NAME
PDL::OpenCV::Objdetect - PDL bindings for OpenCV BaseCascadeClassifier, CascadeClassifier, HOGDescriptor, QRCodeDetector
SYNOPSIS
use PDL::OpenCV::Objdetect;
FUNCTIONS
groupRectangles
Signature: (indx [io,phys] rectList(n1=4,n1d0); int [o,phys] weights(n2d0); int [phys] groupThreshold(); double [phys] eps())
NO BROADCASTING.
$weights = groupRectangles($rectList,$groupThreshold); # with defaults
$weights = groupRectangles($rectList,$groupThreshold,$eps);
@overload
groupRectangles ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
METHODS for PDL::OpenCV::BaseCascadeClassifier
Subclass of PDL::OpenCV::Algorithm
METHODS for PDL::OpenCV::CascadeClassifier
Cascade classifier class for object detection.
new
$obj = PDL::OpenCV::CascadeClassifier->new;
new2
Loads a classifier from a file.
$obj = PDL::OpenCV::CascadeClassifier->new2($filename);
Parameters:
- filename
-
Name of the file from which the classifier is loaded.
empty
Checks whether the classifier has been loaded.
$res = $obj->empty;
load
Loads a classifier from a file.
$res = $obj->load($filename);
Parameters:
- filename
-
Name of the file from which the classifier is loaded. The file may contain an old HAAR classifier trained by the haartraining application or a new cascade classifier trained by the traincascade application.
read
Reads a classifier from a FileStorage node.
$res = $obj->read($node);
@note The file may contain a new cascade classifier (trained traincascade application) only.
CascadeClassifier_detectMultiScale
Signature: ([phys] image(l2,c2,r2); indx [o,phys] objects(n3=4,n3d0); double [phys] scaleFactor(); int [phys] minNeighbors(); int [phys] flags(); indx [phys] minSize(n7); indx [phys] maxSize(n8); CascadeClassifierWrapper * self)
Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles. NO BROADCASTING.
$objects = $obj->detectMultiScale($image); # with defaults
$objects = $obj->detectMultiScale($image,$scaleFactor,$minNeighbors,$flags,$minSize,$maxSize);
The function is parallelized with the TBB library. @note - (Python) A face detection example using cascade classifiers can be found at opencv_source_code/samples/python/facedetect.py
Parameters:
- image
-
Matrix of the type CV_8U containing an image where objects are detected.
- objects
-
Vector of rectangles where each rectangle contains the detected object, the rectangles may be partially outside the original image.
- scaleFactor
-
Parameter specifying how much the image size is reduced at each image scale.
- minNeighbors
-
Parameter specifying how many neighbors each candidate rectangle should have to retain it.
- flags
-
Parameter with the same meaning for an old cascade as in the function cvHaarDetectObjects. It is not used for a new cascade.
- minSize
-
Minimum possible object size. Objects smaller than that are ignored.
- maxSize
-
Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale.
CascadeClassifier_detectMultiScale ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
CascadeClassifier_detectMultiScale2
Signature: ([phys] image(l2,c2,r2); indx [o,phys] objects(n3=4,n3d0); int [o,phys] numDetections(n4d0); double [phys] scaleFactor(); int [phys] minNeighbors(); int [phys] flags(); indx [phys] minSize(n8); indx [phys] maxSize(n9); CascadeClassifierWrapper * self)
NO BROADCASTING.
($objects,$numDetections) = $obj->detectMultiScale2($image); # with defaults
($objects,$numDetections) = $obj->detectMultiScale2($image,$scaleFactor,$minNeighbors,$flags,$minSize,$maxSize);
@overload
Parameters:
- image
-
Matrix of the type CV_8U containing an image where objects are detected.
- objects
-
Vector of rectangles where each rectangle contains the detected object, the rectangles may be partially outside the original image.
- numDetections
-
Vector of detection numbers for the corresponding objects. An object's number of detections is the number of neighboring positively classified rectangles that were joined together to form the object.
- scaleFactor
-
Parameter specifying how much the image size is reduced at each image scale.
- minNeighbors
-
Parameter specifying how many neighbors each candidate rectangle should have to retain it.
- flags
-
Parameter with the same meaning for an old cascade as in the function cvHaarDetectObjects. It is not used for a new cascade.
- minSize
-
Minimum possible object size. Objects smaller than that are ignored.
- maxSize
-
Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale.
CascadeClassifier_detectMultiScale2 ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
CascadeClassifier_detectMultiScale3
Signature: ([phys] image(l2,c2,r2); indx [o,phys] objects(n3=4,n3d0); int [o,phys] rejectLevels(n4d0); double [o,phys] levelWeights(n5d0); double [phys] scaleFactor(); int [phys] minNeighbors(); int [phys] flags(); indx [phys] minSize(n9); indx [phys] maxSize(n10); byte [phys] outputRejectLevels(); CascadeClassifierWrapper * self)
NO BROADCASTING.
($objects,$rejectLevels,$levelWeights) = $obj->detectMultiScale3($image); # with defaults
($objects,$rejectLevels,$levelWeights) = $obj->detectMultiScale3($image,$scaleFactor,$minNeighbors,$flags,$minSize,$maxSize,$outputRejectLevels);
@overload This function allows you to retrieve the final stage decision certainty of classification. For this, one needs to set `outputRejectLevels` on true and provide the `rejectLevels` and `levelWeights` parameter. For each resulting detection, `levelWeights` will then contain the certainty of classification at the final stage. This value can then be used to separate strong from weaker classifications. A code sample on how to use it efficiently can be found below:
Mat img;
vector<double> weights;
vector<int> levels;
vector<Rect> detections;
CascadeClassifier model("/path/to/your/model.xml");
model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true);
cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl;
CascadeClassifier_detectMultiScale3 ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
isOldFormatCascade
$res = $obj->isOldFormatCascade;
CascadeClassifier_getOriginalWindowSize
Signature: (indx [o,phys] res(n2=2); CascadeClassifierWrapper * self)
$res = $obj->getOriginalWindowSize;
CascadeClassifier_getOriginalWindowSize ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
getFeatureType
$res = $obj->getFeatureType;
convert
$res = PDL::OpenCV::CascadeClassifier::convert($oldcascade,$newcascade);
METHODS for PDL::OpenCV::HOGDescriptor
Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector.
the HOG descriptor algorithm introduced by Navneet Dalal and Bill Triggs @cite Dalal2005 . useful links: https://hal.inria.fr/inria-00548512/document/ https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor http://www.learnopencv.com/histogram-of-oriented-gradients http://www.learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial
new
Creates the HOG descriptor and detector with default params.
$obj = PDL::OpenCV::HOGDescriptor->new;
aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )
HOGDescriptor_new2
Signature: (indx [phys] _winSize(n2=2); indx [phys] _blockSize(n3=2); indx [phys] _blockStride(n4=2); indx [phys] _cellSize(n5=2); int [phys] _nbins(); int [phys] _derivAperture(); double [phys] _winSigma(); int [phys] _histogramNormType(); double [phys] _L2HysThreshold(); byte [phys] _gammaCorrection(); int [phys] _nlevels(); byte [phys] _signedGradient(); char * klass; [o] HOGDescriptorWrapper * res)
$obj = PDL::OpenCV::HOGDescriptor->new2($_winSize,$_blockSize,$_blockStride,$_cellSize,$_nbins); # with defaults
$obj = PDL::OpenCV::HOGDescriptor->new2($_winSize,$_blockSize,$_blockStride,$_cellSize,$_nbins,$_derivAperture,$_winSigma,$_histogramNormType,$_L2HysThreshold,$_gammaCorrection,$_nlevels,$_signedGradient);
@overload
Parameters:
- _winSize
-
sets winSize with given value.
- _blockSize
-
sets blockSize with given value.
- _blockStride
-
sets blockStride with given value.
- _cellSize
-
sets cellSize with given value.
- _nbins
-
sets nbins with given value.
- _derivAperture
-
sets derivAperture with given value.
- _winSigma
-
sets winSigma with given value.
- _histogramNormType
-
sets histogramNormType with given value.
- _L2HysThreshold
-
sets L2HysThreshold with given value.
- _gammaCorrection
-
sets gammaCorrection with given value.
- _nlevels
-
sets nlevels with given value.
- _signedGradient
-
sets signedGradient with given value.
HOGDescriptor_new2 ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
new3
$obj = PDL::OpenCV::HOGDescriptor->new3($filename);
@overload
Parameters:
- filename
-
The file name containing HOGDescriptor properties and coefficients for the linear SVM classifier.
getDescriptorSize
Returns the number of coefficients required for the classification.
$res = $obj->getDescriptorSize;
checkDetectorSize
Checks if detector size equal to descriptor size.
$res = $obj->checkDetectorSize;
getWinSigma
Returns winSigma value
$res = $obj->getWinSigma;
HOGDescriptor_setSVMDetector
Signature: ([phys] svmdetector(l2,c2,r2); HOGDescriptorWrapper * self)
Sets coefficients for the linear SVM classifier.
$obj->setSVMDetector($svmdetector);
Parameters:
- svmdetector
-
coefficients for the linear SVM classifier.
HOGDescriptor_setSVMDetector ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
load
loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file.
$res = $obj->load($filename); # with defaults
$res = $obj->load($filename,$objname);
Parameters:
- filename
-
Path of the file to read.
- objname
-
The optional name of the node to read (if empty, the first top-level node will be used).
save
saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
$obj->save($filename); # with defaults
$obj->save($filename,$objname);
Parameters:
- filename
-
File name
- objname
-
Object name
HOGDescriptor_compute
Signature: ([phys] img(l2,c2,r2); float [o,phys] descriptors(n3d0); indx [phys] winStride(n4); indx [phys] padding(n5); indx [phys] locations(n6,n6d0); HOGDescriptorWrapper * self)
Computes HOG descriptors of given image. NO BROADCASTING.
$descriptors = $obj->compute($img); # with defaults
$descriptors = $obj->compute($img,$winStride,$padding,$locations);
Parameters:
- img
-
Matrix of the type CV_8U containing an image where HOG features will be calculated.
- descriptors
-
Matrix of the type CV_32F
- winStride
-
Window stride. It must be a multiple of block stride.
- padding
-
Padding
- locations
-
Vector of Point
HOGDescriptor_compute ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
HOGDescriptor_detect
Signature: ([phys] img(l2,c2,r2); indx [o,phys] foundLocations(n3=2,n3d0); double [o,phys] weights(n4d0); double [phys] hitThreshold(); indx [phys] winStride(n6); indx [phys] padding(n7); indx [phys] searchLocations(n8,n8d0); HOGDescriptorWrapper * self)
Performs object detection without a multi-scale window. NO BROADCASTING.
($foundLocations,$weights) = $obj->detect($img); # with defaults
($foundLocations,$weights) = $obj->detect($img,$hitThreshold,$winStride,$padding,$searchLocations);
Parameters:
- img
-
Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- foundLocations
-
Vector of point where each point contains left-top corner point of detected object boundaries.
- weights
-
Vector that will contain confidence values for each detected object.
- hitThreshold
-
Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- winStride
-
Window stride. It must be a multiple of block stride.
- padding
-
Padding
- searchLocations
-
Vector of Point includes set of requested locations to be evaluated.
HOGDescriptor_detect ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
HOGDescriptor_detectMultiScale
Signature: ([phys] img(l2,c2,r2); indx [o,phys] foundLocations(n3=4,n3d0); double [o,phys] foundWeights(n4d0); double [phys] hitThreshold(); indx [phys] winStride(n6); indx [phys] padding(n7); double [phys] scale(); double [phys] finalThreshold(); byte [phys] useMeanshiftGrouping(); HOGDescriptorWrapper * self)
Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles. NO BROADCASTING.
($foundLocations,$foundWeights) = $obj->detectMultiScale($img); # with defaults
($foundLocations,$foundWeights) = $obj->detectMultiScale($img,$hitThreshold,$winStride,$padding,$scale,$finalThreshold,$useMeanshiftGrouping);
Parameters:
- img
-
Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- foundLocations
-
Vector of rectangles where each rectangle contains the detected object.
- foundWeights
-
Vector that will contain confidence values for each detected object.
- hitThreshold
-
Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- winStride
-
Window stride. It must be a multiple of block stride.
- padding
-
Padding
- scale
-
Coefficient of the detection window increase.
- finalThreshold
-
Final threshold
- useMeanshiftGrouping
-
indicates grouping algorithm
HOGDescriptor_detectMultiScale ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
HOGDescriptor_computeGradient
Signature: ([phys] img(l2,c2,r2); [io,phys] grad(l3,c3,r3); [io,phys] angleOfs(l4,c4,r4); indx [phys] paddingTL(n5); indx [phys] paddingBR(n6); HOGDescriptorWrapper * self)
Computes gradients and quantized gradient orientations.
$obj->computeGradient($img,$grad,$angleOfs); # with defaults
$obj->computeGradient($img,$grad,$angleOfs,$paddingTL,$paddingBR);
Parameters:
- img
-
Matrix contains the image to be computed
- grad
-
Matrix of type CV_32FC2 contains computed gradients
- angleOfs
-
Matrix of type CV_8UC2 contains quantized gradient orientations
- paddingTL
-
Padding from top-left
- paddingBR
-
Padding from bottom-right
HOGDescriptor_computeGradient ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
HOGDescriptor_getDefaultPeopleDetector
Signature: (float [o,phys] res(n1d0))
Returns coefficients of the classifier trained for people detection (for 64x128 windows). NO BROADCASTING.
$res = PDL::OpenCV::HOGDescriptor::getDefaultPeopleDetector;
HOGDescriptor_getDefaultPeopleDetector ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
HOGDescriptor_getDaimlerPeopleDetector
Signature: (float [o,phys] res(n1d0))
Returns coefficients of the classifier trained for people detection (for 48x96 windows). NO BROADCASTING.
$res = PDL::OpenCV::HOGDescriptor::getDaimlerPeopleDetector;
HOGDescriptor_getDaimlerPeopleDetector ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
METHODS for PDL::OpenCV::QRCodeDetector
Groups the object candidate rectangles.
Parameters:
- rectList
-
Input/output vector of rectangles. Output vector includes retained and grouped rectangles. (The Python list is not modified in place.)
- weights
-
Input/output vector of weights of rectangles. Output vector includes weights of retained and grouped rectangles. (The Python list is not modified in place.)
- groupThreshold
-
Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.
- eps
-
Relative difference between sides of the rectangles to merge them into a group.
new
$obj = PDL::OpenCV::QRCodeDetector->new;
setEpsX
sets the epsilon used during the horizontal scan of QR code stop marker detection.
$obj->setEpsX($epsX);
Parameters:
- epsX
-
Epsilon neighborhood, which allows you to determine the horizontal pattern of the scheme 1:1:3:1:1 according to QR code standard.
setEpsY
sets the epsilon used during the vertical scan of QR code stop marker detection.
$obj->setEpsY($epsY);
Parameters:
- epsY
-
Epsilon neighborhood, which allows you to determine the vertical pattern of the scheme 1:1:3:1:1 according to QR code standard.
QRCodeDetector_detect
Signature: ([phys] img(l2,c2,r2); [o,phys] points(l3,c3,r3); byte [o,phys] res(); QRCodeDetectorWrapper * self)
Detects QR code in image and returns the quadrangle containing the code. NO BROADCASTING.
($points,$res) = $obj->detect($img);
Parameters:
- img
-
grayscale or color (BGR) image containing (or not) QR code.
- points
-
Output vector of vertices of the minimum-area quadrangle containing the code.
QRCodeDetector_detect ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
QRCodeDetector_decode
Signature: ([phys] img(l2,c2,r2); [phys] points(l3,c3,r3); [o,phys] straight_qrcode(l4,c4,r4); QRCodeDetectorWrapper * self; [o] StringWrapper* res)
Decodes QR code in image once it's found by the detect() method. NO BROADCASTING.
($straight_qrcode,$res) = $obj->decode($img,$points);
Returns UTF8-encoded output string or empty string if the code cannot be decoded.
Parameters:
- img
-
grayscale or color (BGR) image containing QR code.
- points
-
Quadrangle vertices found by detect() method (or some other algorithm).
- straight_qrcode
-
The optional output image containing rectified and binarized QR code
QRCodeDetector_decode ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
QRCodeDetector_decodeCurved
Signature: ([phys] img(l2,c2,r2); [phys] points(l3,c3,r3); [o,phys] straight_qrcode(l4,c4,r4); QRCodeDetectorWrapper * self; [o] StringWrapper* res)
Decodes QR code on a curved surface in image once it's found by the detect() method. NO BROADCASTING.
($straight_qrcode,$res) = $obj->decodeCurved($img,$points);
Returns UTF8-encoded output string or empty string if the code cannot be decoded.
Parameters:
- img
-
grayscale or color (BGR) image containing QR code.
- points
-
Quadrangle vertices found by detect() method (or some other algorithm).
- straight_qrcode
-
The optional output image containing rectified and binarized QR code
QRCodeDetector_decodeCurved ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
QRCodeDetector_detectAndDecode
Signature: ([phys] img(l2,c2,r2); [o,phys] points(l3,c3,r3); [o,phys] straight_qrcode(l4,c4,r4); QRCodeDetectorWrapper * self; [o] StringWrapper* res)
Both detects and decodes QR code NO BROADCASTING.
($points,$straight_qrcode,$res) = $obj->detectAndDecode($img);
Parameters:
- img
-
grayscale or color (BGR) image containing QR code.
- points
-
optional output array of vertices of the found QR code quadrangle. Will be empty if not found.
- straight_qrcode
-
The optional output image containing rectified and binarized QR code
QRCodeDetector_detectAndDecode ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
QRCodeDetector_detectAndDecodeCurved
Signature: ([phys] img(l2,c2,r2); [o,phys] points(l3,c3,r3); [o,phys] straight_qrcode(l4,c4,r4); QRCodeDetectorWrapper * self; [o] StringWrapper* res)
Both detects and decodes QR code on a curved surface NO BROADCASTING.
($points,$straight_qrcode,$res) = $obj->detectAndDecodeCurved($img);
Parameters:
- img
-
grayscale or color (BGR) image containing QR code.
- points
-
optional output array of vertices of the found QR code quadrangle. Will be empty if not found.
- straight_qrcode
-
The optional output image containing rectified and binarized QR code
QRCodeDetector_detectAndDecodeCurved ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
QRCodeDetector_detectMulti
Signature: ([phys] img(l2,c2,r2); [o,phys] points(l3,c3,r3); byte [o,phys] res(); QRCodeDetectorWrapper * self)
Detects QR codes in image and returns the vector of the quadrangles containing the codes. NO BROADCASTING.
($points,$res) = $obj->detectMulti($img);
Parameters:
- img
-
grayscale or color (BGR) image containing (or not) QR codes.
- points
-
Output vector of vector of vertices of the minimum-area quadrangle containing the codes.
QRCodeDetector_detectMulti ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
QRCodeDetector_decodeMulti
Signature: ([phys] img(l2,c2,r2); [phys] points(l3,c3,r3); byte [o,phys] res(); QRCodeDetectorWrapper * self; [o] vector_StringWrapper * decoded_info; [o] vector_MatWrapper * straight_qrcode)
Decodes QR codes in image once it's found by the detect() method.
($decoded_info,$straight_qrcode,$res) = $obj->decodeMulti($img,$points);
Parameters:
- img
-
grayscale or color (BGR) image containing QR codes.
- decoded_info
-
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.
- points
-
vector of Quadrangle vertices found by detect() method (or some other algorithm).
- straight_qrcode
-
The optional output vector of images containing rectified and binarized QR codes
QRCodeDetector_decodeMulti ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
QRCodeDetector_detectAndDecodeMulti
Signature: ([phys] img(l2,c2,r2); [o,phys] points(l4,c4,r4); byte [o,phys] res(); QRCodeDetectorWrapper * self; [o] vector_StringWrapper * decoded_info; [o] vector_MatWrapper * straight_qrcode)
Both detects and decodes QR codes NO BROADCASTING.
($decoded_info,$points,$straight_qrcode,$res) = $obj->detectAndDecodeMulti($img);
Parameters:
- img
-
grayscale or color (BGR) image containing QR codes.
- decoded_info
-
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.
- points
-
optional output vector of vertices of the found QR code quadrangles. Will be empty if not found.
- straight_qrcode
-
The optional output vector of images containing rectified and binarized QR codes
QRCodeDetector_detectAndDecodeMulti ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
CONSTANTS
- PDL::OpenCV::Objdetect::CASCADE_DO_CANNY_PRUNING()
- PDL::OpenCV::Objdetect::CASCADE_SCALE_IMAGE()
- PDL::OpenCV::Objdetect::CASCADE_FIND_BIGGEST_OBJECT()
- PDL::OpenCV::Objdetect::CASCADE_DO_ROUGH_SEARCH()
- PDL::OpenCV::Objdetect::HOGDescriptor::L2Hys()
- PDL::OpenCV::Objdetect::HOGDescriptor::DEFAULT_NLEVELS()
- PDL::OpenCV::Objdetect::HOGDescriptor::DESCR_FORMAT_COL_BY_COL()
- PDL::OpenCV::Objdetect::HOGDescriptor::DESCR_FORMAT_ROW_BY_ROW()