_SHARED : MAP_PRIVATE), $fh, 0 ); #}; #if ($@) { #die("Error mmapping!, '$@'\n"); #} $pdl->upd_data; if ($PDLA::debug) { printf STDERR "set_data_by_file_map: length \${\$pdl_dataref} is %d.\n", length ${$pdl_dataref}; } $pdl->set_state_and_add_deletedata_magic( length ${$pdl_dataref} ); } else { # Special case: zero-length file $_[0] = undef; } # PDLADEBUG_f(printf("PDLA::MMap: mapped to %p\n",$pdl->data)); close $fh ; } 1;