———————————————————————————#---------------------------------------------------------
=head1 NAME
Bio::Matrix::PSM::SiteMatrix - SiteMatrixI implementation, holds a
position scoring matrix (or position weight matrix) and log-odds
=head1 SYNOPSIS
use Bio::Matrix::PSM::SiteMatrix;
# Create from memory by supplying probability matrix hash
# both as strings or arrays
# where the frequencies $a,$c,$g and $t are supplied either as
# arrayref or string. Accordingly, lA, lC, lG and lT are the log
# odds (only as arrays, no checks done right now)
my ($a,$c,$g,$t,$score,$ic, $mid)=@_;
#or
my ($a,$c,$g,$t,$score,$ic,$mid)=('05a011','110550','400001',
'100104',0.001,19.2,'CRE1');
#Where a stands for all (this frequency=1), see explanation below
my %param=(-pA=>$a,-pC=>$c,-pG=>$g,-pT=>$t,
-lA=>$la, -lC=>$lc,-lG=>$lg,-lT=>$l,
-IC=>$ic,-e_val=>$score, -id=>$mid);
my $site=Bio::Matrix::PSM::SiteMatrix->new(%param);
#Or get it from a file:
use Bio::Matrix::PSM::IO;
my $psmIO= Bio::Matrix::PSM::IO->new(-file=>$file, -format=>'transfac');
while (my $psm=$psmIO->next_psm) {
#Now we have a Bio::Matrix::PSM::Psm object,
# see Bio::Matrix::PSM::PsmI for details
#This is a Bio::Matrix::PSM::SiteMatrix object now
my $matrix=$psm->matrix;
}
# Get a simple consensus, where alphabet is {A,C,G,T,N},
# choosing the character that both satisfies a supplied or default threshold
# frequency and is the most frequenct character at each position, or N.
# So for the position with A, C, G, T frequencies of 0.5, 0.25, 0.10, 0.15,
# the simple consensus character will be 'A', whilst for 0.5, 0.5, 0, 0 it
# would be 'N'.
my $consensus=$site->consensus;
# Get the IUPAC ambiguity code representation of the data in the matrix.
# Because the frequencies may have been pseudo-count corrected, insignificant
# frequences (below 0.05 by default) are ignored. So a position with
# A, C, G, T frequencies of 0.5, 0.5, 0.01, 0.01 will get the IUPAC code 'M',
# while 0.97, 0.01, 0.01, 0.01 will get the code 'A' and
# 0.25, 0.25, 0.25, 0.25 would get 'N'.
my $iupac=$site->IUPAC;
# Getting/using regular expression (a representation of the IUPAC string)
my $regexp=$site->regexp;
my $count=grep($regexp,$seq);
my $count=($seq=~ s/$regexp/$1/eg);
print "Motif $mid is present $count times in this sequence\n";
=head1 DESCRIPTION
SiteMatrix is designed to provide some basic methods when working with position
scoring (weight) matrices, such as transcription factor binding sites for
example. A DNA PSM consists of four vectors with frequencies {A,C,G,T}. This is
the minimum information you should provide to construct a PSM object. The
vectors can be provided as strings with frequenciesx10 rounded to an int, going
from {0..a} and 'a' represents the maximum (10). This is like MEME's compressed
representation of a matrix and it is quite useful when working with relational
DB. If arrays are provided as an input (references to arrays actually) they can
be any number, real or integer (frequency or count).
When creating the object you can ask the constructor to make a simple pseudo
count correction by adding a number (typically 1) to all positions (with the
-correction option). After adding the number the frequencies will be
calculated. Only use correction when you supply counts, not frequencies.
Throws an exception if: You mix as an input array and string (for example A
matrix is given as array, C - as string). The position vector is (0,0,0,0). One
of the probability vectors is shorter than the rest.
Summary of the methods I use most frequently (details below):
iupac - return IUPAC compliant consensus as a string
score - Returns the score as a real number
IC - information content. Returns a real number
id - identifier. Returns a string
accession - accession number. Returns a string
next_pos - return the sequence probably for each letter, IUPAC
symbol, IUPAC probability and simple sequence
consenus letter for this position. Rewind at the end. Returns a hash.
pos - current position get/set. Returns an integer.
regexp - construct a regular expression based on IUPAC consensus.
For example AGWV will be [Aa][Gg][AaTt][AaCcGg]
width - site width
get_string - gets the probability vector for a single base as a string.
get_array - gets the probability vector for a single base as an array.
get_logs_array - gets the log-odds vector for a single base as an array.
New methods, which might be of interest to anyone who wants to store
PSM in a relational database without creating an entry for each
position is the ability to compress the PSM vector into a string with
losing usually less than 1% of the data. this can be done with:
my $str=$matrix->get_compressed_freq('A');
or
my $str=$matrix->get_compressed_logs('A');
Loading from a database should be done with new, but is not yest implemented.
However you can still uncompress such string with:
my @arr=Bio::Matrix::PSM::_uncompress_string ($str,1,1); for PSM
or
my @arr=Bio::Matrix::PSM::_uncompress_string ($str,1000,2); for log odds
=head1 FEEDBACK
=head2 Mailing Lists
User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to one
of the Bioperl mailing lists. Your participation is much appreciated.
bioperl-l@bioperl.org - General discussion
http://bioperl.org/wiki/Mailing_lists - About the mailing lists
=head2 Support
Please direct usage questions or support issues to the mailing list:
I<bioperl-l@bioperl.org>
rather than to the module maintainer directly. Many experienced and
reponsive experts will be able look at the problem and quickly
address it. Please include a thorough description of the problem
with code and data examples if at all possible.
=head2 Reporting Bugs
Report bugs to the Bioperl bug tracking system to help us keep track
the bugs and their resolution. Bug reports can be submitted via the
web:
=head1 AUTHOR - Stefan Kirov
Email skirov@utk.edu
=head1 CONTRIBUTORS
Sendu Bala, bix@sendu.me.uk
=head1 APPENDIX
The rest of the documentation details each of the object methods.
Internal methods are usually preceded with a _
=cut
# Let the code begin...
package
Bio::Matrix::PSM::SiteMatrix;
$Bio::Matrix::PSM::SiteMatrix::VERSION
=
'1.7.8'
;
use
strict;
=head2 new
Title : new
Usage : my $site=Bio::Matrix::PSM::SiteMatrix->new(-pA=>$a,-pC=>$c,
-pG=>$g,-pT=>$t,
-IC=>$ic,
-e_val=>$score,
-id=>$mid);
Function: Creates a new Bio::Matrix::PSM::SiteMatrix object from memory
Throws : If inconsistent data for all vectors (A,C,G and T) is
provided, if you mix input types (string vs array) or if a
position freq is 0.
Returns : Bio::Matrix::PSM::SiteMatrix object
Args : -pA => vector with the frequencies or counts of A
-pC => vector for C
-pG => vector for G
-pt => vector for T
-lA => vector for the log of A
-lC => vector for the log of C
-lG => vector for the log of G
-lT => vector for the log of T
-IC => real number, the information content of this matrix
-e_val => real number, the expect value
-id => string, an identifier
-width => int, width of the matrix in nucleotides
-sites => int, the number of sites that went into this matrix
-model => hash ref, background frequencies for A, C, G and T
-correction => number, the number to add to all positions to achieve
pseudo count correction (default 0: no correction)
NB: do not use correction when your input is
frequences!
-accession_number => string, an accession number
Vectors can be strings of the frequencies where the frequencies are
multiplied by 10 and rounded to the nearest whole number, and where
'a' is used to denote the maximal frequency 10. There should be no
punctuation (spaces etc.) in the string. For example, 'a0501'.
Alternatively frequencies or counts can be represented by an array
ref containing the counts, frequencies or logs as any kind of
number.
=cut
sub
new {
my
(
$class
,
@args
) =
@_
;
my
$self
=
$class
->SUPER::new(
@args
);
my
$consensus
;
# Too many things to rearrange, and I am creating simultanuously >500
# such objects routinely, so this becomes performance issue
my
%input
;
while
(
@args
) {
(
my
$key
=
shift
@args
) =~ s/-//g;
#deletes all dashes (only dashes)!
$input
{
$key
} =
shift
@args
;
}
$self
->{_position} = 0;
$self
->{IC} =
$input
{IC};
$self
->{e_val} =
$input
{e_val};
$self
->{width} =
$input
{width};
$self
->{logA} =
$input
{lA};
$self
->{logC} =
$input
{lC};
$self
->{logG} =
$input
{lG};
$self
->{logT} =
$input
{lT};
$self
->{sites} =
$input
{sites};
$self
->{id} =
$input
{id} ||
'null'
;
$self
->{correction} =
$input
{correction} || 0;
$self
->{accession_number} =
$input
{accession_number};
return
$self
unless
(
defined
(
$input
{pA}) &&
defined
(
$input
{pC}) &&
defined
(
$input
{pG}) &&
defined
(
$input
{pT}));
# This should go to _initialize?
# Check for input type- no mixing alllowed, throw ex
if
(
ref
(
$input
{pA}) =~ /ARRAY/i ) {
$self
->throw(
"Mixing matrix data types not allowed: C is not reference"
)
unless
(
ref
(
$input
{pC}));
$self
->throw(
"Mixing matrix data types not allowed: G is not reference"
)
unless
(
ref
(
$input
{pG}));
$self
->throw(
"Mixing matrix data types not allowed: T is not reference"
)
unless
(
ref
(
$input
{pT}));
$self
->{probA} =
$input
{pA};
$self
->{probC} =
$input
{pC};
$self
->{probG} =
$input
{pG};
$self
->{probT} =
$input
{pT};
}
else
{
$self
->throw(
"Mixing matrix data types not allowed: C is reference"
)
if
(
ref
(
$input
{pC}));
$self
->throw(
"Mixing matrix data types not allowed: G is reference"
)
if
(
ref
(
$input
{pG}));
$self
->throw(
"Mixing matrix data types not allowed: T is reference"
)
if
(
ref
(
$input
{pT}));
$self
->{probA} = [
split
(//,
$input
{pA})];
$self
->{probC} = [
split
(//,
$input
{pC})];
$self
->{probG} = [
split
(//,
$input
{pG})];
$self
->{probT} = [
split
(//,
$input
{pT})];
for
(
my
$i
=0;
$i
<= @{
$self
->{probA}}+1;
$i
++) {
# we implictely assume these are MEME-style frequencies x 10, so
# 'a' represents the 'maximum', 10. Other positions can actually
# add up to over 10 due to rounding, but I don't think that is a
# problem?
if
(${
$self
->{probA}}[
$i
] and ${
$self
->{probA}}[
$i
] eq
'a'
) {
${
$self
->{probA}}[
$i
]=
'10'
;
}
if
(${
$self
->{probC}}[
$i
] and ${
$self
->{probC}}[
$i
] eq
'a'
) {
${
$self
->{probC}}[
$i
]=
'10'
;
}
if
(${
$self
->{probG}}[
$i
] and ${
$self
->{probG}}[
$i
] eq
'a'
) {
${
$self
->{probG}}[
$i
]=
'10'
;
}
if
(${
$self
->{probT}}[
$i
] and ${
$self
->{probT}}[
$i
] eq
'a'
) {
${
$self
->{probT}}[
$i
]=
'10'
;
}
}
}
# Check for position with 0 for all bases, throw exception if so
for
(
my
$i
=0;
$i
<= $
#{$self->{probA}}; $i++) {
if
((${
$self
->{probA}}[
$i
] + ${
$self
->{probC}}[
$i
] + ${
$self
->{probG}}[
$i
] + ${
$self
->{probT}}[
$i
]) == 0) {
$self
->throw(
"Position meaningless-all frequencies are 0"
);
}
# apply pseudo-count correction to all values - this will result in
# very bad frequencies if the input is already frequences and a
# correction value as large as 1 is used!
if
(
$self
->{correction}) {
${
$self
->{probA}}[
$i
] +=
$self
->{correction};
${
$self
->{probC}}[
$i
] +=
$self
->{correction};
${
$self
->{probG}}[
$i
] +=
$self
->{correction};
${
$self
->{probT}}[
$i
] +=
$self
->{correction};
}
# (re)calculate frequencies
my
$div
= ${
$self
->{probA}}[
$i
] + ${
$self
->{probC}}[
$i
] + ${
$self
->{probG}}[
$i
] + ${
$self
->{probT}}[
$i
];
${
$self
->{probA}}[
$i
]=${
$self
->{probA}}[
$i
]/
$div
;
${
$self
->{probC}}[
$i
]=${
$self
->{probC}}[
$i
]/
$div
;
${
$self
->{probG}}[
$i
]=${
$self
->{probG}}[
$i
]/
$div
;
${
$self
->{probT}}[
$i
]=${
$self
->{probT}}[
$i
]/
$div
;
}
# Calculate the logs
if
((!
defined
(
$self
->{logA})) && (
$input
{model})) {
$self
->calc_weight(
$input
{model});
}
# Make consensus, throw if any one of the vectors is shorter
$self
->_calculate_consensus;
return
$self
;
}
=head2 _calculate_consensus
Title : _calculate_consensus
Function: Internal stuff
=cut
sub
_calculate_consensus {
my
$self
=
shift
;
my
(
$lc
,
$lt
,
$lg
)=($
#{$self->{probC}},$#{$self->{probT}},$#{$self->{probG}});
my
$len
=$
#{$self->{probA}};
$self
->throw(
"Probability matrix is damaged for C: $len vs $lc"
)
if
(
$len
!=
$lc
);
$self
->throw(
"Probability matrix is damaged for T: $len vs $lt"
)
if
(
$len
!=
$lt
);
$self
->throw(
"Probability matrix is damaged for G: $len vs $lg"
)
if
(
$len
!=
$lg
);
for
(
my
$i
=0;
$i
<
$len
+1;
$i
++) {
#*** IUPACp values not actually used (eg. by next_pos)
(${
$self
->{IUPAC}}[
$i
],${
$self
->{IUPACp}}[
$i
])=_to_IUPAC(${
$self
->{probA}}[
$i
], ${
$self
->{probC}}[
$i
], ${
$self
->{probG}}[
$i
], ${
$self
->{probT}}[
$i
]);
(${
$self
->{seq}}[
$i
], ${
$self
->{seqp}}[
$i
]) = _to_cons(${
$self
->{probA}}[
$i
], ${
$self
->{probC}}[
$i
], ${
$self
->{probG}}[
$i
], ${
$self
->{probT}}[
$i
]);
}
return
$self
;
}
=head2 calc_weight
Title : calc_weight
Usage : $obj->calc_weight({A=>0.2562, C=>0.2438, G=>0.2432, T=>0.2568});
Function: Recalculates the PSM (or weights) based on the PFM (the frequency
matrix) and user supplied background model.
Throws : if no model is supplied
Returns : n/a
Args : reference to a hash with background frequencies for A,C,G and T
=cut
sub
calc_weight {
my
(
$self
,
$model
) =
@_
;
my
%model
;
$model
{probA}=
$model
->{A};
$model
{probC}=
$model
->{C};
$model
{probG}=
$model
->{G};
$model
{probT}=
$model
->{T};
foreach
my
$let
(
qw(probA probC probG probT)
) {
my
@str
;
$self
->throw(
'You did not provide valid model\n'
)
unless
((
$model
{
$let
}>0) && (
$model
{
$let
}<1));
foreach
my
$f
(@{
$self
->{
$let
}}) {
my
$w
=
log
(
$f
)-
log
(
$model
{
$let
});
push
@str
,
$w
;
}
my
$llet
=
$let
;
$llet
=~s/prob/
log
/;
$self
->{
$llet
}=\
@str
;
}
return
$self
;
}
=head2 next_pos
Title : next_pos
Usage :
Function: Retrieves the next position features: frequencies for A,C,G,T, the
main letter (as in consensus) and the probabilty for this letter to
occur at this position and the current position
Returns : hash (pA,pC,pG,pT,logA,logC,logG,logT,base,prob,rel)
Args : none
=cut
sub
next_pos {
my
$self
=
shift
;
$self
->throw(
"instance method called on class"
)
unless
ref
$self
;
my
$len
=@{
$self
->{seq}};
my
$pos
=
$self
->{_position};
# End reached?
if
(
$pos
<
$len
) {
my
$pA
=${
$self
->{probA}}[
$pos
];
my
$pC
=${
$self
->{probC}}[
$pos
];
my
$pG
=${
$self
->{probG}}[
$pos
];
my
$pT
=${
$self
->{probT}}[
$pos
];
my
$lA
=${
$self
->{logA}}[
$pos
];
my
$lC
=${
$self
->{logC}}[
$pos
];
my
$lG
=${
$self
->{logG}}[
$pos
];
my
$lT
=${
$self
->{logT}}[
$pos
];
my
$base
=${
$self
->{seq}}[
$pos
];
my
$prob
=${
$self
->{seqp}}[
$pos
];
$self
->{_position}++;
my
%seq
=(
pA
=>
$pA
,
pT
=>
$pT
,
pC
=>
$pC
,
pG
=>
$pG
,
lA
=>
$lA
,
lT
=>
$lT
,
lC
=>
$lC
,
lG
=>
$lG
,
base
=>
$base
,
rel
=>
$pos
,
prob
=>
$prob
);
return
%seq
;
}
else
{
$self
->{_position}=0;
return
;}
}
=head2 curpos
Title : curpos
Usage :
Function: Gets/sets the current position. Converts to 0 if argument is minus
and to width if greater than width
Returns : integer
Args : integer
=cut
sub
curpos {
my
$self
=
shift
;
my
$prev
=
$self
->{_position};
if
(
@_
) {
$self
->{_position} =
shift
; }
return
$prev
;
}
=head2 e_val
Title : e_val
Usage :
Function: Gets/sets the e-value
Returns : real number
Args : none to get, real number to set
=cut
sub
e_val {
my
$self
=
shift
;
my
$prev
=
$self
->{e_val};
if
(
@_
) {
$self
->{e_val} =
shift
; }
return
$prev
;
}
=head2 IC
Title : IC
Usage :
Function: Get/set the Information Content
Returns : real number
Args : none to get, real number to set
=cut
sub
IC {
my
$self
=
shift
;
my
$prev
=
$self
->{IC};
if
(
@_
) {
$self
->{IC} =
shift
; }
return
$prev
;
}
=head2 accession_number
Title : accession_number
Function: Get/set the accession number, this will be unique id for the
SiteMatrix object as well for any other object, inheriting from
SiteMatrix
Returns : string
Args : none to get, string to set
=cut
sub
accession_number {
my
$self
=
shift
;
my
$prev
=
$self
->{accession_number};
if
(
@_
) {
$self
->{accession_number} =
shift
; }
return
$prev
;
}
=head2 consensus
Title : consensus
Usage :
Function: Returns the consensus
Returns : string
Args : (optional) threshold value 1 to 10, default 5
'5' means the returned characters had a 50% or higher presence at
their position
=cut
sub
consensus {
my
(
$self
,
$thresh
) =
@_
;
if
(
$thresh
) {
my
$len
=$
#{$self->{probA}};
for
(
my
$i
=0;
$i
<
$len
+1;
$i
++) {
(${
$self
->{seq}}[
$i
], ${
$self
->{seqp}}[
$i
]) = _to_cons(${
$self
->{probA}}[
$i
], ${
$self
->{probC}}[
$i
], ${
$self
->{probG}}[
$i
], ${
$self
->{probT}}[
$i
],
$thresh
);
}
}
my
$consensus
=
''
;
foreach
my
$letter
(@{
$self
->{seq}}) {
$consensus
.=
$letter
;
}
return
$consensus
;
}
=head2 width
Title : width
Usage :
Function: Returns the length of the sites in used to make this matrix
Returns : int
Args : none
=cut
sub
width {
my
$self
=
shift
;
my
$width
=@{
$self
->{probA}};
return
$width
;
}
=head2 sites
Title : sites
Usage :
Function: Get/set the number of sites that were used to make this matrix
Returns : int
Args : none to get, int to set
=cut
sub
sites {
my
$self
=
shift
;
if
(
@_
) {
$self
->{sites} =
shift
}
return
$self
->{sites} ||
return
;
}
=head2 IUPAC
Title : IUPAC
Usage :
Function: Returns IUPAC compliant consensus
Returns : string
Args : optionally, also supply a whole number (int) of 1 or higher to set
the significance level when considering the frequencies. 1 (the
default) means a 0.05 significance level: frequencies lower than
0.05 will be ignored. 2 Means a 0.005 level, and so on.
=cut
sub
IUPAC {
my
(
$self
,
$thresh
) =
@_
;
if
(
$thresh
) {
my
$len
=$
#{$self->{probA}};
for
(
my
$i
=0;
$i
<
$len
+1;
$i
++) {
(${
$self
->{IUPAC}}[
$i
],${
$self
->{IUPACp}}[
$i
])=_to_IUPAC(${
$self
->{probA}}[
$i
], ${
$self
->{probC}}[
$i
], ${
$self
->{probG}}[
$i
], ${
$self
->{probT}}[
$i
],
$thresh
);
}
}
my
$iu
=
$self
->{IUPAC};
my
$iupac
=
''
;
foreach
my
$let
(@{
$iu
}) {
$iupac
.=
$let
;
}
return
$iupac
;
}
=head2 _to_IUPAC
Title : _to_IUPAC
Usage :
Function: Converts a single position to IUPAC compliant symbol.
For rules see the implementation
Returns : char, real number
Args : real numbers for frequencies of A,C,G,T (positional)
optionally, also supply a whole number (int) of 1 or higher to set
the significance level when considering the frequencies. 1 (the
default) means a 0.05 significance level: frequencies lower than
0.05 will be ignored. 2 Means a 0.005 level, and so on.
=cut
sub
_to_IUPAC {
my
(
$a
,
$c
,
$g
,
$t
,
$thresh
) =
@_
;
$thresh
||= 1;
$thresh
=
int
(
$thresh
);
$a
=
sprintf
(
"%.${thresh}f"
,
$a
);
$c
=
sprintf
(
"%.${thresh}f"
,
$c
);
$g
=
sprintf
(
"%.${thresh}f"
,
$g
);
$t
=
sprintf
(
"%.${thresh}f"
,
$t
);
my
$total
=
$a
+
$c
+
$g
+
$t
;
return
'A'
if
(
$a
==
$total
);
return
'G'
if
(
$g
==
$total
);
return
'C'
if
(
$c
==
$total
);
return
'T'
if
(
$t
==
$total
);
my
$r
=
$g
+
$a
;
return
'R'
if
(
$r
==
$total
);
my
$y
=
$t
+
$c
;
return
'Y'
if
(
$y
==
$total
);
my
$m
=
$a
+
$c
;
return
'M'
if
(
$m
==
$total
);
my
$k
=
$g
+
$t
;
return
'K'
if
(
$k
==
$total
);
my
$s
=
$g
+
$c
;
return
'S'
if
(
$s
==
$total
);
my
$w
=
$a
+
$t
;
return
'W'
if
(
$w
==
$total
);
my
$d
=
$r
+
$t
;
return
'D'
if
(
$d
==
$total
);
my
$v
=
$r
+
$c
;
return
'V'
if
(
$v
==
$total
);
my
$b
=
$y
+
$g
;
return
'B'
if
(
$b
==
$total
);
my
$h
=
$y
+
$a
;
return
'H'
if
(
$h
==
$total
);
return
'N'
;
}
=head2 _to_cons
Title : _to_cons
Usage :
Function: Converts a single position to simple consensus character and returns
its probability. For rules see the implementation
Returns : char, real number
Args : real numbers for A,C,G,T (positional), and optional 5th argument of
threshold (as a number between 1 and 10, where 5 is default and
means the returned character had a 50% or higher presence at this
position)
=cut
sub
_to_cons {
my
(
$A
,
$C
,
$G
,
$T
,
$thresh
) =
@_
;
$thresh
||= 5;
# this multiplication by 10 is just to satisfy the thresh range of 1-10
my
$a
=
$A
* 10;
my
$c
=
$C
* 10;
my
$g
=
$G
* 10;
my
$t
=
$T
* 10;
return
'N'
,10
if
((
$a
<
$thresh
) && (
$c
<
$thresh
) && (
$g
<
$thresh
) && (
$t
<
$thresh
));
return
'N'
,10
if
((
$a
==
$t
) && (
$a
==
$c
) && (
$a
==
$g
));
# threshold could be lower than 50%, so must check is not only over
# threshold, but also the highest frequency
return
'A'
,
$a
if
((
$a
>=
$thresh
) && (
$a
>
$t
) && (
$a
>
$c
) && (
$a
>
$g
));
return
'C'
,
$c
if
((
$c
>=
$thresh
) && (
$c
>
$t
) && (
$c
>
$a
) && (
$c
>
$g
));
return
'G'
,
$g
if
((
$g
>=
$thresh
) && (
$g
>
$t
) && (
$g
>
$c
) && (
$g
>
$a
));
return
'T'
,
$t
if
((
$t
>=
$thresh
) && (
$t
>
$g
) && (
$t
>
$c
) && (
$t
>
$a
));
return
'N'
,10;
}
=head2 get_string
Title : get_string
Usage :
Function: Returns given probability vector as a string. Useful if you want to
store things in a rel database, where arrays are not first choice
Throws : If the argument is outside {A,C,G,T}
Returns : string
Args : character {A,C,G,T}
=cut
sub
get_string {
my
$self
=
shift
;
my
$base
=
shift
;
my
$string
=
''
;
my
@prob
;
BASE: {
if
(
$base
eq
'A'
) {
@prob
= @{
$self
->{probA}};
last
BASE; }
if
(
$base
eq
'C'
) {
@prob
= @{
$self
->{probC}};
last
BASE; }
if
(
$base
eq
'G'
) {
@prob
= @{
$self
->{probG}};
last
BASE; }
if
(
$base
eq
'T'
) {
@prob
= @{
$self
->{probT}};
last
BASE; }
$self
->throw (
"No such base: $base!\n"
);
}
foreach
my
$prob
(
@prob
) {
my
$corrected
=
$prob
*10;
my
$next
=
sprintf
(
"%.0f"
,
$corrected
);
$next
=
'a'
if
(
$next
eq
'10'
);
$string
.=
$next
;
}
return
$string
;
}
=head2 get_array
Title : get_array
Usage :
Function: Returns an array with frequencies for a specified base
Returns : array
Args : char
=cut
sub
get_array {
my
$self
=
shift
;
my
$base
=
uc
(
shift
);
return
@{
$self
->{probA}}
if
(
$base
eq
'A'
);
return
@{
$self
->{probC}}
if
(
$base
eq
'C'
);
return
@{
$self
->{probG}}
if
(
$base
eq
'G'
);
return
@{
$self
->{probT}}
if
(
$base
eq
'T'
);
$self
->throw(
"No such base: $base!\n"
);
}
=head2 get_logs_array
Title : get_logs_array
Usage :
Function: Returns an array with log_odds for a specified base
Returns : array
Args : char
=cut
sub
get_logs_array {
my
$self
=
shift
;
my
$base
=
uc
(
shift
);
return
@{
$self
->{logA}}
if
((
$base
eq
'A'
) && (
$self
->{logA}));
return
@{
$self
->{logC}}
if
((
$base
eq
'C'
) && (
$self
->{logC}));
return
@{
$self
->{logG}}
if
((
$base
eq
'G'
) && (
$self
->{logG}));
return
@{
$self
->{logT}}
if
((
$base
eq
'T'
) && (
$self
->{logT}));
$self
->throw (
"No such base: $base!\n"
)
if
(!
grep
(/
$base
/,
qw(A C G T)
));
return
;
}
=head2 id
Title : id
Usage :
Function: Gets/sets the site id
Returns : string
Args : string
=cut
sub
id {
my
$self
=
shift
;
my
$prev
=
$self
->{id};
if
(
@_
) {
$self
->{id} =
shift
; }
return
$prev
;
}
=head2 regexp
Title : regexp
Usage :
Function: Returns a regular expression which matches the IUPAC convention.
N will match X, N, - and .
Returns : string
Args : none (works at the threshold last used for making the IUPAC string)
=cut
sub
regexp {
my
$self
=
shift
;
my
$regexp
;
foreach
my
$letter
(@{
$self
->{IUPAC}}) {
my
$reg
;
LETTER: {
if
(
$letter
eq
'A'
) {
$reg
=
'[Aa]'
;
last
LETTER; }
if
(
$letter
eq
'C'
) {
$reg
=
'[Cc]'
;
last
LETTER; }
if
(
$letter
eq
'G'
) {
$reg
=
'[Gg]'
;
last
LETTER; }
if
(
$letter
eq
'T'
) {
$reg
=
'[Tt]'
;
last
LETTER; }
if
(
$letter
eq
'M'
) {
$reg
=
'[AaCcMm]'
;
last
LETTER; }
if
(
$letter
eq
'R'
) {
$reg
=
'[AaGgRr]'
;
last
LETTER; }
if
(
$letter
eq
'W'
) {
$reg
=
'[AaTtWw]'
;
last
LETTER; }
if
(
$letter
eq
'S'
) {
$reg
=
'[CcGgSs]'
;
last
LETTER; }
if
(
$letter
eq
'Y'
) {
$reg
=
'[CcTtYy]'
;
last
LETTER; }
if
(
$letter
eq
'K'
) {
$reg
=
'[GgTtKk]'
;
last
LETTER; }
if
(
$letter
eq
'V'
) {
$reg
=
'[AaCcGgVv]'
;
last
LETTER; }
if
(
$letter
eq
'H'
) {
$reg
=
'[AaCcTtHh]'
;
last
LETTER; }
if
(
$letter
eq
'D'
) {
$reg
=
'[AaGgTtDd]'
;
last
LETTER; }
if
(
$letter
eq
'B'
) {
$reg
=
'[CcGgTtBb]'
;
last
LETTER; }
$reg
=
'\S'
;
}
$regexp
.=
$reg
;
}
return
$regexp
;
}
=head2 regexp_array
Title : regexp_array
Usage :
Function: Returns a regular expression which matches the IUPAC convention.
N will match X, N, - and .
Returns : array
Args : none (works at the threshold last used for making the IUPAC string)
To do : I have separated regexp and regexp_array, but
maybe they can be rewritten as one - just check what should be returned
=cut
sub
regexp_array {
my
$self
=
shift
;
my
@regexp
;
foreach
my
$letter
(@{
$self
->{IUPAC}}) {
my
$reg
;
LETTER: {
if
(
$letter
eq
'A'
) {
$reg
=
'[Aa]'
;
last
LETTER; }
if
(
$letter
eq
'C'
) {
$reg
=
'[Cc]'
;
last
LETTER; }
if
(
$letter
eq
'G'
) {
$reg
=
'[Gg]'
;
last
LETTER; }
if
(
$letter
eq
'T'
) {
$reg
=
'[Tt]'
;
last
LETTER; }
if
(
$letter
eq
'M'
) {
$reg
=
'[AaCcMm]'
;
last
LETTER; }
if
(
$letter
eq
'R'
) {
$reg
=
'[AaGgRr]'
;
last
LETTER; }
if
(
$letter
eq
'W'
) {
$reg
=
'[AaTtWw]'
;
last
LETTER; }
if
(
$letter
eq
'S'
) {
$reg
=
'[CcGgSs]'
;
last
LETTER; }
if
(
$letter
eq
'Y'
) {
$reg
=
'[CcTtYy]'
;
last
LETTER; }
if
(
$letter
eq
'K'
) {
$reg
=
'[GgTtKk]'
;
last
LETTER; }
if
(
$letter
eq
'V'
) {
$reg
=
'[AaCcGgVv]'
;
last
LETTER; }
if
(
$letter
eq
'H'
) {
$reg
=
'[AaCcTtHh]'
;
last
LETTER; }
if
(
$letter
eq
'D'
) {
$reg
=
'[AaGgTtDd]'
;
last
LETTER; }
if
(
$letter
eq
'B'
) {
$reg
=
'[CcGgTtBb]'
;
last
LETTER; }
$reg
=
'\S'
;
}
push
@regexp
,
$reg
;
}
return
@regexp
;
}
=head2 _compress_array
Title : _compress_array
Usage :
Function: Will compress an array of real signed numbers to a string (ie vector
of bytes) -127 to +127 for bi-directional(signed) and 0..255 for
unsigned
Returns : String
Args : array reference, followed by an max value and direction (optional,
default 1-unsigned),1 unsigned, any other is signed.
=cut
sub
_compress_array {
my
(
$array
,
$lm
,
$direct
)=
@_
;
my
$str
;
return
unless
((
$array
) && (
$lm
));
$direct
=1
unless
(
$direct
);
my
$k1
= (
$direct
==1) ? (255/
$lm
) : (127/
$lm
);
foreach
my
$c
(@{
$array
}) {
$c
=
$lm
if
(
$c
>
$lm
);
$c
=-
$lm
if
((
$c
<-
$lm
) && (
$direct
!=1));
$c
=0
if
((
$c
<0) && (
$direct
==1));
my
$byte
=
int
(
$k1
*$c
);
$byte
=127+
$byte
if
(
$direct
!=1);
#Clumsy, should be really shift the bits
my
$char
=
chr
(
$byte
);
$str
.=
$char
;
}
return
$str
;
}
=head2 _uncompress_string
Title : _uncompress_string
Usage :
Function: Will uncompress a string (vector of bytes) to create an array of
real signed numbers (opposite to_compress_array)
Returns : string, followed by an max value and
direction (optional, default 1-unsigned), 1 unsigned, any other is signed.
Args : array
=cut
sub
_uncompress_string {
my
(
$str
,
$lm
,
$direct
)=
@_
;
my
@array
;
return
unless
((
$str
) && (
$lm
));
$direct
=1
unless
(
$direct
);
my
$k1
= (
$direct
==1) ? (255/
$lm
) : (127/
$lm
);
foreach
my
$c
(
split
(//,
$str
)) {
my
$byte
=
ord
(
$c
);
$byte
=
$byte
-127
if
(
$direct
!=1);
#Clumsy, should be really shift the bits
my
$num
=
$byte
/
$k1
;
push
@array
,
$num
;
}
return
@array
;
}
=head2 get_compressed_freq
Title : get_compressed_freq
Usage :
Function: A method to provide a compressed frequency vector. It uses one byte
to code the frequence for one of the probability vectors for one
position. Useful for relational database. Improvement of the previous
0..a coding.
Example : my $strA=$self->get_compressed_freq('A');
Returns : String
Args : char
=cut
sub
get_compressed_freq {
my
$self
=
shift
;
my
$base
=
shift
;
my
$string
=
''
;
my
@prob
;
BASE: {
if
(
$base
eq
'A'
) {
@prob
= @{
$self
->{probA}}
unless
(!
defined
(
$self
->{probA}));
last
BASE;
}
if
(
$base
eq
'G'
) {
@prob
= @{
$self
->{probG}}
unless
(!
defined
(
$self
->{probG}));
last
BASE;
}
if
(
$base
eq
'C'
) {
@prob
= @{
$self
->{probC}}
unless
(!
defined
(
$self
->{probC}));
last
BASE;
}
if
(
$base
eq
'T'
) {
@prob
= @{
$self
->{probT}}
unless
(!
defined
(
$self
->{probT}));
last
BASE;
}
$self
->throw (
"No such base: $base!\n"
);
}
my
$str
= _compress_array(\
@prob
,1,1);
return
$str
;
}
=head2 get_compressed_logs
Title : get_compressed_logs
Usage :
Function: A method to provide a compressed log-odd vector. It uses one byte to
code the log value for one of the log-odds vectors for one position.
Example : my $strA=$self->get_compressed_logs('A');
Returns : String
Args : char
=cut
sub
get_compressed_logs {
my
$self
=
shift
;
my
$base
=
shift
;
my
$string
=
''
;
my
@prob
;
BASE: {
if
(
$base
eq
'A'
) {
@prob
= @{
$self
->{logA}}
unless
(!
defined
(
$self
->{logA}));
last
BASE; }
if
(
$base
eq
'C'
) {
@prob
= @{
$self
->{logC}}
unless
(!
defined
(
$self
->{logC}));
last
BASE; }
if
(
$base
eq
'G'
) {
@prob
= @{
$self
->{logG}}
unless
(!
defined
(
$self
->{logG}));
last
BASE; }
if
(
$base
eq
'T'
) {
@prob
= @{
$self
->{logT}}
unless
(!
defined
(
$self
->{logT}));
last
BASE; }
$self
->throw (
"No such base: $base!\n"
);
}
return
_compress_array(\
@prob
,1000,2);
}
=head2 sequence_match_weight
Title : sequence_match_weight
Usage :
Function: This method will calculate the score of a match, based on the PWM
if such is associated with the matrix object. Returns undef if no
PWM data is available.
Throws : if the length of the sequence is different from the matrix width
Example : my $score=$matrix->sequence_match_weight('ACGGATAG');
Returns : Floating point
Args : string
=cut
sub
sequence_match_weight {
my
(
$self
,
$seq
)=
@_
;
return
unless
(
$self
->{logA});
my
$width
=
$self
->width;
$self
->throw (
"I can calculate the score only for sequence which are exactly my size for $seq, my width is $width\n"
)
unless
(
length
(
$seq
)==@{
$self
->{logA}});
$seq
=
uc
(
$seq
);
my
@seq
=
split
(//,
$seq
);
my
$score
= 0;
my
$i
=0;
foreach
my
$pos
(
@seq
) {
my
$tv
=
'log'
.
$pos
;
$self
->
warn
(
"Position "
.(
$i
+1).
" of input sequence has unknown (ambiguity?) character '$pos': scores will be wrong"
)
unless
defined
$self
->{
$tv
};
$score
+=
defined
$self
->{
$tv
} ?
$self
->{
$tv
}->[
$i
] : 0;
$i
++;
}
return
$score
;
}
=head2 get_all_vectors
Title : get_all_vectors
Usage :
Function: returns all possible sequence vectors to satisfy the PFM under
a given threshold
Throws : If threshold outside of 0..1 (no sense to do that)
Example : my @vectors=$self->get_all_vectors(4);
Returns : Array of strings
Args : (optional) floating
=cut
sub
get_all_vectors {
my
$self
=
shift
;
my
$thresh
=
shift
;
$self
->throw(
"Out of range. Threshold should be >0 and 1<.\n"
)
if
((
$thresh
<0) || (
$thresh
>1));
my
@seq
=
split
(//,
$self
->consensus(
$thresh
*10));
my
@perm
;
for
my
$i
(0..@{
$self
->{probA}}) {
push
@{
$perm
[
$i
]},
'A'
if
(
$self
->{probA}->[
$i
]>
$thresh
);
push
@{
$perm
[
$i
]},
'C'
if
(
$self
->{probC}->[
$i
]>
$thresh
);
push
@{
$perm
[
$i
]},
'G'
if
(
$self
->{probG}->[
$i
]>
$thresh
);
push
@{
$perm
[
$i
]},
'T'
if
(
$self
->{probT}->[
$i
]>
$thresh
);
push
@{
$perm
[
$i
]},
'N'
if
(
$seq
[
$i
] eq
'N'
);
}
my
$fpos
=
shift
@perm
;
my
@strings
=
@$fpos
;
foreach
my
$pos
(
@perm
) {
my
@newstr
;
foreach
my
$let
(
@$pos
) {
foreach
my
$string
(
@strings
) {
my
$newstring
=
$string
.
$let
;
push
@newstr
,
$newstring
;
}
}
@strings
=
@newstr
;
}
return
@strings
;
}
1;