NAME
AI::MXNet::Gluon::ModelZoo::Vision::SqueezeNet - SqueezeNet model from the "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size"
|
DESCRIPTION
SqueezeNet model from the "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
SqueezeNet 1.1 model from the official SqueezeNet repo
SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
than SqueezeNet 1.0, without sacrificing accuracy.
Parameters
----------
version : Str
Version of squeezenet. Options are '1.0' , '1.1' .
classes : Int, default 1000
Number of classification classes.
|
get_squeezenet
SqueezeNet model from the "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
SqueezeNet 1.1 model from the official SqueezeNet repo
SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
than SqueezeNet 1.0, without sacrificing accuracy.
Parameters
----------
$version : Str
Version of squeezenet. Options are '1.0' , '1.1' .
: $pretrained : Bool, default 0
Whether to load the pretrained weights for model.
: $ctx : AI::MXNet::Context, default CPU
The context in which to load the pretrained weights.
: $root : Str, default '~/.mxnet/models'
Location for keeping the model parameters.
|
squeezenet1_0
SqueezeNet 1.0 model from the "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
Parameters
----------
: $pretrained : Bool, default 0
Whether to load the pretrained weights for model.
: $ctx : AI::MXNet::Context, default CPU
The context in which to load the pretrained weights.
: $root : Str, default '~/.mxnet/models'
Location for keeping the model parameters.
|
squeezenet1_1
SqueezeNet 1.1 model from the official SqueezeNet repo
SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
than SqueezeNet 1.0, without sacrificing accuracy.
Parameters
----------
: $pretrained : Bool, default 0
Whether to load the pretrained weights for model.
: $ctx : AI::MXNet::Context, default CPU
The context in which to load the pretrained weights.
: $root : Str, default '~/.mxnet/models'
Location for keeping the model parameters.
|