#!/usr/bin/perl -w # Copyright 2011, 2012 Kevin Ryde # This file is part of Math-PlanePath. # # Math-PlanePath is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the Free # Software Foundation; either version 3, or (at your option) any later # version. # # Math-PlanePath is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY # or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. # # You should have received a copy of the GNU General Public License along # with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>. use 5.004; use strict; use Test; BEGIN { plan tests => 618 } use lib 't'; use MyTestHelpers; MyTestHelpers::nowarnings(); # uncomment this to run the ### lines #use Devel::Comments; require Math::PlanePath::TerdragonCurve; #------------------------------------------------------------------------------ # VERSION { my $want_version = 78; ok ($Math::PlanePath::TerdragonCurve::VERSION, $want_version, 'VERSION variable'); ok (Math::PlanePath::TerdragonCurve->VERSION, $want_version, 'VERSION class method'); ok (eval { Math::PlanePath::TerdragonCurve->VERSION($want_version); 1 }, 1, "VERSION class check $want_version"); my $check_version = $want_version + 1000; ok (! eval { Math::PlanePath::TerdragonCurve->VERSION($check_version); 1 }, 1, "VERSION class check $check_version"); my $path = Math::PlanePath::TerdragonCurve->new; ok ($path->VERSION, $want_version, 'VERSION object method'); ok (eval { $path->VERSION($want_version); 1 }, 1, "VERSION object check $want_version"); ok (! eval { $path->VERSION($check_version); 1 }, 1, "VERSION object check $check_version"); } #------------------------------------------------------------------------------ # xy_to_n_list() { my $path = Math::PlanePath::TerdragonCurve->new; foreach my $elem ([ 1, '1' ], [ 2, '2,5' ], [ 3, '3' ], [ 4, '4,7' ], [ 5, '2,5' ], [ 6, '6,15' ], [ 7, '4,7' ], [ 8, '8,11,14' ], [ 11, '8,11,14' ], [ 14, '8,11,14' ], ) { my ($n, $want_n_list) = @$elem; my ($x,$y) = $path->n_to_xy ($n); my @got_n_list = $path->xy_to_n_list ($x,$y); my $got_n_list = join(',',@got_n_list); ok ($got_n_list, $want_n_list); } } #------------------------------------------------------------------------------ # turn sequence claimed in the pod { # per KochCurve.t, 0=straight, 1=+120 degrees, 2=+240 degrees sub dxdy_to_dir { my ($dx,$dy) = @_; if ($dy == 0) { if ($dx == 2) { return 0/2; } # if ($dx == -2) { return 3; } } if ($dy == 1) { # if ($dx == 1) { return 1; } if ($dx == -1) { return 2/2; } } if ($dy == -1) { # if ($dx == 1) { return 5; } if ($dx == -1) { return 4/2; } } die "unrecognised $dx,$dy"; } sub path_n_dir { my ($path, $n) = @_; my ($x,$y) = $path->n_to_xy($n); my ($next_x,$next_y) = $path->n_to_xy($n+1); return dxdy_to_dir ($next_x - $x, $next_y - $y); } # return 0 for left, 1 for right sub path_n_turn { my ($path, $n) = @_; my $prev_dir = path_n_dir ($path, $n-1); my $dir = path_n_dir ($path, $n); return ($dir - $prev_dir) % 3; } # return 1 for left, 2 for right sub calc_n_turn { my ($n) = @_; die if $n == 0; while (($n % 3) == 0) { $n = int($n/3); # skip low 0s } return ($n % 3); # next digit is the turn } # # return 0 for left, 1 for right # sub calc_n_next_turn { # my ($n) = @_; # my $mask = $n ^ ($n+1); # low bits 000111..11 # my $z = $n & ($mask + 1); # the solitary bit above it # my $turn = ($z == 0 ? 0 : 1); # return $turn; # } my $path = Math::PlanePath::TerdragonCurve->new; my $bad = 0; foreach my $n ($path->n_start + 1 .. 500) { { my $path_turn = path_n_turn ($path, $n); my $calc_turn = calc_n_turn ($n); if ($path_turn != $calc_turn) { MyTestHelpers::diag ("turn n=$n path $path_turn calc $calc_turn"); last if $bad++ > 10; } } # { # my $path_turn = path_n_turn ($path, $n+1); # my $calc_turn = calc_n_next_turn ($n); # if ($path_turn != $calc_turn) { # MyTestHelpers::diag ("next turn n=$n path $path_turn calc $calc_turn"); # last if $bad++ > 10; # } # } } ok ($bad, 0, "turn sequence"); } #------------------------------------------------------------------------------ # n_start, x_negative, y_negative { my $path = Math::PlanePath::TerdragonCurve->new; ok ($path->n_start, 0, 'n_start()'); ok ($path->x_negative, 1, 'x_negative()'); ok ($path->y_negative, 1, 'y_negative()'); ok ($path->class_x_negative, 1, 'class_x_negative()'); ok ($path->class_y_negative, 1, 'class_y_negative()'); } { my @pnames = map {$_->{'name'}} Math::PlanePath::TerdragonCurve->parameter_info_list; ok (join(',',@pnames), 'arms'); } #------------------------------------------------------------------------------ # first few points { my @data = ( [ 0, 0,0 ], [ 1, 2,0 ], [ 2, 1,1 ], [ 3, 3,1 ], [ 4, 2,2 ], [ 5, 1,1, 'rep' ], [ 6, 0,2 ], [ 0.25, 0.5, 0 ], [ 1.25, 1.75, 0.25 ], [ 2.25, 1.5, 1 ], [ 3.25, 2.75, 1.25 ], ); my $path = Math::PlanePath::TerdragonCurve->new; foreach my $elem (@data) { my ($n, $x,$y, $rep) = @$elem; { # n_to_xy() my ($got_x, $got_y) = $path->n_to_xy ($n); if ($got_x == 0) { $got_x = 0 } # avoid "-0" if ($got_y == 0) { $got_y = 0 } ok ($got_x, $x, "n_to_xy() x at n=$n"); ok ($got_y, $y, "n_to_xy() y at n=$n"); } if ($n==int($n) && ! $rep) { # xy_to_n() my $got_n = $path->xy_to_n ($x, $y); ok ($got_n, $n, "xy_to_n() n at x=$x,y=$y"); } { $n = int($n); my ($got_nlo, $got_nhi) = $path->rect_to_n_range (0,0, $x,$y); ok ($got_nlo <= $n, 1, "rect_to_n_range() nlo=$got_nlo at n=$n,x=$x,y=$y"); ok ($got_nhi >= $n, 1, "rect_to_n_range() nhi=$got_nhi at n=$n,x=$x,y=$y"); } } } #------------------------------------------------------------------------------ # random rect_to_n_range() foreach my $arms (1 .. 4) { my $path = Math::PlanePath::TerdragonCurve->new (arms => $arms); ok ($path->arms_count, $arms, 'arms_count()'); for (1 .. 5) { my $bits = int(rand(25)); # 0 to 25, inclusive my $n = int(rand(2**$bits)); # 0 to 2^bits, inclusive my ($x,$y) = $path->n_to_xy ($n); my $rev_n = $path->xy_to_n ($x,$y); ok (defined $rev_n, 1, "xy_to_n($x,$y) arms=$arms reverse n, got undef"); my ($n_lo, $n_hi) = $path->rect_to_n_range ($x,$y, $x,$y); ok ($n_lo <= $n, 1, "rect_to_n_range() arms=$arms n=$n at xy=$x,$y cf got n_lo=$n_lo"); ok ($n_hi >= $n, 1, "rect_to_n_range() arms=$arms n=$n at xy=$x,$y cf got n_hi=$n_hi"); } } #------------------------------------------------------------------------------ # random n_to_xy() fracs foreach my $arms (1 .. 4) { my $path = Math::PlanePath::TerdragonCurve->new (arms => $arms); for (1 .. 20) { my $bits = int(rand(25)); # 0 to 25, inclusive my $n = int(rand(2**$bits)) + 1; # 1 to 2^bits, inclusive my ($x1,$y1) = $path->n_to_xy ($n); my ($x2,$y2) = $path->n_to_xy ($n+$arms); foreach my $frac (0.25, 0.5, 0.75) { my $want_xf = $x1 + ($x2-$x1)*$frac; my $want_yf = $y1 + ($y2-$y1)*$frac; my $nf = $n + $frac; my ($got_xf,$got_yf) = $path->n_to_xy ($nf); ok ($got_xf, $want_xf, "n_to_xy($nf) arms=$arms frac $frac, x"); ok ($got_yf, $want_yf, "n_to_xy($nf) arms=$arms frac $frac, y"); } } } exit 0;