Synopsis

Take a data structure in Perl, and automatically write a Python3 script using matplotlib to generate an image. The Python3 script is saved in /tmp, to be edited at the user's discretion. Requires python3 and matplotlib installations.

Single Plots

Simplest use case: use Matplotlib::Simple 'plot'; plot({ 'output.filename' => '/tmp/gospel.word.counts.png', 'plot.type' => 'bar', data => { Matthew => 18345, Mark => 11304, Luke => 19482, John => 15635, } }); where xlabel, ylabel, title, etc. are axis methods in matplotlib itself. plot.type, data, input.file are all specific to MatPlotLib::Simple.

<img width="651" height="491" alt="gospel word counts" src="https://github.com/user-attachments/assets/a008dece-2e34-47bf-af0f-8603709f7d52" />

Multiple Plots

Having a plots argument as an array lets the module know to create subplots: use Matplotlib::Simple 'plot'; plot({ 'output.filename' => 'svg/pies.png', plots => [ { data => { Russian => 106_000_000, # Primarily European Russia German => 95_000_000, # Germany, Austria, Switzerland, etc. }, 'plot.type' => 'pie', title => 'Top Languages in Europe', suptitle => 'Pie in subplots', }, { data => { Russian => 106_000_000, # Primarily European Russia German => 95_000_000, # Germany, Austria, Switzerland, etc. }, 'plot.type' => 'pie', title => 'Top Languages in Europe', }, ], ncols => 2, }); which produces the following subplots image:

<img width="651" height="424" alt="pies" src="https://github.com/user-attachments/assets/49d3e28b-f897-4b01-9e72-38afa12fa538" />

bar, barh, boxplot, hexbin, hist, hist2d, imshow, pie, plot, scatter, and violinplot all match the methods in matplotlib itself. =head1 Examples/Plot Types

Consider the following helper subroutines to generate data to plot:

``` sub linspace { # mostly written by Grok my ($start, $stop, $num, $endpoint) = @_; # endpoint means include $stop $num = defined $num ? int($num) : 50; # Default to 50 points $endpoint = defined $endpoint ? $endpoint : 1; # Default to include endpoint return () if $num < 0; # Return empty array for invalid num return ($start) if $num == 1; # Return single value if num is 1 my (@result, $step);

if ($endpoint) {
  $step = ($stop - $start) / ($num - 1) if $num > 1;
  for my $i (0 .. $num - 1) {
       $result[$i] = $start + $i * $step;
  }
} else {
  $step = ($stop - $start) / $num;
  for my $i (0 .. $num - 1) {
       $result[$i] = $start + $i * $step;
  }
}
return @result;

}

sub generate_normal_dist { my ($mean, $std_dev, $size) = @; $size = defined $size ? int $size : 100; # default to 100 points my @numbers; for (1 .. int($size / 2) + 1) {# Box-Muller transform my $u1 = rand(); my $u2 = rand(); my $z0 = sqrt(-2.0 * log($u1)) * cos(2.0 * 3.141592653589793 * $u2); my $z1 = sqrt(-2.0 * log($u1)) * sin(2.0 * 3.141592653589793 * $u2); # Scale and shift to match mean and stddev push @numbers, ($z0 * $std_dev + $mean, $z1 * $std_dev + $mean); } # Trim to exact size if needed @numbers = @numbers[0 .. $size - 1] if @numbers > $size; @numbers = map {sprintf '%.1f', $} @numbers; return \@numbers; } sub randbetween { my ($min, $max) = @_; return $min + rand($max - $min) } ``` =head2 Barplot/bar/barh

Plot a hash or a hash of arrays as a boxplot

Options

| Option | Description | Example | | -------- | ------- | ------- |color| :mpltype:color or list of :mpltype:color, optional; The colors of the bar faces. This is an alias for facecolor. If both are given, facecolor takes precedence # if entering multiple colors, quoting isn't needed|color => ['red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'fuchsia'], or a single color for all bars color => 'red' |edgecolor| :mpltype:color or list of :mpltype:color, optional; The colors of the bar edges|edgecolor => 'black' |key.order| define the keys in an order (an array reference)|'key.order' => ['Sun','Mon','Tue','Wed','Thu','Fri','Sat'], |linewidth| float or array, optional; Width of the bar edge(s). If 0, don't draw edges. Only does anything with defined edgecolor|linewidth => 2, |log| bool, default: False; If True, set the y-axis to be log scale.|log = 'True', |stacked| stack the groups on top of one another; default 0 = off|stacked => 1, |width| float only, default: 0.8; The width(s) of the bars. width will be deactivated with grouped, non-stacked bar plots |width => 0.4, |xerr| float or array-like of shape(N,) or shape(2, N), optional. If not None, add horizontal / vertical errorbars to the bar tips. The values are +/- sizes relative to the data: - scalar: symmetric +/- values for all bars # - shape(N,): symmetric +/- values for each bar # - shape(2, N): Separate - and + values for each bar. First row # contains the lower errors, the second row contains the upper # errors. # - None: No errorbar. (Default)|yerr => {'USA' => [15,29], 'Russia' => [199,1000],} |yerr|same as xerr, but better with bar|

an example of multiple plots, showing many options:

single, simple plot

use Matplotlib::Simple 'plot'; plot({ 'output.filename' => 'output.images/single.barplot.png', data => { # simple hash Fri => 76, Mon => 73, Sat => 26, Sun => 11, Thu => 94, Tue => 93, Wed => 77 }, 'plot.type' => 'bar', xlabel => '# of Days', ylabel => 'Count', title => 'Customer Calls by Days' });

where xlabel, ylabel, title, etc. are axis methods in matplotlib itself. plot.type, data, input.file are all specific to MatPlotLib::Simple. <img width="651" height="491" alt="single barplot" src="https://github.com/user-attachments/assets/eae009a8-5571-4608-abdb-1016e3cff5fd" />

multiple plots

plot({ 'input.file' => $tmp_filename, execute => 0, 'output.filename' => 'output.images/barplots.png', plots => [ { # simple plot data => { # simple hash Fri => 76, Mon => 73, Sat => 26, Sun => 11, Thu => 94, Tue => 93, Wed => 77 }, 'plot.type' => 'bar', 'key.order' => ['Sun','Mon','Tue','Wed','Thu','Fri','Sat'], suptitle => 'Types of Plots', # applies to all color => ['red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'fuchsia'], edgecolor => 'black', set_figwidth => 40/1.5, # applies to all plots set_figheight => 30/2, # applies to all plots title => 'bar: Rejections During Job Search', xlabel => 'Day of the Week', ylabel => 'No. of Rejections' }, { # grouped bar plot 'plot.type' => 'bar', data => { 1941 => { UK => 6.6, US => 6.2, USSR => 17.8, Germany => 26.6 }, 1942 => { UK => 7.6, US => 26.4, USSR => 19.2, Germany => 29.7 }, 1943 => { UK => 7.9, US => 61.4, USSR => 22.5, Germany => 34.9 }, 1944 => { UK => 7.4, US => 80.5, USSR => 27.0, Germany => 31.4 }, 1945 => { UK => 5.4, US => 83.1, USSR => 25.5, Germany => 11.2 #Rapid decrease due to war's end <br /> }, }, stacked => 0, title => 'Hash of Hash Grouped Unstacked Barplot', width => 0.23, xlabel => 'r"$\it{anno}$ $\it{domini}$"', # italic ylabel => 'Military Expenditure (Billions of $)' }, { # grouped bar plot 'plot.type' => 'bar', data => { 1941 => { UK => 6.6, US => 6.2, USSR => 17.8, Germany => 26.6 }, 1942 => { UK => 7.6, US => 26.4, USSR => 19.2, Germany => 29.7 }, 1943 => { UK => 7.9, US => 61.4, USSR => 22.5, Germany => 34.9 }, 1944 => { UK => 7.4, US => 80.5, USSR => 27.0, Germany => 31.4 }, 1945 => { UK => 5.4, US => 83.1, USSR => 25.5, Germany => 11.2 #Rapid decrease due to war's end <br /> }, }, stacked => 1, title => 'Hash of Hash Grouped Stacked Barplot', xlabel => 'r"$\it{anno}$ $\it{domini}$"', # italic ylabel => 'Military Expenditure (Billions of $)' }, {# grouped barplot: arrays indicate Union, Confederate which must be specified in options hash data => { # 4th plot: arrays indicate Union, Confederate which must be specified in options hash 'Antietam' => [ 12400, 10300 ], 'Gettysburg' => [ 23000, 28000 ], 'Chickamauga' => [ 16000, 18000 ], 'Chancellorsville' => [ 17000, 13000 ], 'Wilderness' => [ 17500, 11000 ], 'Spotsylvania' => [ 18000, 12000 ], 'Cold Harbor' => [ 12000, 5000 ], 'Shiloh' => [ 13000, 10700 ], 'Second Bull Run' => [ 10000, 8000 ], 'Fredericksburg' => [ 12600, 5300 ], }, 'plot.type' => 'barh', color => ['blue', 'gray'], # colors match indices of data arrays label => ['North', 'South'], # colors match indices of data arrays xlabel => 'Casualties', ylabel => 'Battle', title => 'barh: hash of array' }, { # 5th plot: barplot with groups data => { 1942 => [ 109867, 310000, 7700000 ], # US, Japan, USSR 1943 => [ 221111, 440000, 9000000 ], 1944 => [ 318584, 610000, 7000000 ], 1945 => [ 318929, 1060000, 3000000 ], }, color => ['blue', 'pink', 'red'], # colors match indices of data arrays label => ['USA', 'Japan', 'USSR'], # colors match indices of data arrays 'log' => 1, title => 'grouped bar: Casualties in WWII', ylabel => 'Casualties', 'plot.type' => 'bar' }, <br /> { # nuclear weapons barplot 'plot.type' => 'bar', data => { 'USA' => 5277, # FAS Estimate 'Russia' => 5449, # FAS Estimate 'UK' => 225, # Consistent estimate 'France' => 290, # Consistent estimate 'China' => 600, # FAS Estimate 'India' => 180, # FAS Estimate 'Pakistan' => 130, # FAS Estimate 'Israel' => 90, # FAS Estimate 'North Korea' => 50, # FAS Estimate }, title => 'Simple hash for barchart with yerr', xlabel => 'Country', yerr => { 'USA' => [15,29], 'Russia' => [199,1000], 'UK' => [15,19], 'France' => [19,29], 'China' => [200,159], 'India' => [15,25], 'Pakistan' => [15,49], 'Israel' => [90,50], 'North Korea' => [10,20], }, ylabel => '# of Nuclear Warheads', 'log' => 'True', # linewidth => 1, } ], ncols => 3, nrows => 4 }); which produces the plot:

<img width="2678" height="849" alt="barplots" src="https://github.com/user-attachments/assets/6d87d13b-dabd-485d-92f7-1418f4acc65b" />

boxplot

Plot a hash of arrays as a series of boxplots

options

| Option | Description | Example | | -------- | ------- | ------- | |color | a single color for all plots | color => 'pink'| |colors| a hash, where each data point and color is a hash pair |colors => { A => 'orange', E => 'yellow', B => 'purple' },| | key.order| order that the keys in the entry hash will be plotted | key.order = ['A', 'E', 'B'] | | orientation| orientation of the plot, by default vertical| orientation = 'horizontal' | |showcaps| Show the caps on the ends of whiskers; default True | showcaps => 'False', | | showfliers |Show the outliers beyond the caps; default True | showfliers => 'False' | |showmeans | show means; default = True | showmeans => 'False' | |whiskers| show whiskers, default = 1| whiskers => 0,|

single, simple plot

``` my $x = generate_normal_dist( 100, 15, 3 * 10 ); my $y = generate_normal_dist( 85, 15, 3 * 10 ); my $z = generate_normal_dist( 106, 15, 3 * 10 );

single plots are simple

plot( { 'output.filename' => 'output.images/single.boxplot.png', data => { # simple hash E => [ 55, @{$x}, 160 ], B => [ @{$y}, 140 ],

        #       A => @a
    },
    'plot.type'  => 'boxplot',
    title        => 'Single Box Plot: Specified Colors',
    colors       => { E => 'yellow', B => 'purple' },
    'input.file' => $tmp_filename,
    execute      => 0,
}

); ``` which makes the following image:

<img width="651" height="491" alt="single boxplot" src="https://github.com/user-attachments/assets/19870fa2-fe36-4513-8cbb-23da3a0cf686" />

multiple plots

plot( { 'output.filename' => 'output.images/boxplot.png', execute => 0, 'input.file' => $tmp_filename, plots => [ { data => { A => [ 55, @{$z} ], E => [ @{$y} ], B => [ 122, @{$z} ], }, title => 'Simple Boxplot', ylabel => 'ylabel', xlabel => 'label', 'plot.type' => 'boxplot', suptitle => 'Boxplot examples' }, { color => 'pink', data => { A => [ 55, @{$z} ], E => [ @{$y} ], B => [ 122, @{$z} ], }, title => 'Specify single color', ylabel => 'ylabel', xlabel => 'label', 'plot.type' => 'boxplot' }, { colors => { A => 'orange', E => 'yellow', B => 'purple' }, data => { A => [ 55, @{$z} ], E => [ @{$y} ], B => [ 122, @{$z} ], }, title => 'Specify set-specific color; showfliers = False', ylabel => 'ylabel', xlabel => 'label', 'plot.type' => 'boxplot', showmeans => 'True', showfliers => 'False', set_figwidth => 12 }, { colors => { A => 'orange', E => 'yellow', B => 'purple' }, data => { A => [ 55, @{$z} ], E => [ @{$y} ], B => [ 122, @{$z} ], }, title => 'Specify set-specific color; showmeans = False', ylabel => 'ylabel', xlabel => 'label', 'plot.type' => 'boxplot', showmeans => 'False', }, { colors => { A => 'orange', E => 'yellow', B => 'purple' }, data => { A => [ 55, @{$z} ], E => [ @{$y} ], B => [ 122, @{$z} ], }, title => 'Set-specific color; orientation = horizontal', ylabel => 'ylabel', xlabel => 'label', orientation => 'horizontal', 'plot.type' => 'boxplot', }, { colors => { A => 'orange', E => 'yellow', B => 'purple' }, data => { A => [ 55, @{$z} ], E => [ @{$y} ], B => [ 122, @{$z} ], }, title => 'Notch = True', ylabel => 'ylabel', xlabel => 'label', notch => 'True', 'plot.type' => 'boxplot', }, { colors => { A => 'orange', E => 'yellow', B => 'purple' }, data => { A => [ 55, @{$z} ], E => [ @{$y} ], B => [ 122, @{$z} ], }, title => 'showcaps = False', ylabel => 'ylabel', xlabel => 'label', showcaps => 'False', 'plot.type' => 'boxplot', set_figheight => 12, }, ], ncols => 3, nrows => 3, } ); which makes the following plot:

<img width="1230" height="1211" alt="boxplot" src="https://github.com/user-attachments/assets/7e32e394-86fc-49e7-ad97-f48fd82fc8b0" />

hexbin

Plot a hash of arrays as a hexbin see https://matplotlib.org/stable/api/asgen/matplotlib.pyplot.hexbin.html

options

| Option | Description | Example | | -------- | ------- | ------- | cb_logscale | colorbar log scale from matplotlib.colors import LogNorm | default 0, any value > 0 enables | |cmap| The Colormap instance or registered colormap name used to map scalar data to colors | default gist_rainbow | |key.order| define the keys in an order (an array reference)|'key.order' => ['X-rays', 'Yak Butter'], | marginals | integer, by default off = 0 | marginals => 1 | | mincnt | int >= 0, default: None; If not None, only display cells with at least mincnt number of points in the cell. | mincnt => 2| | vmax | The normalization method used to scale scalar data to the [0, 1] range before mapping to colors using cmap | 'asinh', 'function', 'functionlog', 'linear', 'log', 'logit', 'symlog' default linear | | vmin | The normalization method used to scale scalar data to the [0, 1] range before mapping to colors using cmap | 'asinh', 'function', 'functionlog', 'linear', 'log', 'logit', 'symlog' default linear | | xbins | integer that accesses horizontal gridsize | default is 15 | | xscale.hexbin | 'linear', 'log'}, default: 'linear': Use a linear or log10 scale on the horizontal axis | 'xscale.hexbin' => 'log'| | ybins | integer that accesses vertical gridsize | default is 15 | | yscale.hexbin | 'linear', 'log'}, default: 'linear': Use a linear or log10 scale on the vertical axis | 'yscale.hexbin' => 'log'|

single, simple plot

plot({ data => { E => generate_normal_dist(100, 15, 3*210), B => generate_normal_dist(85, 15, 3*210) }, 'output.filename' => 'output.images/single.hexbin.png', 'plot.type' => 'hexbin', set_figwidth => 12, title => 'Simple Hexbin', }); which makes the following plot: <img width="1208" height="491" alt="single hexbin" src="https://github.com/user-attachments/assets/129c41cd-2d7d-43de-978a-2b9c441b8939" /> =head3 multiple plots

plot( { 'input.file' => $tmp_filename, execute => 0, 'output.filename' => 'output.images/hexbin.png', plots => [ { data => { E => @e, B => @b }, 'plot.type' => 'hexbin', title => 'Simple Hexbin', }, { data => { E => @e, B => @b }, 'plot.type' => 'hexbin', title => 'colorbar logscale', cb_logscale => 1 }, { cmap => 'jet', data => { E => @e, B => @b }, 'plot.type' => 'hexbin', title => 'cmap is jet', xlabel => 'xlabel', }, { data => { E => @e, B => @b }, 'key.order' => ['E', 'B'], 'plot.type' => 'hexbin', title => 'Switch axes with key.order', }, { data => { E => @e, B => @b }, 'plot.type' => 'hexbin', title => 'vmax set to 25', vmax => 25 }, { data => { E => @e, B => @b }, 'plot.type' => 'hexbin', title => 'vmin set to -4', vmin => -4 }, { data => { E => @e, B => @b }, 'plot.type' => 'hexbin', title => 'mincnt set to 7', mincnt => 7 }, { data => { E => @e, B => @b }, 'plot.type' => 'hexbin', title => 'xbins set to 9', xbins => 9 }, { data => { E => @e, B => @b }, 'plot.type' => 'hexbin', title => 'ybins set to 9', ybins => 9 }, { data => { E => @e, B => @b }, 'plot.type' => 'hexbin', title => 'marginals = 1', marginals => 1 }, ], ncols => 2 } ); which produces the following image: <img width="2010" height="1511" alt="hexbin" src="https://github.com/user-attachments/assets/71412ab1-e869-4913-a8cf-e39df15c9590" /> =head2 hist

Plot a hash of arrays as a series of histograms

options

single, simple plot

``` my @e = generate_normal_dist( 100, 15, 3 * 200 ); my @b = generate_normal_dist( 85, 15, 3 * 200 ); my @a = generate_normal_dist( 105, 15, 3 * 200 );

plot({ 'input.file' => $tmp_filename, execute => 0, 'output.filename' => 'output.images/single.hist.png', data => { E => @e, B => @b, A => @a, }, 'plot.type' => 'hist' }); ``` <img width="651" height="491" alt="single hist" src="https://github.com/user-attachments/assets/fafcf787-6c4f-4998-88c4-77a15d878fa6" />

multiple plots

plot({ 'input.file' => $tmp_filename, execute => 0, 'output.filename' => 'output.images/histogram.png', suptitle => 'hist Examples', plots => [ { # 1st subplot data => { E => @e, B => @b, A => @a, }, 'plot.type' => 'hist', alpha => 0.25, bins => 50, title => 'alpha = 0.25', color => { B => 'Black', E => 'Orange', A => 'Yellow', }, scatter => '[' . join( ',', 22 .. 44 ) . '],[' # x coords . join( ',', 22 .. 44 ) # y coords . '], label = "scatter"', xlabel => 'Value', ylabel => 'Frequency', }, { # 2nd subplot data => { E => @e, B => @b, A => @a, }, 'plot.type' => 'hist', alpha => 0.75, bins => 50, title => 'alpha = 0.75', color => { B => 'Black', E => 'Orange', A => 'Yellow', }, xlabel => 'Value', ylabel => 'Frequency', suptitle => 'Types of Plots', # applies to all # 'log' => 1, }, { # 3rd subplot add => [ # add secondary plots/graphs/methods { # 1st additional plot/graph data => { 'Gaussian' => [ [40..150], [map {150 * exp(-0.5*($_-100)**2)} 40..150] ] }, 'plot.type' => 'plot', 'set.options' => { 'Gaussian' => 'color = "red", linestyle = "dashed"' } } ], data => { E => @e, B => @b, A => @a, }, 'plot.type' => 'hist', alpha => 0.75, bins => { A => 10, B => 25, E => 50 }, title => 'Varying # of bins', color => { B => 'Black', E => 'Orange', A => 'Yellow', }, xlabel => 'Value', ylabel => 'Frequency', set_figwidth => 15, suptitle => 'Types of Plots', # applies to all # 'log' => 1, }, {# 4th subplot data => { E => @e, B => @b, A => @a, }, 'plot.type' => 'hist', alpha => 0.75, color => { B => 'Black', E => 'Orange', A => 'Yellow', }, orientation => 'horizontal', # assign x and y labels smartly set_figwidth => 15, suptitle => 'Types of Plots', # applies to all title => 'Horizontal orientation', ylabel => 'Value', xlabel => 'Frequency', # 'log' => 1, }, ], ncols => 3, nrows => 2, });

<img width="1511" height="491" alt="histogram" src="https://github.com/user-attachments/assets/2fbeaacd-770f-4422-940c-53611679b5e8" />

hist2d

options

single, simple plot

multiple plots

imshow

Plot 2D array of numbers as an image

options

| Option | Description | Example | | -------- | ------- | ------- |cblabel| colorbar label | cblabel => 'sin(x) * cos(x)', |cbdrawedges |draw edges for colorbar | | |cblocation | 'left', 'right', 'top', 'bottom'| cblocation => 'left',| |cborientation| None, or 'vertical', 'horizontal' | |cmap| # The Colormap instance or registered colormap name used to map scalar data to colors.| |vmax| float | |vmin| float |

single, simple plot

my @imshow_data; foreach my $i (0..360) { foreach my $j (0..360) { push @{ $imshow_data[$i] }, sin($i * $pi/180)*cos($j * $pi/180); } } plot({ data => \@imshow_data, execute => 0, 'input.file' => $tmp_filename, 'output.filename' => 'output.images/imshow.single.png', 'plot.type' => 'imshow', set_xlim => '0, ' . scalar @imshow_data, set_ylim => '0, ' . scalar @imshow_data, }); <img width="599" height="491" alt="imshow single" src="https://github.com/user-attachments/assets/3fa4ffe6-4817-4133-9c91-b68099400377" />

multiple plots

pie

options

single, simple plot

multiple plots

plot

single, simple

plot( { 'input.file' => $tmp_filename, execute => 0, 'output.filename' => 'output.images/plot.single.png', data => { 'sin(x)' => [ [@x], # x [ map { sin($_) } @x ] # y ], 'cos(x)' => [ [@x], # x [ map { cos($_) } @x ] # y ], }, 'plot.type' => 'plot', title => 'simple plot', set_xticks => "[-2 * $pi, -3 * $pi / 2, -$pi, -$pi / 2, 0, $pi / 2, $pi, 3 * $pi / 2, 2 * $pi" . '], [r\'$-2\pi$\', r\'$-3\pi/2$\', r\'$-\pi$\', r\'$-\pi/2$\', r\'$0$\', r\'$\pi/2$\', r\'$\pi$\', r\'$3\pi/2$\', r\'$2\pi$\']', 'set.options' => { # set options overrides global settings 'sin(x)' => 'color="blue", linewidth=2', 'cos(x)' => 'color="red", linewidth=2' } } );

which makes the following "plot" plot: <img width="651" height="491" alt="plot single" src="https://github.com/user-attachments/assets/6cbd6aad-c464-4703-b962-b420ec08bb66" />

multiple sub-plots

my $pi = atan2( 0, -1 ); my @x = linspace( -2 * $pi, 2 * $pi, 100, 1 ); plot( { 'input.file' => $tmp_filename, execute => 0, 'output.filename' => 'output.images/plot.png', plots => [ { # plot 1 data => { 'sin(x)' => [ [@x], # x [ map { sin($_) } @x ] # y ], 'cos(x)' => [ [@x], # x [ map { cos($_) } @x ] # y ], }, 'plot.type' => 'plot', title => 'simple plot', set_xticks => "[-2 * $pi, -3 * $pi / 2, -$pi, -$pi / 2, 0, $pi / 2, $pi, 3 * $pi / 2, 2 * $pi" . '], [r\'$-2\pi$\', r\'$-3\pi/2$\', r\'$-\pi$\', r\'$-\pi/2$\', r\'$0$\', r\'$\pi/2$\', r\'$\pi$\', r\'$3\pi/2$\', r\'$2\pi$\']', 'set.options' => { # set options overrides global settings 'sin(x)' => 'color="blue", linewidth=2', 'cos(x)' => 'color="red", linewidth=2' }, set_xlim => "$x[0], $x[-1]", # set min and max as a string }, { # plot 2 data => { 'csc(x)' => [ [@x], # x [ map { 1 / sin($_) } @x ] # y ], 'sec(x)' => [ [@x], # x [ map { 1 / cos($_) } @x ] # y ], }, 'plot.type' => 'plot', title => 'simple plot', set_xticks => "[-2 * $pi, -3 * $pi / 2, -$pi, -$pi / 2, 0, $pi / 2, $pi, 3 * $pi / 2, 2 * $pi" . '], [r\'$-2\pi$\', r\'$-3\pi/2$\', r\'$-\pi$\', r\'$-\pi/2$\', r\'$0$\', r\'$\pi/2$\', r\'$\pi$\', r\'$3\pi/2$\', r\'$2\pi$\']', 'set.options' => { # set options overrides global settings 'csc(x)' => 'color="purple", linewidth=2', 'sec(x)' => 'color="green", linewidth=2' }, set_xlim => "$x[0], $x[-1]", # set min and max as a string set_ylim => '-9,9', }, ], ncols => 2, set_figwidth => 12, } ); which makes <img width="1211" height="491" alt="plot" src="https://github.com/user-attachments/assets/a8312147-e13d-4aa9-9997-49430bb5c74a" /> =head2 scatter

options

single, simple plot

multiple plots

violin

options

single, simple plot

multiple plots

wide

options

single, simple plot

multiple plots

Advanced

Notes in Files

all files that can have notes with them, give notes about how the file was written. For example, SVG files have the following: <dc:title>made/written by /mnt/ceph/dcondon/ui/gromacs/tut/dup.2puy/1.plot.gromacs.pl called using "plot" in /mnt/ceph/dcondon/perl5/perlbrew/perls/perl-5.42.0/lib/site_perl/5.42.0/x86_64-linux/Matplotlib/Simple.pm</dc:title> =head2 Speed

To improve speed, all data can be written into a single temp python3 file thus: ``` use File::Temp 'tempfile';

my ( $fh, $tmp_filename ) = tempfile( DIR => '/tmp', SUFFIX => '.py', UNLINK => 0 ); close $fh; =head1 all files will be written to $tmp_filename; be sure to put execute => 0

plot( { data => { Clinical => [ [ [@xw], # x [@y] # y ], [ [@xw], [ map { $_ + rand_between( -0.5, 0.5 ) } @y ] ], [ [@xw], [ map { $_ + rand_between( -0.5, 0.5 ) } @y ] ] ], HGI => [ [ [@xw], # x [ map { 1.9 - 1.1 / $_ } @xw ] # y ], [ [@xw], [ map { $_ + rand_between( -0.5, 0.5 ) } @y ] ], [ [@xw], [ map { $_ + rand_between( -0.5, 0.5 ) } @y ] ] ] }, 'output.filename' => 'output.images/single.wide.png', 'plot.type' => 'wide', color => { Clinical => 'blue', HGI => 'green' }, title => 'Visualization of similar lines plotted together', 'input.file' => $tmp_filename, execute => 0, } ); =head1 the last plot should have execute => 1

plot( { data => [ [ [@xw], # x [@y] # y ], [ [@xw], [ map { $_ + rand_between( -0.5, 0.5 ) } @y ] ], [ [@xw], [ map { $_ + rand_between( -0.5, 0.5 ) } @y ] ] ], 'output.filename' => 'output.images/single.array.png', 'plot.type' => 'wide', color => 'red', title => 'Visualization of similar lines plotted together', 'input.file' => $tmp_filename, execute => 1, } ); ```