————————————#
# BioPerl module for Bio::Tools::Genemark
#
# Please direct questions and support issues to <bioperl-l@bioperl.org>
#
# Cared for by Mark Fiers <hlapp@gmx.net>
#
# Copyright Hilmar Lapp, Mark Fiers
#
# You may distribute this module under the same terms as perl itself
# POD documentation - main docs before the code
=head1 NAME
Bio::Tools::Genemark - Results of one Genemark run
=head1 SYNOPSIS
$Genemark = Bio::Tools::Genemark->new(-file => 'result.Genemark');
# filehandle:
$Genemark = Bio::Tools::Genemark->new( -fh => \*INPUT );
# parse the results
# note: this class is-a Bio::Tools::AnalysisResult which implements
# Bio::SeqAnalysisParserI, i.e., $Genemark->next_feature() is the same
while($gene = $Genemark->next_prediction()) {
# $gene is an instance of Bio::Tools::Prediction::Gene, which inherits
# off Bio::SeqFeature::Gene::Transcript.
#
# $gene->exons() returns an array of
# Bio::Tools::Prediction::Exon objects
# all exons:
@exon_arr = $gene->exons();
# initial exons only
@init_exons = $gene->exons('Initial');
# internal exons only
@intrl_exons = $gene->exons('Internal');
# terminal exons only
@term_exons = $gene->exons('Terminal');
# singleton exons:
($single_exon) = $gene->exons();
}
# essential if you gave a filename at initialization (otherwise the file
# will stay open)
$Genemark->close();
=head1 DESCRIPTION
The Genemark module provides a parser for Genemark gene structure
prediction output. It parses one gene prediction into a
Bio::SeqFeature::Gene::Transcript- derived object.
This module has been developed around genemark.hmm for eukaryots v2.2a
and will probably not work with other versions.
This module also implements the Bio::SeqAnalysisParserI interface, and
thus can be used wherever such an object fits. See
L<Bio::SeqAnalysisParserI>.
=head1 FEEDBACK
=head2 Mailing Lists
User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to one
of the Bioperl mailing lists. Your participation is much appreciated.
bioperl-l@bioperl.org - General discussion
http://bioperl.org/wiki/Mailing_lists - About the mailing lists
=head2 Support
Please direct usage questions or support issues to the mailing list:
I<bioperl-l@bioperl.org>
rather than to the module maintainer directly. Many experienced and
reponsive experts will be able look at the problem and quickly
address it. Please include a thorough description of the problem
with code and data examples if at all possible.
=head2 Reporting Bugs
Report bugs to the Bioperl bug tracking system to help us keep track
the bugs and their resolution. Bug reports can be submitted via the
web:
=head1 AUTHOR - Hilmar Lapp, Mark Fiers
Email hlapp@gmx.net
m.w.e.j.fiers@plant.wag-ur.nl
=head1 APPENDIX
The rest of the documentation details each of the object
methods. Internal methods are usually preceded with a _
=cut
# Let the code begin...
package
Bio::Tools::Genemark;
$Bio::Tools::Genemark::VERSION
=
'1.7.8'
;
use
strict;
use
Symbol;
use
Bio::Root::Root;
use
Bio::Seq;
=head2 new
Title : new
Usage : my $obj = Bio::Tools::Genemark->new();
Function: Builds a new Bio::Tools::Genemark object
Returns : an instance of Bio::Tools::Genemark
Args : seqname
=cut
sub
new {
my
(
$class
,
@args
) =
@_
;
my
$self
=
$class
->SUPER::new(
@args
);
my
(
$seqname
) =
$self
->_rearrange([
qw(SEQNAME)
],
@args
);
# hardwire seq_id when creating gene and exon objects
$self
->_seqname(
$seqname
)
if
defined
(
$seqname
);
return
$self
;
}
sub
_initialize_state {
my
(
$self
,
@args
) =
@_
;
# first call the inherited method!
$self
->SUPER::_initialize_state(
@args
);
# our private state variables
$self
->{
'_preds_parsed'
} = 0;
$self
->{
'_has_cds'
} = 0;
# array of pre-parsed predictions
$self
->{
'_preds'
} = [];
# seq stack
$self
->{
'_seqstack'
} = [];
}
=head2 analysis_method
Usage : $Genemark->analysis_method();
Purpose : Inherited method. Overridden to ensure that the name matches
/GeneMark.hmm/i.
Returns : String
Argument : n/a
=cut
#-------------
sub
analysis_method {
#-------------
my
(
$self
,
$method
) =
@_
;
if
(
$method
&& (
$method
!~ /Genemark\.hmm/i)) {
$self
->throw(
"method $method not supported in "
.
ref
(
$self
));
}
return
$self
->SUPER::analysis_method(
$method
);
}
=head2 next_feature
Title : next_feature
Usage : while($gene = $Genemark->next_feature()) {
# do something
}
Function: Returns the next gene structure prediction of the Genemark result
file. Call this method repeatedly until FALSE is returned.
The returned object is actually a SeqFeatureI implementing object.
This method is required for classes implementing the
SeqAnalysisParserI interface, and is merely an alias for
next_prediction() at present.
Example :
Returns : A Bio::Tools::Prediction::Gene object.
Args :
=cut
sub
next_feature {
my
(
$self
,
@args
) =
@_
;
# even though next_prediction doesn't expect any args (and this method
# does neither), we pass on args in order to be prepared if this changes
# ever
return
$self
->next_prediction(
@args
);
}
=head2 next_prediction
Title : next_prediction
Usage : while($gene = $Genemark->next_prediction()) {
# do something
}
Function: Returns the next gene structure prediction of the Genemark result
file. Call this method repeatedly until FALSE is returned.
Example :
Returns : A Bio::Tools::Prediction::Gene object.
Args :
=cut
sub
next_prediction {
my
(
$self
) =
@_
;
my
$gene
;
# if the prediction section hasn't been parsed yet, we do this now
$self
->_parse_predictions()
unless
$self
->_predictions_parsed();
# get next gene structure
$gene
=
$self
->_prediction();
return
$gene
;
}
=head2 _parse_predictions
Title : _parse_predictions()
Usage : $obj->_parse_predictions()
Function: Parses the prediction section. Automatically called by
next_prediction() if not yet done.
Example :
Returns :
=cut
sub
_parse_predictions {
my
(
$self
) =
@_
;
my
%exontags
= (
'Initial'
=>
'Initial'
,
'Internal'
=>
'Internal'
,
'Terminal'
=>
'Terminal'
,
'Single'
=>
''
,
'_na_'
=>
''
);
my
$exontag
;
my
$gene
;
my
$exontype
;
my
$current_gene_no
= -1;
# The prediction report does not contain a sequence identifier
# (at least the prokaryotic version doesn't)
my
$seqname
=
$self
->_seqname();
while
(
defined
(
$_
=
$self
->_readline())) {
if
( (/^\s*(\d+)\s+(\d+)/) || (/^\s*(\d+)\s+[\+\-]/)) {
# this is an exon, Genemark doesn't predict anything else
# $prednr corresponds to geneno.
my
$prednr
= $1;
#exon no:
my
$signalnr
= 0;
if
($2) {
my
$signalnr
= $2; }
# used in tag: exon_no
# split into fields
chomp
();
my
@flds
=
split
(
' '
,
$_
);
# create the feature (an exon) object
my
$predobj
= Bio::Tools::Prediction::Exon->new();
# define info depending on it being eu- or prokaryot
my
(
$start
,
$end
,
$orientation
,
$prediction_source
);
if
(
$self
->analysis_method() =~ /PROKARYOTIC/i) {
$prediction_source
=
"Genemark.hmm.pro"
;
$orientation
= (
$flds
[1] eq
'+'
) ? 1 : -1;
(
$start
,
$end
) =
@flds
[(2,3)];
$exontag
=
"_na_"
;
}
else
{
$prediction_source
=
"Genemark.hmm.eu"
;
$orientation
= (
$flds
[2] eq
'+'
) ? 1 : -1;
(
$start
,
$end
) =
@flds
[(4,5)];
$exontag
=
$flds
[3];
}
# instatiate a location object via
# Bio::Factory::FTLocationFactory (to handle
# inexact coordinates)
my
$location_string
=
join
(
'..'
,
$start
,
$end
);
my
$location_factory
= Bio::Factory::FTLocationFactory->new();
my
$location_obj
=
$location_factory
->from_string(
$location_string
);
$predobj
->location(
$location_obj
);
#store the data in the exon object
$predobj
->source_tag(
$prediction_source
);
$predobj
->strand(
$orientation
);
$predobj
->primary_tag(
$exontags
{
$exontag
} .
"Exon"
);
$predobj
->add_tag_value(
'exon_no'
,
"$signalnr"
)
if
(
$signalnr
);
$predobj
->is_coding(1);
$predobj
->seq_id(
$seqname
)
if
(
defined
(
$seqname
) && (
$seqname
ne
'unknown'
));
# frame calculation as in the genscan module
# is to be implemented...
#If the $prednr is not equal to the current gene, we
#need to make a new gene and close the old one
if
(
$prednr
!=
$current_gene_no
) {
# a new gene, store the old one if it exists
if
(
defined
(
$gene
)) {
$gene
->seq_id(
$seqname
);
$gene
=
undef
;
}
#and make a new one
$gene
= Bio::Tools::Prediction::Gene->new
(
'-primary'
=>
"GenePrediction$prednr"
,
'-source'
=>
$prediction_source
);
$self
->_add_prediction(
$gene
);
$current_gene_no
=
$prednr
;
$gene
->seq_id(
$seqname
)
if
(
defined
(
$seqname
) && (
$seqname
ne
'unknown'
));
}
# Add the exon to the gene
$gene
->add_exon(
$predobj
, (
$exontag
eq
"_na_"
?
undef
:
$exontags
{
$exontag
}));
}
if
(/^(Genemark\.hmm\s*[PROKARYOTIC]*)\s+\(Version (.*)\)$/i) {
$self
->analysis_method($1);
my
$gm_version
= $2;
$self
->analysis_method_version(
$gm_version
);
next
;
}
#Matrix file for eukaryot version
if
(/^Matrices file:\s+(\S+)?/i) {
$self
->analysis_subject($1);
# since the line after the matrix file is always the date
# (in the output file's I have seen!) extract and store this
# here
if
(
defined
(
my
$_date
=
$self
->_readline())) {
chomp
(
$_date
);
$self
->analysis_date(
$_date
);
}
}
#Matrix file for prokaryot version
if
(/^Model file name:\s+(\S+)/) {
$self
->analysis_subject($1);
# since the line after the matrix file is always the date
# (in the output file's I have seen!) extract and store this
# here
my
$_date
=
$self
->_readline() ;
if
(
defined
(
$_date
=
$self
->_readline())) {
chomp
(
$_date
);
$self
->analysis_date(
$_date
);
}
}
if
(/^Sequence[ file]? name:\s+(.+)\s*$/i) {
$seqname
= $1;
# $self->analysis_subject($seqname);
next
;
}
/^>/ &&
do
{
$self
->_pushback(
$_
);
# section of predicted aa sequences on recognition
# of a fasta start, read all sequences and find the
# appropriate gene
while
(1) {
my
(
$aa_id
,
$seq
) =
$self
->_read_fasta_seq();
last
unless
(
$aa_id
);
#now parse through the predictions to add the pred. protein
FINDPRED:
foreach
my
$gene
(@{
$self
->{
'_preds'
}}) {
$gene
->primary_tag() =~ /[^0-9]([0-9]+)$/;
my
$geneno
= $1;
if
(
$aa_id
=~ /\|gene.
$geneno
\|/) {
#print "x SEQ : \n $seq \nXXXX\n";
my
$seqobj
= Bio::Seq->new(
'-seq'
=>
$seq
,
'-display_id'
=>
$aa_id
,
'-alphabet'
=>
"protein"
);
$gene
->predicted_protein(
$seqobj
);
last
FINDPRED;
}
}
}
last
;
};
}
# if the analysis query object contains a ref to a Seq of PrimarySeq
# object, then extract the predicted sequences and add it to the gene
# object.
if
(
defined
$self
->analysis_query()) {
my
$orig_seq
=
$self
->analysis_query();
FINDPREDSEQ:
foreach
my
$gene
(@{
$self
->{
'_preds'
}}) {
my
$predseq
=
""
;
foreach
my
$exon
(
$gene
->exons()) {
#print $exon->start() . " " . $exon->end () . "\n";
$predseq
.=
$orig_seq
->subseq(
$exon
->start(),
$exon
->end());
}
my
$seqobj
= Bio::PrimarySeq->new(
'-seq'
=>
$predseq
,
'-display_id'
=>
"transl"
);
$gene
->predicted_cds(
$seqobj
);
}
}
$self
->_predictions_parsed(1);
}
=head2 _prediction
Title : _prediction()
Usage : $gene = $obj->_prediction()
Function: internal
Example :
Returns :
=cut
sub
_prediction {
my
(
$self
) =
@_
;
return
unless
(
exists
(
$self
->{
'_preds'
}) && @{
$self
->{
'_preds'
}});
return
shift
(@{
$self
->{
'_preds'
}});
}
=head2 _add_prediction
Title : _add_prediction()
Usage : $obj->_add_prediction($gene)
Function: internal
Example :
Returns :
=cut
sub
_add_prediction {
my
(
$self
,
$gene
) =
@_
;
if
(!
exists
(
$self
->{
'_preds'
})) {
$self
->{
'_preds'
} = [];
}
push
(@{
$self
->{
'_preds'
}},
$gene
);
}
=head2 _predictions_parsed
Title : _predictions_parsed
Usage : $obj->_predictions_parsed
Function: internal
Example :
Returns : TRUE or FALSE
=cut
sub
_predictions_parsed {
my
(
$self
,
$val
) =
@_
;
$self
->{
'_preds_parsed'
} =
$val
if
$val
;
if
(!
exists
(
$self
->{
'_preds_parsed'
})) {
$self
->{
'_preds_parsed'
} = 0;
}
return
$self
->{
'_preds_parsed'
};
}
=head2 _has_cds
Title : _has_cds()
Usage : $obj->_has_cds()
Function: Whether or not the result contains the predicted CDSs, too.
Example :
Returns : TRUE or FALSE
=cut
sub
_has_cds {
my
(
$self
,
$val
) =
@_
;
$self
->{
'_has_cds'
} =
$val
if
$val
;
if
(!
exists
(
$self
->{
'_has_cds'
})) {
$self
->{
'_has_cds'
} = 0;
}
return
$self
->{
'_has_cds'
};
}
=head2 _read_fasta_seq
Title : _read_fasta_seq()
Usage : ($id,$seqstr) = $obj->_read_fasta_seq();
Function: Simple but specialised FASTA format sequence reader. Uses
$self->_readline() to retrieve input, and is able to strip off
the traling description lines.
Example :
Returns : An array of two elements.
=cut
sub
_read_fasta_seq {
my
(
$self
) =
@_
;
my
(
$id
,
$seq
);
local
$/ =
">"
;
return
0
unless
(
my
$entry
=
$self
->_readline());
$entry
=~ s/^>//;
# complete the entry if the first line came from a pushback buffer
while
(! (
$entry
=~ />$/)) {
last
unless
(
$_
=
$self
->_readline());
$entry
.=
$_
;
}
# delete everything onwards from an new fasta start (>)
$entry
=~ s/\n>.*$//s;
# id and sequence
if
(
$entry
=~ s/^(.+)\n//) {
$id
= $1;
$id
=~ s/ /_/g;
$seq
=
$entry
;
$seq
=~ s/\s//g;
#print "\n@@ $id \n@@ $seq \n##\n";
}
else
{
$self
->throw(
"Can't parse Genemark predicted sequence entry"
);
}
$seq
=~ s/\s//g;
# Remove whitespace
return
(
$id
,
$seq
);
}
=head2 _seqname
Title : _seqname
Usage : $obj->_seqname($seqname)
Function: internal
Example :
Returns : String
=cut
sub
_seqname {
my
(
$self
,
$val
) =
@_
;
$self
->{
'_seqname'
} =
$val
if
$val
;
if
(!
exists
(
$self
->{
'_seqname'
})) {
$self
->{
'_seqname'
} =
'unknown'
;
}
return
$self
->{
'_seqname'
};
}
1;