NAME
PDL::FFTW - PDL interface to the Fastest Fourier Transform in the West v2.x
DESCRIPTION
This is a means to interface PDL with the FFTW library. It's similar to the standard FFT routine but it's usually faster and has support for real transforms. It works well for the types of PDLs for which was the library was compiled (otherwise it must do conversions).
SYNOPSIS
use PDL::FFTW
load_wisdom("file_name");
out_cplx_pdl = fftw(in_cplx_pdl);
out_cplx_pdl = ifftw(in_cplx_pdl);
out_cplx_pdl = rfftw(in_real_pdl);
out_real_pdl = irfftw(in_cplx_pdl);
cplx_pdl = nfftw(cplx_pdl);
cplx_pdl = infftw(cplx_pdl);
cplx_pdl = Cmul(a_cplx_pdl, b_cplx_pdl);
cplx_pdl = Cconj(a_cplx_pdl);
real_pdl = Cmod(a_cplx_pdl);
real_pdl = Cmod2(a_cplx_pdl);
FFTW documentation
Please refer to the FFTW documentation for a better understanding of these functions.
Note that complex numbers are represented as piddles with leading dimension size 2 (real/imaginary pairs).
load_wisdom
Loads the wisdom from a file for better FFTW performance.
The wisdom is automatically saved when the program ends. It will be automagically called when the variable $PDL::FFT::wisdom
is set to a file name. For example, the following is a useful idiom to have in your .perldlrc file:
$PDL::FFT::wisdom = "$ENV{HOME}/.fftwisdom"; # save fftw wisdom in this file
Explicit usage:
load_wisdom($fname);
fftw
calculate the complex FFT of a real piddle (complex input, complex output)
$pdl_cplx = fftw $pdl_cplx;
ifftw
Complex inverse FFT (complex input, complex output).
$pdl_cplx = ifftw $pdl_cplx;
nfftw
Complex inplace FFT (complex input, complex output).
$pdl_cplx = nfftw $pdl_cplx;
infftw
Complex inplace inverse FFT (complex input, complex output).
$pdl_cplx = infftw $pdl_cplx;
rfftw
Real FFT. For an input piddle of dimensions [n1,n2,...] the output is [2,(n1/2)+1,n2,...] (real input, complex output).
$pdl_cplx = fftw $pdl_real;
irfftw
Real inverse FFT. Have a look at rfftw to understand the format. USE ONLY an even n1! (complex input, real output)
$pdl_real = ifftw $pdl_cplx;
nrfftw
Real inplace FFT. If you want a transformation on a piddle with dimensions [n1,n2,....] you MUST pass in a piddle with dimensions [2*(n1/2+1),n2,...] (real input, complex output).
Use with care due to dimension restrictions mentioned below. For details check the html docs that come with the fftw library.
$pdl_cplx = nrfftw $pdl_real;
inrfftw
Real inplace inverse FFT. Have a look at nrfftw to understand the format. USE ONLY an even first dimension size! (complex input, real output)
$pdl_real = infftw $pdl_cplx;
rfftwconv
ND convolution using real ffts from the FFTW library
$conv = rfftwconv $im, kernctr $im, $k; # kernctr is from PDL::FFT
fftwconv
ND convolution using complex ffts from the FFTW library
Assumes real input!
$conv = fftwconv $im, kernctr $im, $k; # kernctr is from PDL::FFT
Complex multiplication
$out_pdl_cplx = Cmul($a_pdl_cplx,$b_pdl_cplx);
EOD );
pp_def('Cscale', Pars => 'a(n); b(); [o]c(n);', Code => ' if ($SIZE(n)!=2) barf("This function works only on complex\n"); threadloop %{ $c(n => 0)= $a(n => 0)*$b(); $c(n => 1)= $a(n => 1)*$b(); %} ', Doc => <<'EOD', =for ref
Complex by real multiplation.
Cscale($a_pdl_cplx,$b_pdl_real);
EOD
);
pp_def('Cdiv', Pars => 'a(n); b(n); [o]c(n);', Code => ' $GENERIC() divi;
if ($SIZE(n)!=2) barf("This function works only on complex\n"); threadloop %{ divi = $b(n => 0)*$b(n => 0) + $b(n => 1)*$b(n => 1);
$c(n => 0)= ( $a(n => 0)*$b(n => 0) + $a(n => 1)*$b(n => 1) ) / divi; $c(n => 1)= ( $a(n => 1)*$b(n => 0) - $a(n => 0)*$b(n => 1) ) / divi; %} ', Doc => <<'EOD', =for ref
Complex division.
$out_pdl_cplx = Cdiv($a_pdl_cplx,$b_pdl_cplx);
EOD );
pp_def('Cbmul', Pars => 'a(n); b(n);', Code => ' $GENERIC() tmp1,tmp;
if ($SIZE(n)!=2) barf("This function works only on complex\n"); threadloop %{ tmp = $a(n => 0); tmp1 = $a(n => 1); $a(n => 0)= tmp * $b(n => 0) - tmp1 * $b(n => 1); $a(n => 1)= tmp * $b(n => 1) + tmp1 * $b(n => 0); %} ', Doc => <<'EOD', =for ref
Complex inplace multiplication.
Cbmul($a_pdl_cplx,$b_pdl_cplx);
EOD
);
pp_def('Cbscale', Pars => 'a(n); b();', Code => ' $GENERIC() tmp1,tmp,divi;
if ($SIZE(n)!=2) barf("This function works only on complex\n"); threadloop %{ $a(n => 0) *= $b(); $a(n => 1) *= $b(); %} ', Doc => <<'EOD', =for ref
Complex inplace multiplaction by real.
Cbscale($a_pdl_cplx,$b_pdl_real);
EOD
);
pp_def('Cconj', Pars => 'a(n); [o]c(n);', Code => ' if ($SIZE(n)!=2) barf("This function works only on complex\n"); threadloop %{ $c(n => 0)= $a(n => 0); $c(n => 1)= -$a(n => 1); %} ', Doc => <<'EOD', =for ref
Complex conjugate.
$out_pdl_cplx = Cconj($a_pdl_cplx);
EOD
);
pp_def('Cbconj', Pars => 'a(n);', Code => ' if ($SIZE(n)!=2) barf("This function works only on complex\n"); threadloop %{ $a(n => 1)= -$a(n => 1); %} ', Doc => <<'EOD', =for ref
Complex inplace conjugate.
Cbconj($a_pdl_cplx);
EOD
);
pp_def('Cexp', Pars => 'a(n); [o]c(n);', Code => ' if ($SIZE(n)!=2) barf("This function works only on complex\n"); threadloop %{ $c(n => 0)= exp($a(n => 0)) * cos($a(n => 1)); $c(n => 1)= exp($a(n => 0)) * sin($a(n => 1)); %} ', Doc => <<'EOD', =for ref
Complex exponentation.
$out_pdl_cplx = Cexp($a_pdl_cplx);
EOD
);
pp_def('Cbexp', Pars => 'a(n);', Code => ' if ($SIZE(n)!=2) barf("This function works only on complex\n"); threadloop %{ double re = $a(n => 0); double im = $a(n => 1);
$a(n => 0)= exp(re) * cos(im); $a(n => 1)= exp(re) * sin(im); %} ', Doc => <<'EOD', =for ref
Complex inplace exponentation.
$out_pdl_cplx = Cexp($a_pdl_cplx);
EOD
);
pp_def('Cmod', Pars => 'a(n); [o]c();', Code => ' if ($SIZE(n)!=2) barf("This function works only on complex\n"); threadloop %{ $c()= sqrt ( $a(n => 0)*$a(n => 0) + $a(n => 1)*$a(n => 1) ); %} ', Doc => <<'EOD', =for ref
modulus of a complex piddle.
$out_pdl_real = Cmod($a_pdl_cplx);
EOD
);
pp_def('Carg', Pars => 'a(n); [o]c();', Code => ' if ($SIZE(n)!=2) barf("This function works only on complex\n"); threadloop %{ $c()= atan2($a(n=>1),$a(n=>0)); %} ', Doc => <<'EOD', =for ref
argument of a complex number.
$out_pdl_real = Carg($a_pdl_cplx);
EOD
);
pp_def('Cmod2', Pars => 'a(n); [o]c();', Code => ' if ($SIZE(n)!=2) barf("This function works only on complex\n"); threadloop %{ $c()= ( $a(n => 0)*$a(n => 0) + $a(n => 1)*$a(n => 1) ); %} ', Doc => <<'EOD', =for ref
Returns squared modulus of a complex number.
$out_pdl_real = Cmod2($a_pdl_cplx);
EOD
);
### real fftw
pp_addxs('',' MODULE = PDL::FFTW PACKAGE = PDL::FFTW
int PDL_rfftwnd_create_plan(dims, dir, flag) pdl* dims int dir int flag CODE: { fftw_direction fdir=0; int fflag=FFTW_USE_WISDOM;
if (dims->ndims != 1) {barf("Only 1d input dimesions make sense");}
if (dims->data == NULL) {barf("input piddles must be physical");}
if (dims->datatype != PDL_L) {barf("Only integers please");}
if (dir) {
fdir=FFTW_COMPLEX_TO_REAL;
}
else {
fdir=FFTW_REAL_TO_COMPLEX;
}
if (flag & 1 ) {
fflag |= FFTW_ESTIMATE;
}
else {
fflag |= FFTW_MEASURE;
}
if (flag & 2 ) {
fflag |= FFTW_IN_PLACE;
}
else {
fflag |= FFTW_OUT_OF_PLACE;
}
RETVAL =
(int) rfftwnd_create_plan( dims->dims[0],
( int *) dims->data,
fdir,
fflag);
}
OUTPUT:
RETVAL
'
);
pp_addxs('',' MODULE = PDL::FFTW PACKAGE = PDL::FFTW
void PDL_rfftwnd_one_real_to_complex(plan, in, out) int plan pdl* in pdl* out CODE: if (in->data==NULL || out->data==NULL) {barf("Need a physical pdl!");} if (in->datatype != PDL_MYTYPE || out->datatype != PDL_MYTYPE) {barf("Bad Type");} rfftwnd_one_real_to_complex( (rfftwnd_plan) plan, (fftw_real *) in->data, (fftw_complex *) out->data); ');
pp_addxs('',' MODULE = PDL::FFTW PACKAGE = PDL::FFTW
void PDL_rfftwnd_one_complex_to_real(plan, in, out) int plan pdl* in pdl* out CODE: if (in->data==NULL || out->data==NULL) {barf("Need a physical pdl!");} if (in->datatype != PDL_MYTYPE || out->datatype != PDL_MYTYPE) {barf("Bad type");} rfftwnd_one_complex_to_real( (rfftwnd_plan) plan, (fftw_complex *) in->data, (fftw_real *) out->data);
');
# NOTE: BUG! the inplace code below will not work with slices! # no backpropagation of results! pp_addxs('',' MODULE = PDL::FFTW PACKAGE = PDL::FFTW
void PDL_inplace_rfftwnd_one_real_to_complex(plan, in) int plan pdl* in CODE: if (in->data==NULL) {barf("Need a physical pdl!");} if (in->datatype != PDL_MYTYPE) {barf("Bad Type");} PDL->children_changesoon(in, PDL_PARENTDATACHANGED); rfftwnd_one_real_to_complex( (rfftwnd_plan) plan, (fftw_real *) in->data, NULL); /* this call is crucial to propagate changes back if slices are given as arguments * Note: must not used vaffinechanged (!) since any slice has physical data */ PDL->changed( in , PDL_PARENTDATACHANGED , 0 ); ');
pp_addxs('',' MODULE = PDL::FFTW PACKAGE = PDL::FFTW
void PDL_inplace_rfftwnd_one_complex_to_real(plan, in) int plan pdl* in CODE: if (in->data==NULL) {barf("Need a physical pdl!");} if (in->datatype != PDL_MYTYPE) {barf("Bad type");} PDL->children_changesoon(in, PDL_PARENTDATACHANGED); rfftwnd_one_complex_to_real( (rfftwnd_plan) plan, (fftw_complex *) in->data, NULL); /* this call is crucial to propagate changes back if slices are given as arguments * Note: must not used vaffinechanged (!) since any slice has physical data */ PDL->changed( in , PDL_PARENTDATACHANGED , 0 );
');
### complex fftw
pp_addxs('',' MODULE = PDL::FFTW PACKAGE = PDL::FFTW
int PDL_fftwnd_create_plan(dims, dir, flag) pdl* dims int dir int flag CODE: { fftw_direction fdir=0; int fflag=FFTW_USE_WISDOM;
if (dims->ndims != 1) {barf("Only 1d input dimesions make sense");}
if (dims->data == NULL) {barf("input piddles must be physical");}
if (dims->datatype != PDL_L) {barf("Only integers please");}
if (dir) {
fdir=FFTW_BACKWARD;
}
else {
fdir=FFTW_FORWARD;
}
if (flag & 1 ) {
fflag |= FFTW_ESTIMATE;
}
else {
fflag |= FFTW_MEASURE;
}
if (flag & 2 ) {
fflag |= FFTW_IN_PLACE;
}
else {
fflag |= FFTW_OUT_OF_PLACE;
}
RETVAL =
(int) fftwnd_create_plan( dims->dims[0],
( int *) dims->data,
fdir,
fflag);
}
OUTPUT:
RETVAL
'
);
pp_addxs('',' MODULE = PDL::FFTW PACKAGE = PDL::FFTW
void PDL_fftwnd_one(plan, in, out) int plan pdl* in pdl* out CODE: if (in->data==NULL || out->data==NULL) {barf("Need a physical pdl!");} if (in->datatype != PDL_MYTYPE || out->datatype != PDL_MYTYPE) {barf("Bad type!");} fftwnd_one( (fftwnd_plan) plan, (fftw_complex *) in->data, (fftw_complex *) out->data); ');
pp_addxs('',' MODULE = PDL::FFTW PACKAGE = PDL::FFTW
void PDL_inplace_fftwnd_one(plan, in) int plan pdl* in CODE: if (in->data==NULL) {barf("Need a physical pdl!");} if (in->datatype != PDL_MYTYPE) {barf("Only float please");} PDL->children_changesoon(in, PDL_PARENTDATACHANGED); fftwnd_one( (fftwnd_plan) plan, (fftw_complex *) in->data, NULL); /* this call is crucial to propagate changes back if slices are given as arguments * Note: must not used vaffinechanged (!) since any slice has physical data */ PDL->changed( in , PDL_PARENTDATACHANGED , 0 ); ');
### wisdom stuff
pp_addxs('',' MODULE = PDL::FFTW PACKAGE = PDL::FFTW
int PDL_fftw_import_wisdom_from_string (wisdom) char* wisdom CODE: RETVAL = ( fftw_import_wisdom_from_string(wisdom) == FFTW_SUCCESS ); OUTPUT: RETVAL ');
pp_addxs('',' MODULE = PDL::FFTW PACKAGE = PDL::FFTW
char* PDL_fftw_export_wisdom_to_string () CODE: RETVAL = fftw_export_wisdom_to_string(); OUTPUT: RETVAL ');
pp_add_exported('','load_wisdom save_wisdom rfftw irfftw fftw ifftw nfftw infftw nrfftw inrfftw fftwconv rfftwconv kernctr');
# I don't see a point in exporting these (CS) # 'PDL_rfftwnd_create_plan PDL_rfftwnd_one_real_to_complex PDL_rfftwnd_one_complex_to_real PDL_fftw_export_wisdom_to_string PDL_fftw_import_wisdom_from_string PDL_inplace_fftwnd_one PDL_fftwnd_one PDL_fftwnd_create_plan PDL_inplace_rfftwnd_one_real_to_complex PDL_inplace_rfftwnd_one_complex_to_real';
pp_addpm({At => 'Bot'},<< 'EOD'); =head1 AUTHOR
Copyright (C) 1999 Christian Pellegrin, 2000 Christian Soeller. All rights reserved. There is no warranty. You are allowed to redistribute this software / documentation under certain conditions. For details, see the file COPYING in the PDL distribution. If this file is separated from the PDL distribution, the copyright notice should be included in the file.