#!/usr/bin/ruby

#
## https://rosettacode.org/wiki/Simulated_annealing
#

module TravelingSalesman {

    # Eâ‚›: length(path)
    func Eâ‚›(distances, path) {
        var total = 0
        [path, path.slice(1)].zip {|ci,cj|
            total += distances[ci-1][cj-1]
        }
        total
    }

    # T: temperature
    func T(k, kmax, kT) { kT * (1 - k/kmax) }

    # ΔE = Eₛ_new - Eₛ_old > 0
    # Prob. to move if ΔE > 0, → 0 when T → 0 (fronzen state)
    func P(ΔE, k, kmax, kT) { exp(-ΔE / T(k, kmax, kT)) }

    # ∆E from path ( .. a u b .. c v d ..) to (.. a v b ... c u d ..)
    # ∆E before swapping (u,v)
    # Quicker than Eâ‚›(s_next) - Eâ‚›(path)
    func dE(distances, path, u, v) {

        var a = distances[path[u-1]-1][path[u]-1]
        var b = distances[path[u+1]-1][path[u]-1]
        var c = distances[path[v-1]-1][path[v]-1]
        var d = distances[path[v+1]-1][path[v]-1]

        var na = distances[path[u-1]-1][path[v]-1]
        var nb = distances[path[u+1]-1][path[v]-1]
        var nc = distances[path[v-1]-1][path[u]-1]
        var nd = distances[path[v+1]-1][path[u]-1]

        if (v == u+1) {
            return ((na+nd) - (a+d))
        }

        if (u == v+1) {
            return ((nc+nb) - (c+b))
        }

        return ((na+nb+nc+nd) - (a+b+c+d))
    }

    const dirs = [1, -1, 10, -10, 9, 11, -11, -9]

    func _prettypath(path) {
        path.slices(10).map { .map{ "%3s" % _ }.join(', ') }.join("\n")
    }

    func findpath(distances, kmax, kT) {

        const n = distances.len
        const R = 2..n

        var path = [1, R.shuffle..., 1]
        var Emin = Eâ‚›(distances, path)

        printf("# Entropy(sâ‚€) = s%10.2f\n", Emin)
        printf("# Random path:\n%s\n\n", _prettypath(path))

        for k in (1 .. kmax) {

            if (k % (kmax//10) == 0) {  #/
                printf("k: %10d | T: %8.4f | Eâ‚›: %8.4f\n", k, T(k, kmax, kT), Eâ‚›(distances, path))
            }

            var u = R.rand
            var v = (path[u-1] + dirs.rand)
            v ~~ R || next

            var δE = dE(distances, path, u-1, v-1)
            if ((δE < 0) || (P(δE, k, kmax, kT) >= 1.rand)) {
                path.swap(u-1, v-1)
                Emin += δE
            }
        }

        printf("k: %10d | T: %8.4f | Eâ‚›: %8.4f\n", kmax, T(kmax, kmax, kT), Eâ‚›(distances, path))
        say ("\n# Found path:\n", _prettypath(path))
        return path
    }
}

var citydist = {|ci|
    { |cj|
        var v1 = Vec(ci%10, ci//10)
        var v2 = Vec(cj%10, cj//10)
        v1.dist(v2)
    }.map(1..100)
}.map(1..100)

TravelingSalesman::findpath(citydist, 1e2, 1)