NAME

Log::Report - report a problem, pluggable handlers and language support

INHERITANCE

Log::Report
  is an Exporter

SYNOPSIS

# Read section "The Reason for the report" first!!!
# THIS IS THE FIRST RELEASE... please report problems!!!  A few
# things do need to be improved, but all the basics are in already.

# In your main script

use Log::Report;

dispatcher FILE => 'stderr', to => \*STDERR
  , reasons => 'NOTICE-';   # this disp. is automatically added

dispatcher SYSLOG => 'syslog'
  , charset => 'iso-8859-1' # explicit conversions
  , locale => 'en_US';      # overrule user's locale

# in all (other) files
use Log::Report 'my-domain';
report ERROR => __x('gettext string', param => $param, ...)
    if $condition;

# overrule standard behavior for single message with HASH
use Errno qw/ENOMEM/;
report {to => 'syslog', errno => ENOMEM}
  , FAULT => __x"cannot allocate {size} bytes", size => $size;

use Log::Report 'my-domain', syntax => 'SHORT';
error __x('gettext string', param => $param, ...)
    if $condition;

# avoid messages without report level
print __"Hello World", "\n";

fault __x "cannot allocate {size} bytes", size => $size;
fault "cannot allocate $size bytes";  # fails translation

print __xn("found one file", "found {_count} files", @files), "\n";

DESCRIPTION

Handling messages to users can be a hassle, certainly when the same module is used for command-line and in a graphical interfaces, and has to cope with internationalization at the same time; this set of modules tries to simplify this. Log::Report combines gettext features with Log::Dispatch-like features. However, you can also use this module to do only translations or only message dispatching.

Read more about how and why in the "DETAILS" section, below. Especially, you should read about the REASON parameter.

Content of the whole Log::Report package:

. Log::Report

Exports the functions to end-users. To avoid the need to pass around an logger-object to all end-user packages, the singleton object is wrapped in functions.

. Translating

You can use the GNU gettext infrastructure (via MO files handled by Log::Report::Translator::Gettext), or extract strings via PPI (Log::Report::Extract::PerlPPI) into PO files which can be used directly (Log::Report::Lexicon::POTcompact).

. Dispatching

Multiple dispatchers in parallel can be active. Log::Report::Dispatcher takes care that the back-end gets the messages of the severity it needs, translated and in the right character-set.

FUNCTIONS

Report Production and Configuration

dispatcher((TYPE, OPTIONS)|(COMMAND => NAME, [NAMEs]))

    The Log::Report suite has its own dispatcher TYPES, but also connects to external dispatching frame-works. Each need some (minor) conversions, especially with respect to translation of "reasons" of the reports into log-levels as the back-end understands.

    The OPTIONS are a mixture of parameters needed for the Log::Report dispatcher wrapper and the settings of the back-end. See Log::Report::Dispatcher, the documentation for the back-end specific wrappers, and the back-ends for more details.

    Implemented COMMANDs are close, find, list, disable, enable, mode, and needs. The commands are followed by a LIST of dispatcher NAMEs to be address. For mode see section "Run modes"; it requires a MODE argument before the LIST of NAMEs. Non-existing names will be ignored.

    With needs, you only provide a REASON: it will return the list of dispatchers which need to be called in case of a message with the REASON is triggered.

    For both the creation as COMMANDs version of this method, all objects involved are returned as LIST, non-existing ones skipped. In SCALAR context with only one name, the one object is returned.

    Example: play with dispatchers

    dispatcher Log::Dispatcher::File => mylog =>
      , accept   => 'MISTAKE-'              # for wrapper
      , locale   => 'pt_BR'                 # other language
      , filename => 'logfile';              # for back-end
    
    dispatcher close => 'mylog';            # cleanup
    my $obj = dispatcher find => 'mylog'; 
    my @obj = dispatcher list;
    dispatcher disable => 'syslog';
    dispatcher enable => 'mylog', 'syslog'; # more at a time
    dispatcher mode => DEBUG => 'mylog';
    
    my @need_info = dispatcher needs => 'INFO';
    if(dispatcher needs => 'INFO') ...
    
    # Getopt::Long integration: see Log::Report::Dispatcher::mode()
    dispatcher FILE => stderr =>
       to => \*STDERR, mode => 'DEBUG', accept => 'ALL'
          if $debug;

report([HASH-of-OPTIONS], REASON, MESSAGE [,more MESSAGE parts])

    Produce a report for certain REASON. The MESSAGE is a LIST containing strings and Log::Report::Message objects (which are created with the special translation syntax like __x()). The HASH is an optional first parameter, which can be used to influence the dispatchers. The HASH contains any combination of the OPTIONS listed below.

    When syntax = 'SHORT'> is configured, you will also have abbreviations available, where the REASON is the name of the function. See for instance info(). In that case, you loose the chance for OPTIONS.

    Returns is the LIST of dispatchers used to log the MESSAGE. When empty, no back-end has accepted it so the MESSAGE was "lost". Even when no back-end need the message, it program will still exit when there is REASON to.

    Option--Default
    errno   $! or 1
    locale  undef
    to      undef

    . errno => INTEGER

      When the REASON includes the error text (See "Run modes"), you can overrule the error code kept in $!. In other cases, the return code default to 1 (historical UNIX behavior). When the message REASON (combined with the run-mode) is severe enough to stop the program, this value as return code. The use of this option itself will not trigger an die().

    . locale => LOCALE

      Use this specific locale, in stead of the user's preference.

    . to => NAME|ARRAY-of-NAMEs

      Sent the MESSAGE only to the NAMEd dispatchers. Ignore unknown NAMEs. Still, the dispatcher needs to be enabled and accept the REASONs.

    Example: for use of report()

    report TRACE => "start processing now";
    report INFO  => '500: ', __'Internal Server Error';
    
    report {to => 'syslog'}, NOTICE => "started process $$";
    
    # with syntax SHORT
    trace "start processing now";
    warning  __x'Disk {percent%.2f}% full', percent => $p
        if $p > 97;
    
    # error message, overruled to be printed in Brazillian
    report {locale => 'pt_BR'}
        WARNING => __$!;

Abbreviations for report()

The following functions are abbreviations for calls to report(), and available when syntax is SHORT (see import()). You cannot specify additional options to influence the behavior of report(), which are usually not needed anyway.

$obj->alert(MESSAGE)

    Short for report ALERT => MESSAGE

$obj->assert(MESSAGE)

    Short for report ASSERT => MESSAGE

$obj->error(MESSAGE)

    Short for report ERROR => MESSAGE

$obj->failure(MESSAGE)

    Short for report FAILURE => MESSAGE

$obj->fault(MESSAGE)

    Short for report FAULT => MESSAGE

$obj->info(MESSAGE)

    Short for report INFO => MESSAGE

$obj->mistake(MESSAGE)

    Short for report MISTAKE => MESSAGE

$obj->notice(MESSAGE)

    Short for report NOTICE => MESSAGE

$obj->panic(MESSAGE)

    Short for report PANIc => MESSAGE

$obj->trace(MESSAGE)

    Short for report TRACE => MESSAGE

$obj->warning(MESSAGE)

    Short for report WARNING => MESSAGE

Language Translations

N__(MSGID)

    Label to indicate that the string is a text which will be translated later. The function itself does nothing. See also N__w().

    Example: how to use N__()

    my @colors = (N__"red", N__"green", N__"blue");
    my @colors = N__w "red green blue";   # same
    print __ $colors[1];

    Using __(), would work as well my @colors = (__"red", __"green", __"blue"); print $colors[1]; However: this will always create all Log::Report::Message objects, where maybe only one is used.

N__n(SINGLE_MSGID, PLURAL_MSGID)

    Label to indicate that the two MSGIDs are related, the first as single, the seconds as its plural. Only used to find the text fragments to be translated. The function itself does nothing.

    Example: how to use N__n()

    my @save = N__n "save file", "save files";
    my @save = (N__n "save file", "save files");
    my @save = N__n("save file", "save files");
    
    # be warned about SCALARs in prototype!
    print __n @save, $nr_files;  # wrong!
    print __n $save[0], $save[1], $nr_files;

N__w(STRING)

    This extension to the Locale::TextDomain syntax, is a combined qw (list of quoted words) and N__() into a list of translatable words.

    Example: of N__w()

    my @colors = (N__"red", N__"green", N__"blue");
    my @colors = N__w"red green blue";  # same
    print __ $colors[1];

__(MSGID)

    This function (name is two under-score characters) will cause the MSGID to be replaced by the translations when doing the actual output. Returned is one object, which will be used in translation later. Translating is invoked when the object gets stringified.

    If you need OPTIONS, then take __x().

    Example: how to use __()

    print __"Hello World";      # translated into user's language
    print __'Hello World';      # syntax error!
    print __('Hello World');    # ok, translated
    print __"Hello", " World";  # World not translated
    
    my $s = __"Hello World";    # creates object, not yet translated
    print ref $s;               # Log::Report::Message
    print $s;                   # ok, translated
    print $s->toString('fr');   # ok, forced into French

__n(MSGID, PLURAL_MSGID, COUNT, OPTIONS)

    It depends on the value of COUNT (and the selected language) which text will be displayed. When translations can not be performed, then MSGID will be used when COUNT is 1, and PLURAL_MSGSID in other cases. However, some languages have more complex schemes than English.

    OPTIONS are explained in Log::Report::Message::new(). Locale::TextDomain subroutine __n does not have OPTIONS, but they mix with variables.

    Example: how to use __n()

    print __n "one", "more", $a;
    print __n("one", "more", $a), "\n";
    print +(__n "one", "more", $a), "\n";
    print __n "one\n", "more\n", $a;

__nx(MSGID, PLURAL_MSGID, COUNT, OPTIONS, VARIABLES)

    It depends on the value of COUNT (and the selected language) which text will be displayed. See details in __n(). After translation, the VARIABLES will be filled-in.

    OPTIONS are explained in Log::Report::Message::new(). Locale::TextDomain subroutine __nx does not support the OPTIONS, but they look like variables.

    Example: how to use __nx()

    print __nx "one file", "{_count} files", $nr_files;
    print __nx "one file", "{_count} files", @files;
    
    local $" = ', ';
    print __nx "one file: {f}", "{_count} files: {f}", @files, f => \@files;

__x(MSGID, OPTIONS, VARIABLES)

    Translate the MSGID, and then expand the VARIABLES in that string. Of course, translation and expanding is delayed as long as possible. Both OPTIONS and VARIABLES are key-value pairs.

    OPTIONS and VARIABLES are explained in Log::Report::Message::new(). Locale::TextDomain subroutine __x does not support the OPTIONS, but they mix with variables.

__xn(SINGLE_MSGID, PLURAL_MSGID, COUNT, OPTIONS, VARIABLES)

Configuration

$obj->import([DOMAIN], OPTIONS)

    The import is automatically called when the package is compiled. For all packages but one in your distribution, it will only contain the name of the DOMAIN. For one package, it will contain configuration information. These OPTIONS are used for all packages which use the same DOMAIN.

    Option    --Default
    syntax      'REPORT'
    translator  <rescue>

    . syntax => 'REPORT'|'SHORT'

      The SHORT syntax will add the report abbreviations (like function error()) to your name-space. Otherwise, each message must be produced with report().

    . translator => Log::Report::Translator

      Without explicit translator, a dummy translator is used for the domain which will use the untranslated message-id .

    Example: of import

    use Log::Report 'my-domain'    # in each package
     , syntax     => 'SHORT';
    
    use Log::Report 'my-domain'    # in one package
     , translator => Log::Report::Translator::POT->new
        ( lexicon  => '/home/me/locale'  # bindtextdomain
        , charset  => 'UTF-8'            # codeset
        );

Log::Report->translator(TEXTDOMAIN, [TRANSLATOR])

    Returns the translator configured for the TEXTDOMAIN. By default, a translator is configured which does not translate but directly uses the gettext message-ids.

    When a TRANSLATOR is specified, it will be set to be used for the TEXTDOMAIN. When it is undef, the configuration is removed. You can only specify one TRANSLATOR per TEXTDOMAIN.

    Example: use if translator()

    # in three steps
    use Log::Report;
    my $gettext = Log::Report::Translator::POT->new(...);
    Log::Report->translator('my-domain', $gettext);
    
    # in two steps
    use Log::Report;
    Log::Report->translator('my-domain'
      , Log::Report::Translator::POT->new(...));
    
    # in one step
    use Log::Report 'my-domain'
      , translator => Log::Report::Translator::POT->new(...);

DETAILS

Introduction

There are three steps in this story: produce some text on a certain condition, translate it to the proper language, and deliver it in some way to a user. Texts are usually produced by commands like print, die, warn, carp, or croak, which have no way of configuring the way of delivery to the user. Therefore, they are replaced with a single new command: report (with various abbreviations)

Besides, the print/warn/die together produce only three levels of reasons to produce the message: many people manually implement more, like verbose and debug. Syslog has some extra levels as well, like critical. The REASON argument to report() replace them all.

The translations use the beautiful syntax defined by Locale::TextDomain, with some extensions (of course). The main difference is that the actual translations are delayed till the delivery step. This means that the popup in the graphical interface of the user will show the text in the language of the user, say Chinese, but at the same time syslog may write the English version of the text. With a little luck, translations can be avoided.

Background ideas

The following ideas are the base of this implementation:

. simplification

Handling errors and warnings is probably the most labour-intensive task for a programmer: when programs are written correctly, up-to three-quarters of the code is related to testing, reporting, and handling (problem) conditions. Simplifying the way to create reports, simplifies programming and maintenance.

. multiple dispatchers

It is not the location where the (for instance) error occurs determines what will happen with the text, but the main application which uses the the complaining module has control. Messages have a reason. Based on the reason, they can get ignored, send to one, or send to multiple dispatchers (like Log::Dispatch, Log::Log4perl, or UNIX syslog(1))

. delayed translations

The background ideas are that of Locale::TextDomain, based on gettext(). However, the Log::Report infrastructure has a pluggable translation backend. Translations are postponed until the text is dispatched to a user or log-file; the same report can be sent to syslog in (for instance) English and to the user interface in Dutch.

. avoid dupplication

The same message may need to be documented on multiple locations: in web-pages for the graphical interface, in pod for the command-line configuration. The same text may even end-up in pdf user-manuals. When the message is written inside the Perl code, it's quite hard to get it out, to generate these documents. Only an abstract message discription protocol will make flexible re-use possible. This component still needs to be implemented.

Error handling models

There are two approaches to handling errors and warnings. In the first approach, as produced by die, warn and the carp family of commands, the program handles the problem immediately on the location where the problem appears. In the second approach, an exception is thrown on the spot where the problem is created, and then somewhere else in the program the condition is handled.

The implementation of exceptions in Perl5 is done with a eval-die pair: on the spot where the problem occurs, die is called. But, because of the execution of that routine is placed within an eval, the program as a whole will not die, just the execution of a part of the program will seize. However, what if the condition which caused the routine to die is solvable on a higher level? Or what if the user of the code doesn't bother that a part fails, because it has implemented alternatives for that situation? Exception handling is quite clumpsy in Perl5.

The Log::Report set of distributions let modules concentrate on the program flow, and let the main program decide on the report handling model. The infrastructure to translate messages into multiple languages, whether to create exceptions or carp/die, to collect longer explanations with the messages, to log to mail or syslog, and so on, is decided in pluggable back-ends.

The Reason for the report

Traditionally, perl has a very simple view on error reports: you either have a warning or an error. However, it would be much clearer for user's and module-using applications, when a distinction is made between various causes. For instance, a configuarion error is quite different from a disk-full situation. In Log::Report, the produced reports in the code tell what is wrong. The main application defines loggers, which interpret the cause into (syslog) levels.

Defined by Log::Report are

. trace (debug, program)

The message will be used when some logger has debugging enabled. The messages show steps taken by the program, which are of interest by the developers and maintainers of the code, but not for end-users.

. assert (program)

Shows an unexpected condition, but continues to run. When you want the program to abort in such situation, that use panic.

. info (verbose, program)

These messages show larger steps in the execution of the program. Experienced users of the program usually do not want to see all these intermediate steps. Most programs will display info messages (and higher) when some verbose flag is given on the command-line.

. notice (program)

An user may need to be aware of the program's accidental smart behavior, for instance, that it initializes a lasting Desktop directory in your home directory. Notices should be sparse.

. warning (program)

The program encountered some problems, but was able to work around it by smart behavior. For instance, the program does not understand a line from a log-file, but simply skips the line.

. mistake (user)

When a user does something wrong, but what is correctable by smart behavior of the program. For instance, in some configuration file, you can fill-in "yes" or "no", but the user wrote "yeh". The program interprets this as "yes", producing a mistake message as warning.

It is much nicer to tell someone that he/she made a mistake, than to call that an error.

. error (user)

The user did something wrong, which is not automatically correctable or the program is not willing to correct it automatically for reasons of code quality. For instance, an unknown option flag is given on the command-line. These are configuration issues, and have no useful value in $!. The program will be stopped, usually before taken off.

. fault (system)

The program encountered a situation where it has no work-around. For instance, a file cannot be opened to be written. The cause of that problem can be some user error (i.e. wrong filename), or external (you accidentally removed a directory yesterday). In any case, the $! ($ERRNO) variable is set here.

. alert (system)

Some external cause disturbes the execution of the program, but the program stays alive and will try to continue operation. For instance, the connection to the database is lost. After a few attempts, the database can be reached and the program continues as if nothing happend. The cause is external, so $! is set. Usually, a system administrator needs to be informed about the problem.

. failure (system)

Some external cause makes it impossible for this program to continue. $! is set, and usually the system administrator wants to be informed. The program will die.

. panic (program)

All above report classes are expected: some predicitable situation is encountered, and therefore a message is produced. However, programs often do some internal checking. Of course, these conditions should never be triggered, but if they do... then we can only stop.

For instance, in an OO perl module, the base class requires all sub-classes to implement a certain method. The base class will produce a stub method with triggers a panic when called. The non-dieing version of this test assert.

Debugging or being verbose are run-time behaviors, and have nothing directly to do with the type of message which is produced. These two are modes which can be set on the dispatchers: one dispatcher may be more verbose that some other.

On purpose, we do not use the terms die or fatal, because the dispatcher can be configured what to do in cause of which condition. For instance, it may decide to stop execution on warnings as well.

The terms carp and croak are avoided, because the program cause versus user cause distinction (warn vs carp) is reflected in the use of different reasons. There is no need for confess and croak either, because the dispatcher can be configured to produce stack-trace information (for a limited sub-set of dispatchers)

Report levels

Various frameworks used with perl programs define different labels to indicate the reason for the message to be produced.

Perlish  Log::Dispatch      Log4Perl Log::Report
print    0,debug            debug    trace
print    0,debug            debug    assert
print    1,info             info     info
warn\n   2,notice           info     notice
warn     3,warning          warn     mistake
carp     3,warning          warn     warning
die\n    4,error,err        error    error
die      5,critical,crit    fatal    fault
croak    6,alert            fatal    alert  
croak    7,emergency,emerg  fatal    failure
confess  7,emergency,emerg  fatal    panic

A typical perl5 program can look like this

my $dir = '/etc';

File::Spec->file_name is_absolute($dir)
    or die "ERROR: directory name must be absolute.\n";

-d $dir
    or die "ERROR: what platform are you on?";

until(opendir DIR, $dir)
{   warn "ERROR: cannot read system directory $dir: $!";
    sleep 60;
}

print "Processing directory $dir\n"
    if $verbose;

while(defined(my $file = readdir DIR))
{   if($file =~ m/\.bak$/)
    {   warn "WARNING: found backup file $dir/$f\n";
        next;
    }

    die "ERROR: file $dir/$file is binary"
        if $debug && -B "$dir/$file";

    print "DEBUG: processing file $dir/$file\n"
        if $debug;

    open FILE, "<", "$dir/$file"
        or die "ERROR: cannot read from $dir/$f: $!";

    close FILE
        or croak "ERROR: read errors in $dir/$file: $!";
}

Where die, warn, and print are used for various tasks. With Log::Report, you would write

use Log::Report syntax => 'SHORT';
dispatcher stderr => 'FILE', mode => 'DEBUG', to => \*STDERR;

my $dir = '/etc';

File::Spec->file_name is_absolute($dir)
    or mistake "directory name must be absolute";

-d $dir
    or panic "what platform are you on?";

until(opendir DIR, $dir)
{   alert "cannot read system directory $dir";
    sleep 60;
}

info "Processing directory $dir";

while(defined(my $file = readdir DIR))
{   if($file =~ m/\.bak$/)
    {   notice "found backup file $dir/$f";
        next;
    }

    assert "file $dir/$file is binary"
        if -B "$dir/$file";

    trace "processing file $dir/$file";

    unless(open FILE, "<", "$dir/$file")
    {   error "no permission to read from $dir/$f"
            if $!==ENOPERM;
        fault "unable to read from $dir/$f";
    }

    close FILE
        or failure "read errors in $dir/$file";
}

A lot of things are quite visibly different, and there are a few smaller changes. There is no need for a new-line after the text of the message. When applicable (error about system problem), then the $! is added automatically.

The distinction between error and fault is a bit artificial her, just to demonstrate the difference between the two. In this case, I want to express very explicitly that the user made an error by passing the name of a directory in which a file is not readible. In the common case, the user is not to blame and we can use fault.

Run modes

The run-mode change which messages are passed to a dispatcher, but from a different angle than the dispatch filters; the mode changes behavioral aspects of the messages, which are described in detail in "Processing the message" in Log::Report::Dispatcher. However, it should behave as you expect: the DEBUG mode shows more than the VERBOSe mode, and both show more than the NORMAL mode.

Example: extract run mode from Getopt::Long

The GetOptions() function will count the number of v options on the command-line when a + is after the option name.

use Log::Report syntax => 'SHORT';
use Getopt::Long qw(:config no_ignore_case bundling);

my $mode;    # defaults to NORMAL
GetOptions 'v+'        => \$mode
         , 'verbose=i' => \$mode
         , 'mode=s'    => \$mode
    or exit 1;

dispatcher FILE => 'stderr', to => \*STDERR, mode => $mode;

Now, -vv will set $mode to 2, as will --verbose 2 and --verbose=2 and --mode=ASSERT. Of course, you do not need to provide all these options to the user: make a choice.

Example: the mode of a dispatcher

my $mode = dispatcher(find => 'myname')->mode;

Example: run-time change mode of a dispatcher

To change the running mode of the dispatcher, you can do dispatcher mode => DEBUG => 'myname';

However, be warned that this does not change the types of messages accepted by the dispatcher! So: probably you will not receive the trace, assert, and info messages after all. So, probably you need to replace the dispatcher with a new one with the same name: dispatcher FILE => 'myname', to => ..., mode => 'DEBUG';

This may reopen connections (depends on the actual dispatcher), which might be not what you wish to happend. In that case, you must take the following approach:

# at the start of your program
dispatcher FILE => 'myname', to => ...
   , accept => 'ALL';    # overrule the default 'NOTICE-' !!

# now it works
dispatcher mode => DEBUG => 'myname';    # debugging on
...
dispatcher mode => NORMAL => 'myname';   # debugging off

Of course, this comes with a small overall performance penalty.

Comparison

Log::Dispatch and Log::Log4perl

The two major logging frameworks for Perl are Log::Dispatch and Log::Log4perl; both provide a pluggable logging interface.

Both frameworks do not have (gettext or maketext) language translation support, which has various concequences. When you wish for to report in some other language, it must be translated before the logging function is called. This may mean that an error message is produced in Chinese, and therefore also ends-up in the syslog file in Chinese. When this is not your language, you have a problem.

Log::Report translates only in the back-end, which means that the user may get the message in Chinese, but you get your report in your beloved Dutch. When no dispatcher needs to report the message, then no time is lost in translating.

With both logging frameworks, you use terminology comparible to syslog: the module programmer determines the seriousness of the error message, not the application which integrates multiple modules. This is the way perl programs usually work, but often the cause for inconsequent user interaction.

Locale::gettext and Locate::TextDomain

Both on GNU gettext based implementations can be used as translation frameworks. Locale::TextDomain syntax is supported, with quite some extensions. Read the excellent documentation of Locale::Textdomain. Only the tried access via $__ and %__ are not supported.

The main difference with these modules is the moment when the translation takes place. In Locale::TextDomain, an __x() will result in an immediate translation request via gettext(). Log::Report's version of __x() will only capture what needs to be translated in an object. When the object is used in a print statement, only then the translation will take place. This is needed to offer ways to send different translations of the message to different destinations.

To be able to postpone translation, objects are returned which stringify into the translated text.

DIAGNOSTICS

Error: in SCALAR context, only one dispatcher name accepted

The dispatcher() method returns the Log::Report::Dispatcher objects which it has accessed. When multiple names where given, it wishes to return a LIST of objects, not the count of them.

SEE ALSO

This module is part of Log-Report distribution version 0.01, built on May 25, 2007. Website: http://perl.overmeer.net/logreport/

LICENSE

Copyrights 2007 by Mark Overmeer. For other contributors see ChangeLog.

This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself. See http://www.perl.com/perl/misc/Artistic.html