NAME
ICC::Shared - Parent class for ICC::Profile and ICC::Support modules.
SYNOPSIS
use parent 'ICC::Shared'; # add as parent class (to another module)
use ICC::Shared; # export all functions and constants
use ICC::Shared qw(Lab2xyz xyz2Lab D50); # export selected functions and a constant
# copy an object
$clone = $obj->copy(); # copy an object
@clones = $obj->copy(4); # make an array of 4 copies
# store an object
$flag = $obj->store($file_path); # store serialized object
# print object structure
$obj->dump();
$obj->dump($format);
# Math::Matrix additions
$matrix->sdump([$format]); # print object contents to string
$matrix->dump([$format]); # print object contents
$matrix2 = $matrix->power($exponent); # exponentiate matrix elements, exponent may be a scalar or vector
$matrix2 = $matrix->xyz2XYZ([$XYZ_white_point]); # convert matrix working space from xyz to XYZ
$matrix2 = $matrix->XYZ2xyz([$XYZ_white_point]); # convert matrix working space from XYZ to xyz
# color encoding functions
@Lab = xyz2Lab(@xyz); @xyz = Lab2xyz(@Lab); # array
$Lab = xyz2Lab($xyz); $xyz = Lab2xyz($Lab); # vector, matrix, array structure
@Lxyz = xyz2Lxyz(@xyz); @xyz = Lxyz2xyz(@Lxyz); # array
$Lxyz = xyz2Lxyz($xyz); $xyz = Lxyz2xyz($Lxyz); # vector, matrix, array structure
@Lab = Lxyz2Lab(@Lxyz); @Lxyz = Lab2Lxyz(@Lab); # array
$Lab = Lxyz2Lab($Lxyz); $Lxyz = Lab2Lxyz($Lab); # vector, matrix, array structure
@Lab = XYZ2Lab(@XYZ); @XYZ = Lab2XYZ(@Lab); # array (D50)
$Lab = XYZ2Lab($XYZ); $XYZ = Lab2XYZ($Lab); # vector, matrix, array structure (D50)
@Lab = XYZ2Lab(@XYZ, $wtpt); @XYZ = Lab2XYZ(@Lab, $wtpt); # array
$Lab = XYZ2Lab($XYZ, $wtpt); $XYZ = Lab2XYZ($Lab, $wtpt); # vector, matrix, array structure
@Lxyz = XYZ2Lxyz(@XYZ); @XYZ = Lxyz2XYZ(@Lxyz); # array (D50)
$Lxyz = XYZ2Lxyz($XYZ); $XYZ = Lxyz2XYZ($Lxyz); # vector, matrix, array structure (D50)
@Lxyz = XYZ2Lxyz(@XYZ, $wtpt); @XYZ = Lxyz2XYZ(@Lxyz, $wtpt); # array
$Lxyz = XYZ2Lxyz($XYZ, $wtpt); $XYZ = Lxyz2XYZ($Lxyz, $wtpt); # vector, matrix, array structure
@XYZ = xyz2XYZ(@xyz); @xyz = XYZ2xyz(@XYZ); # array (D50)
$XYZ = xyz2XYZ($xyz); $xyz = XYZ2xyz($XYZ); # vector, matrix, array structure (D50)
@XYZ = xyz2XYZ(@xyz, $wtpt); @xyz = XYZ2xyz(@XYZ, $wtpt); # array
$XYZ = xyz2XYZ($xyz, $wtpt); $xyz = XYZ2xyz($XYZ, $wtpt); # vector, matrix, array structure
@xyY = XYZ2xyY(@XYZ); @XYZ = xyY2XYZ(@xyY); # array
$xyY = XYZ2xyY($XYZ); $XYZ = xyY2XYZ($xyY); # vector, matrix, array structure
$L = x2L($x); $x = L2x($L); # CIE L* function
$dLdx = dLdx($x); $dxdL = dxdL($L); derivative of CIE L* function
$jac = xyz2Lab_jac($xyz); # Jacobian matrix of xyz2Lab function
$jac = Lab2xyz_jac($Lab); # Jacobian matrix of Lab2xyz function
$W = XYZ2W(@XYZ, $wtpt); # CIE Whiteness
$dwv = xyz2dwv($xyz); # density weighted value
# color difference functions
$dE = dEab(@Lab1, @Lab2); # CIE ∆E*ab color difference
$dE = dE94(@Lab1, @Lab2); # CIE ∆E94 color difference
$dE = dE00(@Lab1, @Lab2); # CIE ∆E00 color difference
$dE = dE99(@Lab1, @Lab2); # DIN99 color difference
$dE = dE99(@Lab1, @Lab2, Ke, Kch); # DIN99 color difference
$dE = dEcmc(@Lab1, @Lab2); # CMC(l:c) color difference
$dE = dEcmc(@Lab1, @Lab2, l, c); # CMC(l:c) color difference
($dL, $dCh) = dLCh(@Lab1, @Lab2); # ∆L*, ∆Ch – G7 grayscale compliance
($dL, $da, $db) = dLab(@Lab1, @Lab2); # simple color difference
# illuminant functions
($cct, $err) = CCT($x, $y); # correlated color temperature
$cct = CCT2($x, $y); # correlated color temperature using McCamy's approximation
$rad = bbrad($nm, $T); # black body radiance using Planck's law
($x, $y) = bbxy($T); # chromaticity of black body radiator
($u, $v) = bbuv($T); CIE UCS 1960 of black body radiator
($u, $v) = XYZ2ucs(@XYZ); # CIE UCS 1960
($u, $v) = xy2ucs(@xy); # CIE UCS 1960
($range, $spd) = daylight($cct); range and SPD of daylight
# interpolation functions
$vec_out = linear($vec_in, $range_in, $range_out); # interpolate a vector (linear)
$matrix = linear_matrix($range_in, $range_out); # make interpolating matrix (linear)
$vec_out = cspline($vec_in, $range_in, $range_out); # interpolate a vector (natural cubic spline)
$matrix = cspline_matrix($range_in, $range_out); # make interpolating matrix (natural cubic spline)
$vec_out = lagrange($vec_in, $range_in, $range_out); # interpolate a vector (Lagrange, ASTM E 2022)
$matrix = lagrange_matrix($range_in, $range_out); # make interpolating matrix (Lagrange, ASTM E 2022)
# vector functions
$scalar = dotProduct($vec1, $vec2); # vector dot product
$vector = crossProduct($vec1, $vec2); # vector cross product
# utility functions
$vector = flatten($structure); # flatten an array structure
clip_struct($structure); # clip each element of an array structure
$integer = round($value); # round off value to nearest integer (+/-)
$vector = s15f162v($s15f16); # convert from s15Fixed16Number vector
$s15f16 = v2s15f16($vector); # convert to s15Fixed16Number vector
(profiles_folder_path, directory_segs, customer, job) = makeProfileFolder(file/folder_path); # make folder for profiles
(profiles_folder_path, directory_segs, customer, job) = makeProfileFolder(file/folder_path, alias_folder_path);
$path = getICCPath(); # get path to 'ICC' distribution folder
$path = getICCPath('Data'); # get path to 'ICC' distribution 'Data' folder
$path = getICCPath('Data/ASTM_E308_data.yml'); # get path to 'ICC' distribution 'ASTM_E308_data.yml' file
filterPath($path); # interpret '~' and '\' in file paths
setFile(path_to_file, creator, type); # set Mac OSX creator and file type (deprecated by Apple)
$array_ref = parse_tokens($token_string); # splits string into tokens, and parses any parameters
# parameter testing functions
$flag = is_vector($vec); # test if parameter is a vector (values may be numeric or undef)
$flag = is_num_vector($vec); # test if parameter is a vector (values must be numeric)
$flag = is_matrix($mat); # test if parameter is a matrix (values may be numeric or undef)
$flag = is_num_matrix($mat); # test if parameter is a matrix (values must be numeric)
# constants
D50 – D50 illuminant XYZ values (CIE 1931 2 degree observer)
d50 – D50 illuminant XYZ values, encoded as 32-bit ICC XYZNumber
d50P – D50 illuminant XYZ values, encoded as 16-bit ICC XYZ
PI – circumference of a unit circle, approximately 3.14159
radian – degrees in a radian, approximately 57.29578
ln10 – natural logarithm of 10, approximately 2.30258
DESCRIPTION
ICC::Shared is a parent class for all ICC::Profile and ICC::Support modules. It includes a collection of useful functions and constants.
Data structure and functions
Many functions provided by this module take color data for their input. All of these functions will take an array as input. Some functions will also take vector, matrix and array structure inputs, as noted in the Usage section. Here are examples of the various data structures,
@list = (50, 20, 20); # single sample, an array, also known as a list
$vector = [50, 20, 20]; # single sample, a vector
$matrix = [
[50, 20, 20],
[50, 20, 20],
[50, 20, 20],
]; # multiple samples, a matrix, also known as a 2-D array
$struct = [
[50, 20, 20],
[
[50, 20, 20],
[50, 20, 20],
]
]; # multiple samples, an array structure
Functions that take vector, matrix and array structure inputs will return the same data type and structure.
Color spaces
There are many ways to encode colorimetric measurements. These are normally called color spaces.
The basic calculation of colorimetry from spectral measurements produces so-called tristimulus values – the CIE XYZ color space. By convention, the XYZ values of an illuminant are scaled so that the Y-value is 100. A perfectly white reference sample will have the same XYZ values as the illuminant.
When the XYZ values of a sample are divided by the XYZ values of the illuminant, the result is xyz values (lower case), which normally range from 0 - 1 (unless there is fluorescence).
In 1976, the CIE standardized a perceptually uniform color space called CIE L*a*b*. The transformation from xyz to L*a*b* is non-linear. The x, y and z values are passed through an identical non-linear transform. The transformed y value is known as L* or lightness. The a* and b* values are computed from the difference between the transformed y value, and the the transformed x and z values.
The intermediate L*a*b* calculation, where x, y and z are transformed non-linearly, is often useful. This is called Lxyz color space. It is not a CIE standard color space.
The color encoding functions below convert all 12 combinations of these color spaces – XYZ, xyz, L*a*b* and Lxyz. The 6 functions involving XYZ require the illuminant white point. If this is omitted, D50 illuminant is used.
Sometimes XYZ values are converted to chromaticity values, or xyY color space. The x and y values indicate color, and the Y value Lightness. This color space is generally used for illuminants.
METHODS
Common methods
copy
This method copies (clones) an object. The copies are separate objects.
Usage
$clone = $obj->copy(); # copy an object
@clones = $obj->copy(4); # make an array of 4 copies
Examples
use ICC::Profile;
$curve = ICC::Profile::curv->new([0, 1]); # make a 'curv' object
$curve_set = ICC::Profile::cvst->new([$curve->copy(4)]); # make a 'cvst' object
store
This method stores an object using the 'Storable::store' function.
Usage
$flag = $obj->store($file_path); # store serialized object
$obj = Storable::retrieve($file_path); # retrieve the object
dump
This method prints the structure of an object.
Usage
$obj->dump();
$obj->dump($format);
Examples
use ICC::Profile;
$profile = ICC::Profile->new('~/Desktop/my_profile.icc'); # make a 'Profile' object
$profile->dump(); # print the object structure
Math::Matrix additions
A few methods are appended to the standard Math::Matrix module. Rather than subclass a new module, we just put them in the Math::Matrix name space.
sdump
print object contents to string
dump
print object contents
clip
clip matrix elements
power
exponentiate matrix elements
xyz2XYZ, XYZ2xyz
convert matrix working space between xyz and XYZ
FUNCTIONS
Color encoding functions
xyz2Lab, Lab2xyz
These functions convert between xyz and L*a*b* encoding.
Usage
@Lab = xyz2Lab(@xyz); @xyz = Lab2xyz(@Lab); # array
$Lab = xyz2Lab($xyz); $xyz = Lab2xyz($Lab); # vector, matrix, array structure
Examples
use ICC::Profile;
$chart = ICC::Support::Chart->new(''~/Desktop/GRACoL2006_Coated1_CGATS.txt'); # make a 'Chart' object
$xyz = $chart->xyz([], {'encoding' => 9}); # get all xyz data
$Lab = xyz2Lab($xyz); # convert xyz matrix to L*a*b* encoding
$xyz_rt = Lab2xyz($Lab); # convert back to xyz encoding
$vector = xyz2Lab($xyz->[0]); # convert a vector
@array = xyz2Lab(@{$xyz->[0]}); # convert an array
xyz2Lxyz, Lxyz2xyz
These functions convert between xyz and Lxyz encoding.
Usage
@Lxyz = xyz2Lxyz(@xyz); @xyz = Lxyz2xyz(@Lxyz); # array
$Lxyz = xyz2Lxyz($xyz); $xyz = Lxyz2xyz($Lxyz); # vector, matrix, array structure
Examples
use ICC::Profile;
$chart = ICC::Support::Chart->new(''~/Desktop/GRACoL2006_Coated1_CGATS.txt'); # make a 'Chart' object
$xyz = $chart->xyz([], {'encoding' => 9}); # get all xyz data
$Lxyz = xyz2Lxyz($xyz); # convert xyz matrix to Lxyz encoding
$xyz_rt = Lxyz2xyz($Lxyz); # convert back to xyz encoding
$vector = xyz2Lxyz($xyz->[0]); # convert a vector
@array = xyz2Lxyz(@{$xyz->[0]}); # convert an array
Lab2Lxyz, Lxyz2Lab
These functions convert between L*a*b* and Lxyz encoding.
Usage
@Lxyz = Lab2Lxyz(@Lab); @Lab = Lxyz2Lab(@Lxyz); # array
$Lxyz = Lab2Lxyz($Lab); $Lab = Lxyz2Lab($Lxyz); # vector, matrix, array structure
Examples
use ICC::Profile;
$chart = ICC::Support::Chart->new(''~/Desktop/GRACoL2006_Coated1_CGATS.txt'); # make a 'Chart' object
$Lab = $chart->Lab([]); # get all L*a*b* data
$Lxyz = Lab2Lxyz($Lab); # convert L*a*b* matrix to Lxyz encoding
$Lab_rt = Lxyz2Lab($Lxyz); # convert back to L*a*b* encoding
$vector = Lab2Lxyz($Lab->[0]); # convert a vector
@array = Lab2Lxyz(@{$Lab->[0]}); # convert an array
XYZ2Lab, Lab2XYZ
These functions convert between XYZ and L*a*b* encoding.
Usage
@Lab = XYZ2Lab(@XYZ); @XYZ = Lab2XYZ(@Lab); # array (D50)
$Lab = XYZ2Lab($XYZ); $XYZ = Lab2XYZ($Lab); # vector, matrix, array structure (D50)
@Lab = XYZ2Lab(@XYZ, $wtpt); @XYZ = Lab2XYZ(@Lab, $wtpt); # array
$Lab = XYZ2Lab($XYZ, $wtpt); $XYZ = Lab2XYZ($Lab, $wtpt); # vector, matrix, array structure
Examples
use ICC::Profile;
$chart = ICC::Support::Chart->new(''~/Desktop/GRACoL2006_Coated1_CGATS.txt'); # make a 'Chart' object
$XYZ = $chart->xyz([]); # get all XYZ data
# illuminant is D50 (default)
$Lab = XYZ2Lab($XYZ); # convert XYZ matrix to L*a*b* encoding
$XYZ_rt = Lab2XYZ($Lab); # convert back to XYZ encoding
$vector = XYZ2Lab($XYZ->[0]); # convert a vector
@array = XYZ2Lab(@{$XYZ->[0]}); # convert an array
# get F11 illuminant white point
$color = ICC::Support::Color->new({'illuminant' => 'F11'});
$wtpt = $color->iwtpt();
# illuminant is F11 (see note 1)
$Lab = XYZ2Lab($XYZ, $wtpt); # convert XYZ matrix to L*a*b* encoding
$XYZ_rt = Lab2XYZ($Lab, $wtpt); # convert back to XYZ encoding
$vector = XYZ2Lab($XYZ->[0], $wtpt); # convert a vector
@array = XYZ2Lab(@{$XYZ->[0]}, $wtpt); # convert an array
These L*a*b* values are computed per CIE 15. Be aware that the PCS for ICC profiles is always D50, and that non-D50 XYZ values are transformed to D50 using a CAT (Chromatic Adaptation Transform) before converting to L*a*b*. See Annex E of the ICC specification for an explanation. A CAT may be created directly using the ICC::Profile::matf module, or as a hash option in ICC::Support::Chart.
XYZ2Lxyz, Lxyz2XYZ
These functions convert between XYZ and Lxyz encoding.
Usage
@Lxyz = XYZ2Lxyz(@XYZ); @XYZ = Lxyz2XYZ(@Lxyz); # array (D50)
$Lxyz = XYZ2Lxyz($XYZ); $XYZ = Lxyz2XYZ($Lxyz); # vector, matrix, array structure (D50)
@Lxyz = XYZ2Lxyz(@XYZ, $wtpt); @XYZ = Lxyz2XYZ(@Lxyz, $wtpt); # array
$Lxyz = XYZ2Lxyz($XYZ, $wtpt); $XYZ = Lxyz2XYZ($Lxyz, $wtpt); # vector, matrix, array structure
Examples
use ICC::Profile;
$chart = ICC::Support::Chart->new(''~/Desktop/GRACoL2006_Coated1_CGATS.txt'); # make a 'Chart' object
$XYZ = $chart->xyz([]); # get all XYZ data
# illuminant is D50 (default)
$Lxyz = XYZ2Lxyz($XYZ); # convert XYZ matrix to Lxyz encoding
$XYZ_rt = Lxyz2XYZ($Lxyz); # convert back to XYZ encoding
$vector = XYZ2Lxyz($XYZ->[0]); # convert a vector
@array = XYZ2Lxyz(@{$XYZ->[0]}); # convert an array
# get F11 illuminant white point
$color = ICC::Support::Color->new({'illuminant' => 'F11'});
$wtpt = $color->iwtpt();
# illuminant is F11 (see note 1)
$Lxyz = XYZ2Lxyz($XYZ, $wtpt); # convert XYZ matrix to Lxyz encoding
$XYZ_rt = Lxyz2XYZ($Lxyz, $wtpt); # convert back to XYZ encoding
$vector = XYZ2Lxyz($XYZ->[0], $wtpt); # convert a vector
@array = XYZ2Lxyz(@{$XYZ->[0]}, $wtpt); # convert an array
These Lxyz values are computed per CIE 15. Be aware that the PCS for ICC profiles is always D50, and that non-D50 XYZ values are transformed to D50 using a CAT (Chromatic Adaptation Transform) before converting to Lxyz. See Annex E of the ICC specification for an explanation. A CAT may be created directly using the ICC::Profile::matf module, or as a hash option in ICC::Support::Chart.
XYZ2xyz, xyz2XYZ
These functions convert between XYZ and xyz encoding.
Usage
@xyz = XYZ2xyz(@XYZ); @XYZ = xyz2XYZ(@xyz); # array (D50)
$xyz = XYZ2xyz($XYZ); $XYZ = xyz2XYZ($xyz); # vector, matrix, array structure (D50)
@xyz = XYZ2xyz(@XYZ, $wtpt); @XYZ = xyz2XYZ(@xyz, $wtpt); # array
$xyz = XYZ2xyz($XYZ, $wtpt); $XYZ = xyz2XYZ($xyz, $wtpt); # vector, matrix, array structure
Examples
use ICC::Profile;
$chart = ICC::Support::Chart->new(''~/Desktop/GRACoL2006_Coated1_CGATS.txt'); # make a 'Chart' object
$XYZ = $chart->xyz([]); # get all XYZ data
# illuminant is D50 (default)
$xyz = XYZ2xyz($XYZ); # convert XYZ matrix to xyz encoding
$XYZ_rt = xyz2XYZ($xyz); # convert back to XYZ encoding
$vector = XYZ2xyz($XYZ->[0]); # convert a vector
@array = XYZ2xyz(@{$XYZ->[0]}); # convert an array
# get F11 illuminant white point
$color = ICC::Support::Color->new({'illuminant' => 'F11'});
$wtpt = $color->iwtpt();
# illuminant is F11 (see note 1)
$xyz = XYZ2xyz($XYZ, $wtpt); # convert XYZ matrix to xyz encoding
$XYZ_rt = xyz2XYZ($xyz, $wtpt); # convert back to XYZ encoding
$vector = XYZ2xyz($XYZ->[0], $wtpt); # convert a vector
@array = XYZ2xyz(@{$XYZ->[0]}, $wtpt); # convert an array
These xyz values are computed per CIE 15. Be aware that the PCS for ICC profiles is always D50, and that non-D50 XYZ values are transformed to D50 using a CAT (Chromatic Adaptation Transform) before converting to xyz. See Annex E of the ICC specification for an explanation. A CAT may be created directly using the ICC::Profile::matf module, or as a hash option in ICC::Support::Chart.
XYZ2xyY, xyY2XYZ
These functions convert between XYZ and xyY encoding. The x and y values are called chromaticity coordinates, and are often shown on a chromaticity diagram. See https://en.wikipedia.org/wiki/File:CIE1931xy_blank.svg.
Usage
@xyY = XYZ2xyY(@XYZ); @XYZ = xyY2XYZ(@xyY); # array
$xyY = XYZ2xyY($XYZ); $XYZ = xyY2XYZ($xyY); # vector, matrix, array structure
Examples
use ICC::Profile;
$chart = ICC::Support::Chart->new(''~/Desktop/GRACoL2006_Coated1_CGATS.txt'); # make a 'Chart' object
$XYZ = $chart->xyz([]); # get all XYZ data
$xyY = XYZ2xyY($XYZ); # convert XYZ matrix to xyY encoding
$XYZ_rt = xyY2XYZ($xyY); # convert back to XYZ encoding
$vector = XYZ2xyY($XYZ->[0]); # convert a vector
@array = XYZ2xyY(@{$XYZ->[0]}); # convert an array
x2L, L2x
These functions convert between linear and CIE L* encoding.
Usage
$L = x2L($x); $x = L2x($L); # CIE L* function
Examples
use ICC::Profile;
$chart = ICC::Support::Chart->new(''~/Desktop/GRACoL2006_Coated1_CGATS.txt'); # make a 'Chart' object
$xyz = $chart->xyz([], {'encoding' => 9}); # get all xyz data
$L = x2L($xyz->[99][1]); # compute L* value of sample 99
$y = L2x($L); # convert back to y value
dLdx, dxdL
These functions compute the derivatives of the CIE L* function and its inverse.
Usage
$dLdx = dLdx($x); $dxdL = dxdL($L); derivative of CIE L* function
Examples
xyz2Lab_jac, Lab2xyz_jac
These functions compute the Jacobian matrix of the xyz2Lab
and Lab2xyz
functions.
Usage
$jac = xyz2Lab_jac($xyz); # Jacobian matrix of xyz2Lab function
$jac = Lab2xyz_jac($Lab); # Jacobian matrix of Lab2xyz function
Examples
XYZ2W
This function computes the CIE Whiteness value.
Usage
$W = XYZ2W(@XYZ, $wtpt); # CIE Whiteness
Examples
xyz2dwv
This function computes the density weighted value.
Usage
$dwv = xyz2dwv($xyz); # density weighted value
Examples
Color difference functions
dEab
This function computes the CIE ∆E*ab color difference.
Usage
$dE = dEab(@Lab1, @Lab2); # CIE ∆E*ab color difference
Examples
dE94
This function computes the CIE ∆E94 color difference.
Usage
$dE = dE94(@Lab1, @Lab2); # CIE ∆E94 color difference
Examples
dE00
This function computes the CIE ∆E00 color difference.
Usage
$dE = dE00(@Lab1, @Lab2); # CIE ∆E00 color difference
Examples
dE99
This function computes the DIN99 color difference
Usage
$dE = dE99(@Lab1, @Lab2); # DIN99 color difference
$dE = dE99(@Lab1, @Lab2, Ke, Kch); # DIN99 color difference
Examples
dEcmc
This function computes the CMC(l:c) color difference.
Usage
$dE = dEcmc(@Lab1, @Lab2); # CMC(l:c) color difference
$dE = dEcmc(@Lab1, @Lab2, l, c); # CMC(l:c) color difference
Examples
dLCh
This function computes ∆L*, ∆Ch, as used to determine G7 grayscale compliance
Usage
($dL, $dCh) = dLCh(@Lab1, @Lab2); # ∆L*, ∆Ch
Examples
dLab
This function computes simple color differences, ∆L*, ∆a*, ∆b*
Usage
($dL, $da, $db) = dLab(@Lab1, @Lab2);
Examples
Illuminant functions
CCT
This function computes the correlated color temperature of an illuminant, and the black body error value.
Usage
($cct, $err) = CCT($x, $y); # correlated color temperature
Examples
CCT2
This function computes the correlated color temperature of an illuminant using McCamy's approximation.
Usage
$cct = CCT2($x, $y); # correlated color temperature using McCamy's approximation
Examples
bbrad
This function computes the black body radiance using Planck's law.
Usage
$rad = bbrad($nm, $T); # black body radiance using Planck's law
Examples
bbxy
This function computes the chromaticity of black body radiator.
Usage
($x, $y) = bbxy($T); # chromaticity of black body radiator
Examples
bbuv
This function computes the CIE UCS 1960 coordinates of black body radiator.
Usage
($u, $v) = bbuv($T); CIE UCS 1960 of black body radiator
Examples
XYZ2ucs
This function converts XYZ values to CIE UCS 1960 coordinates.
Usage
($u, $v) = XYZ2ucs(@XYZ); # CIE UCS 1960
Examples
xy2ucs
This function converts chromaticity values to CIE UCS 1960 coordinates.
Usage
($u, $v) = xy2ucs(@xy); # CIE UCS 1960
Examples
daylight
This function computes the SPD of CIE daylight at a given correlated color temperature.
Usage
($range, $spd) = daylight($cct); range and SPD of daylight
Examples
Interpolation functions
linear
This function interpolates a vector, using linear approximation.
Usage
$vec_out = linear($vec_in, $range_in, $range_out); # interpolate a vector (linear)
Examples
linear_matrix
This function computes an interpolation matrix, using linear approximation.
Usage
$matrix = linear_matrix($range_in, $range_out); # make interpolating matrix (linear)
Examples
cspline
This function interpolates a vector, using cubic spline approximation.
Usage
$vec_out = cspline($vec_in, $range_in, $range_out); # interpolate a vector (natural cubic spline)
Examples
cspline_matrix
This function computes an interpolation matrix, using cubic spline approximation.
Usage
$matrix = cspline_matrix($range_in, $range_out); # make interpolating matrix (natural cubic spline)
Examples
lagrange
This function interpolates a vector, using Lagrange approximation.
Usage
$vec_out = lagrange($vec_in, $range_in, $range_out); # interpolate a vector (Lagrange, ASTM E 2022)
Examples
lagrange_matrix
This function computes an interpolation matrix, using Lagrange approximation.
Usage
$matrix = lagrange_matrix($range_in, $range_out); # make interpolating matrix (Lagrange, ASTM E 2022)
Examples
Vector functions
dotProduct
This function computes the dot product of two vectors.
Usage
$scalar = dotProduct($vec1, $vec2); # vector dot product
Examples
crossProduct
This function computes the cross product of two vectors.
Usage
$vector = crossProduct($vec1, $vec2); # vector cross product
Examples
Utility functions
flatten
This function flattens an array structure.
Usage
$vector = flatten($structure); # flatten an array structure
Examples
clip_struct
This function clips all of the values within an array structure.
Usage
clip_struct($structure); # clip each element of an array structure
Examples
round
This function rounds off a value to the nearest integer.
Usage
$integer = round($value); # round off value to nearest integer (+/-)
Examples
s15f162v
This function converts a vector from ICC s15Fixed16Number encoding.
Usage
$vector = s15f162v($s15f16); # convert from s15Fixed16Number vector
Examples
v2s15f16
This function converts a vector to ICC s15Fixed16Number encoding.
Usage
$s15f16 = v2s15f16($vector); # convert to s15Fixed16Number vector
Examples
makeProfileFolder
This function makes a folder for saving ICC profiles.
Usage
(profiles_folder_path, directory_segs, customer, job) = makeProfileFolder(file/folder_path); # make folder for profiles
(profiles_folder_path, directory_segs, customer, job) = makeProfileFolder(file/folder_path, alias_folder_path);
Examples
getICCPath
This function gets the path to the 'ICC' distribution folder. The optional parameter is appended to the path.
Usage
$path = getICCPath(); # get path to 'ICC' distribution folder
$path = getICCPath(sub_path); # get path to some item within the 'ICC' distribution folder
Examples
$path = getICCPath(); # get path to 'ICC' folder
$path = getICCPath('Data'); # get path to 'ICC/Data' folder
$path = getICCPath('Data/ASTM_E308_data.yml'); # get path to 'ICC/Data/ASTM_E308_data.yml' file
filterPath
This function replaces a leading '~' with the user's home path. For non-Windows OS, the '\' character (escape) is removed. For Windows OS, '/' character is replaced by '\'.
Usage
filterPath($path);
Examples
$path = '~/Desktop/test.txt';
filterPath($path);
print "$path\n";
$path = 'name\ with\ spaces.txt';
filterPath($path);
print "$path\n";
setFile
This function sets Mac OSX creator and file type.
Usage
setFile(path_to_file, creator, type); # set Mac OSX creator and file type (deprecated by Apple)
Examples
parse_tokens
This function splits a string of tokens, and parses any parameters using the 'eval' function. It provides a convenient user interface for selecting an assortment of items, with optional parameters. The parameters can be any valid Perl expression, including scalars, anonymous arrays, and anonymous hashes. Expressions may also contain functions and global variables.
The function returns an array reference. The array contains the tokens, interspersed with the evaluated parameters. A parameter group may contain more than one parameter. So, each group is an array reference. See the example below.
Usage
$array_ref = parse_tokens($token_string);
Examples
$tokens = parse_tokens("option1, option2(25), option3([1, 2, 3]), option4({'key' => 99})");
print Dumper($tokens);
produces this output,
$VAR1 = [
'option1',
'option2',
[
25
],
'option3',
[
[
1,
2,
3
]
],
'option4',
[
{
'key' => 99
}
]
];
Parameter testing functions
is_vector
This function tests if the parameter is a vector. Elements may be numeric or undef.
Usage
$flag = is_vector($vec); # test if parameter is a vector
Examples
print is_vector([]); # true
print is_vector({}); # false
print is_vector([1, 2, 3]); # true
print is_vector([undef, 2, 3]); # true
print is_vector(['xxx', 2, 3]); # false
is_num_vector
This function tests if the parameter is a vector. Elements must be numeric.
Usage
$flag = is_num_vector($vec); # test if parameter is a vector
Examples
print is_num_vector([]); # true
print is_num_vector({}); # false
print is_num_vector([1, 2, 3]); # true
print is_num_vector([undef, 2, 3]); # false
print is_num_vector(['xxx', 2, 3]); # false
is_matrix
This function tests if the parameter is a matrix. Elements may be numeric or undef.
Usage
$flag = is_matrix($mat); # test if parameter is a matrix
Examples
print is_matrix([]); # true
print is_matrix({}); # false
print is_matrix([[]]); # true
print is_num_matrix([{}]); # false
print is_matrix([[1, 2, 3]]); # true
print is_matrix(Math::Matrix->new([1, 2, 3])); # true
print is_matrix([[undef, 2, 3]]); # true
print is_matrix([['xxx', 2, 3]]); # false
is_num_matrix
This function tests if the parameter is a matrix. Elements must be numeric.
Usage
$flag = is_num_matrix($mat); # test if parameter is a matrix
Examples
print is_num_matrix([]); # true
print is_num_matrix({}); # false
print is_num_matrix([[]]); # true
print is_num_matrix([{}]); # false
print is_num_matrix([[1, 2, 3]]); # true
print is_num_matrix(Math::Matrix->new([1, 2, 3])); # true
print is_num_matrix([[undef, 2, 3]]); # false
print is_num_matrix([['xxx', 2, 3]]); # false
CONSTANTS
Perl handling of constants
Perl's constant
pragma is used to make the following constants. These are actually subroutines, created at compile time. Their values cannot be altered, so they are effectively constants. Because they are subroutines, there are no sigils, which occasionally leads to ambiguity. This can be resolved by enclosing the constant in parentheses (see example below).
D50
D50 illuminant XYZ values, as specified by the ICC (based on the CIE 1931 2 degree observer)
Note that the ICC values for D50 ([96.42, 100, 82.49]) are slightly different from the CIE values ([96.42, 100, 82.51]).
Examples
$XYZ = D50; # vector
$Z = D50->[2]; # Z value
@XYZ = @{(D50)}; # array, note the parentheses
@XYZ = Lab2XYZ(@Lab, D50); # use as white point to change encoding
d50
D50 illuminant XYZ values, encoded as 32-bit ICC XYZNumber, [0.9624, 1, 0.8249].
d50P
D50 illuminant XYZ values, encoded as 16-bit ICC XYZ, approximately [0.48211, 0.50001, 0.41246].
PI
circumference of a unit circle, approximately 3.14159
radian
degrees in a radian, approximately 57.29578
ln10
natural logarithm of 10, approximately 2.30258
SEE ALSO
ASTM Standards
ASTM E 2022 Standard Practice for Calculation of Weighting Factors for Tristimulus Integration
CIE Standards
CIE 15 Colorimetry
DIN Standards
DIN 6176 Colorimetric evaluation of colour differences of surface colours according to DIN99 formula
ICC Specification
The ICC (International Color Consortium) maintains a web site at http://www.color.org The ICC specification and related materials may be downloaded from this web site.
The ICC specification is also published as ISO 15076-1.
ISO Standards
ISO 15076-1 Image technology colour management — Architecture, profile format and data structure — Part 1: Based on ICC.1:2010
LICENSE
Programs in this distribution, authored by William B. Birkett, are licensed under the GNU General Public License, v3.
See http://www.gnu.org/licenses/gpl.html for license details.
AUTHOR
William B. Birkett, <wbirkett@doplganger.com>
COPYRIGHT
Copyright © 2004-2019 by William B. Birkett