NAME
Paws::Forecast::CreatePredictor - Arguments for method CreatePredictor on Paws::Forecast
DESCRIPTION
This class represents the parameters used for calling the method CreatePredictor on the Amazon Forecast Service service. Use the attributes of this class as arguments to method CreatePredictor.
You shouldn't make instances of this class. Each attribute should be used as a named argument in the call to CreatePredictor.
SYNOPSIS
my $forecast = Paws->service('Forecast');
my $CreatePredictorResponse = $forecast->CreatePredictor(
FeaturizationConfig => {
ForecastFrequency => 'MyFrequency',
Featurizations => [
{
AttributeName => 'MyName', # min: 1, max: 63
FeaturizationPipeline => [
{
FeaturizationMethodName => 'filling', # values: filling
FeaturizationMethodParameters => {
'MyParameterKey' =>
'MyParameterValue', # key: max: 256, value: max: 256
}, # min: 1, max: 20; OPTIONAL
},
...
], # min: 1, max: 1; OPTIONAL
},
...
], # min: 1, max: 50; OPTIONAL
ForecastDimensions => [
'MyName', ... # min: 1, max: 63
], # min: 1, max: 5; OPTIONAL
},
ForecastHorizon => 1,
InputDataConfig => {
DatasetGroupArn => 'MyArn', # max: 256
SupplementaryFeatures => [
{
Name => 'MyName', # min: 1, max: 63
Value => 'MyValue', # max: 256
},
...
], # min: 1, max: 2; OPTIONAL
},
PredictorName => 'MyName',
AlgorithmArn => 'MyArn', # OPTIONAL
AutoMLOverrideStrategy => 'LatencyOptimized', # OPTIONAL
EncryptionConfig => {
KMSKeyArn => 'MyKMSKeyArn', # max: 256
RoleArn => 'MyArn', # max: 256
}, # OPTIONAL
EvaluationParameters => {
BackTestWindowOffset => 1,
NumberOfBacktestWindows => 1,
}, # OPTIONAL
ForecastTypes => [ 'MyForecastType', ... ], # OPTIONAL
HPOConfig => {
ParameterRanges => {
CategoricalParameterRanges => [
{
Name => 'MyName', # min: 1, max: 63
Values => [
'MyValue', ... # max: 256
], # min: 1, max: 20
},
...
], # min: 1, max: 20; OPTIONAL
ContinuousParameterRanges => [
{
MaxValue => 1,
MinValue => 1,
Name => 'MyName', # min: 1, max: 63
ScalingType => 'Auto'
, # values: Auto, Linear, Logarithmic, ReverseLogarithmic; OPTIONAL
},
...
], # min: 1, max: 20; OPTIONAL
IntegerParameterRanges => [
{
MaxValue => 1,
MinValue => 1,
Name => 'MyName', # min: 1, max: 63
ScalingType => 'Auto'
, # values: Auto, Linear, Logarithmic, ReverseLogarithmic; OPTIONAL
},
...
], # min: 1, max: 20; OPTIONAL
}, # OPTIONAL
}, # OPTIONAL
PerformAutoML => 1, # OPTIONAL
PerformHPO => 1, # OPTIONAL
Tags => [
{
Key => 'MyTagKey', # min: 1, max: 128
Value => 'MyTagValue', # max: 256
},
...
], # OPTIONAL
TrainingParameters => {
'MyParameterKey' => 'MyParameterValue', # key: max: 256, value: max: 256
}, # OPTIONAL
);
# Results:
my $PredictorArn = $CreatePredictorResponse->PredictorArn;
# Returns a L<Paws::Forecast::CreatePredictorResponse> object.
Values for attributes that are native types (Int, String, Float, etc) can passed as-is (scalar values). Values for complex Types (objects) can be passed as a HashRef. The keys and values of the hashref will be used to instance the underlying object. For the AWS API documentation, see https://docs.aws.amazon.com/goto/WebAPI/forecast/CreatePredictor
ATTRIBUTES
AlgorithmArn => Str
The Amazon Resource Name (ARN) of the algorithm to use for model training. Required if PerformAutoML
is not set to true
.
Supported algorithms:
arn:aws:forecast:::algorithm/ARIMA
arn:aws:forecast:::algorithm/CNN-QR
arn:aws:forecast:::algorithm/Deep_AR_Plus
arn:aws:forecast:::algorithm/ETS
arn:aws:forecast:::algorithm/NPTS
arn:aws:forecast:::algorithm/Prophet
AutoMLOverrideStrategy => Str
Used to overide the default AutoML strategy, which is to optimize predictor accuracy. To apply an AutoML strategy that minimizes training time, use LatencyOptimized
.
This parameter is only valid for predictors trained using AutoML.
Valid values are: "LatencyOptimized"
EncryptionConfig => Paws::Forecast::EncryptionConfig
An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.
EvaluationParameters => Paws::Forecast::EvaluationParameters
Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.
REQUIRED FeaturizationConfig => Paws::Forecast::FeaturizationConfig
The featurization configuration.
REQUIRED ForecastHorizon => Int
Specifies the number of time-steps that the model is trained to predict. The forecast horizon is also called the prediction length.
For example, if you configure a dataset for daily data collection (using the DataFrequency
parameter of the CreateDataset operation) and set the forecast horizon to 10, the model returns predictions for 10 days.
The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of the TARGET_TIME_SERIES dataset length.
ForecastTypes => ArrayRef[Str|Undef]
Specifies the forecast types used to train a predictor. You can specify up to five forecast types. Forecast types can be quantiles from 0.01 to 0.99, by increments of 0.01 or higher. You can also specify the mean forecast with mean
.
The default value is ["0.10", "0.50", "0.9"]
.
HPOConfig => Paws::Forecast::HyperParameterTuningJobConfig
Provides hyperparameter override values for the algorithm. If you don't provide this parameter, Amazon Forecast uses default values. The individual algorithms specify which hyperparameters support hyperparameter optimization (HPO). For more information, see aws-forecast-choosing-recipes.
If you included the HPOConfig
object, you must set PerformHPO
to true.
REQUIRED InputDataConfig => Paws::Forecast::InputDataConfig
Describes the dataset group that contains the data to use to train the predictor.
PerformAutoML => Bool
Whether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates the algorithms it provides and chooses the best algorithm and configuration for your training dataset.
The default value is false
. In this case, you are required to specify an algorithm.
Set PerformAutoML
to true
to have Amazon Forecast perform AutoML. This is a good option if you aren't sure which algorithm is suitable for your training data. In this case, PerformHPO
must be false.
PerformHPO => Bool
Whether to perform hyperparameter optimization (HPO). HPO finds optimal hyperparameter values for your training data. The process of performing HPO is known as running a hyperparameter tuning job.
The default value is false
. In this case, Amazon Forecast uses default hyperparameter values from the chosen algorithm.
To override the default values, set PerformHPO
to true
and, optionally, supply the HyperParameterTuningJobConfig object. The tuning job specifies a metric to optimize, which hyperparameters participate in tuning, and the valid range for each tunable hyperparameter. In this case, you are required to specify an algorithm and PerformAutoML
must be false.
The following algorithms support HPO:
DeepAR+
CNN-QR
REQUIRED PredictorName => Str
A name for the predictor.
Tags => ArrayRef[Paws::Forecast::Tag]
The optional metadata that you apply to the predictor to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.
The following basic restrictions apply to tags:
Maximum number of tags per resource - 50.
For each resource, each tag key must be unique, and each tag key can have only one value.
Maximum key length - 128 Unicode characters in UTF-8.
Maximum value length - 256 Unicode characters in UTF-8.
If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
Tag keys and values are case sensitive.
Do not use
aws:
,AWS:
, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value hasaws
as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix ofaws
do not count against your tags per resource limit.
TrainingParameters => Paws::Forecast::TrainingParameters
The hyperparameters to override for model training. The hyperparameters that you can override are listed in the individual algorithms. For the list of supported algorithms, see aws-forecast-choosing-recipes.
SEE ALSO
This class forms part of Paws, documenting arguments for method CreatePredictor in Paws::Forecast
BUGS and CONTRIBUTIONS
The source code is located here: https://github.com/pplu/aws-sdk-perl
Please report bugs to: https://github.com/pplu/aws-sdk-perl/issues