Sponsoring The Perl Toolchain Summit 2025: Help make this important event another success Learn more

package PDL::Types;
use strict;
require Exporter;
use Carp;
use Config;
our @ISA = qw( Exporter );
my @TYPE_CHECK = qw/
realctype ppforcetype usenan real unsigned integer identifier ctype
/;
my @TYPE_VERBATIM = (@TYPE_CHECK, qw(
ioname convertfunc defbval shortctype ppsym numval sym floatsuffix
));
my @TYPE_MODIFIED = qw(realversion complexversion isnan isfinite);
sub packtypeof_PDL_Indx {
return 'q*' if $Config{ptrsize} == 8;
return 'l*' if $Config{ptrsize} == 4;
die "PDL::Types: packtype for ptrsize==$Config{ptrsize} not handled\n";
}
# Data types *must* be listed in order of complexity!!
# this is critical for type conversions!!!
#
my @HASHES = (
{
identifier => 'SB',
onecharident => 'A', # only needed if different from identifier
ctype => 'PDL_SByte',# to be defined in pdl.h
realctype => 'signed char', # CORE21 change to int8_t
ppforcetype => 'sbyte', # for some types different from ctype
usenan => 0, # do we need NaN handling for this type?
packtype => 'c*', # the perl pack type
defbval => 'SCHAR_MIN',
real=>1,
integer=>1,
unsigned=>0,
},
{
identifier => 'B',
ctype => 'PDL_Byte',# to be defined in pdl.h
realctype => 'unsigned char',
ppforcetype => 'byte', # for some types different from ctype
usenan => 0, # do we need NaN handling for this type?
packtype => 'C*', # the perl pack type
defbval => 'UCHAR_MAX',
real=>1,
integer=>1,
unsigned=>1,
},
{
identifier => 'S',
ctype => 'PDL_Short',
realctype => 'short',
ppforcetype => 'short',
usenan => 0,
packtype => 's*',
defbval => 'SHRT_MIN',
real=>1,
integer=>1,
unsigned=>0,
},
{
identifier => 'US',
onecharident => 'U', # only needed if different from identifier
ctype => 'PDL_Ushort',
realctype => 'unsigned short',
ppforcetype => 'ushort',
usenan => 0,
packtype => 'S*',
defbval => 'USHRT_MAX',
real=>1,
integer=>1,
unsigned=>1,
},
{
identifier => 'L',
ctype => 'PDL_Long',
realctype => 'int32_t',
ppforcetype => 'int',
usenan => 0,
packtype => 'l*',
defbval => 'INT32_MIN',
real=>1,
integer=>1,
unsigned=>0,
},
{
identifier => 'UL',
onecharident => 'K', # only needed if different from identifier
ctype => 'PDL_ULong',
realctype => 'uint32_t',
ppforcetype => 'uint',
usenan => 0,
packtype => 'L*',
defbval => 'UINT32_MAX',
real=>1,
integer=>1,
unsigned=>1,
},
{
identifier => 'IND',
onecharident => 'N', # only needed if different from identifier
ctype => 'PDL_Indx',
realctype => 'ptrdiff_t',
ppforcetype => 'indx',
usenan => 0,
packtype => &packtypeof_PDL_Indx,
defbval => 'PTRDIFF_MIN',
real=>1,
integer=>1,
unsigned=>0,
},
# note that the I/O routines have *not* been updated to be aware of
# such a type yet
{ # this one before LL so last integer is signed, to avoid default-type (last in list) changing to unsigned
identifier => 'ULL',
onecharident => 'P', # only needed if different from identifier
ctype => 'PDL_ULongLong',
realctype => 'uint64_t',
ppforcetype => 'ulonglong',
usenan => 0,
packtype => 'Q*',
defbval => 'UINT64_MAX',
real=>1,
integer=>1,
unsigned=>1,
},
{
identifier => 'LL',
onecharident => 'Q', # only needed if different from identifier
ctype => 'PDL_LongLong',
realctype => 'int64_t',
ppforcetype => 'longlong',
usenan => 0,
packtype => 'q*',
defbval => 'INT64_MIN',
real=>1,
integer=>1,
unsigned=>0,
},
# IMPORTANT:
# PDL_F *must* be the first non-integer type in this list
# as there are many places in the code (.c/.xs/.pm/.pd)
# with tests like this:
# if (ndarraytype < PDL_F) { ... }
{
identifier => 'F',
ctype => 'PDL_Float',
realctype => 'float',
ppforcetype => 'float',
usenan => 1,
packtype => 'f*',
defbval => '-FLT_MAX',
real=>1,
complexversion=> 'G',
integer=>0,
unsigned=>0,
isnan=>'isnan(%1$s)',
isfinite=>'isfinite(%1$s)',
floatsuffix=>'f',
},
{
identifier => 'D',
ctype => 'PDL_Double',
realctype => 'double',
ppforcetype => 'double',
usenan => 1,
packtype => 'd*',
defbval => '-DBL_MAX',
real=>1,
complexversion=> 'C',
integer=>0,
unsigned=>0,
isnan=>'isnan(%1$s)',
isfinite=>'isfinite(%1$s)',
floatsuffix=>'',
},
{
identifier => 'LD',
onecharident => 'E', # only needed if different from identifier
ctype => 'PDL_LDouble',
realctype => 'long double',
ppforcetype => 'ldouble',
usenan => 1,
packtype => 'D*',
defbval => '-LDBL_MAX',
real=>1,
complexversion=> 'CLD',
integer=>0,
unsigned=>0,
isnan=>'isnan(%1$s)',
isfinite=>'isfinite(%1$s)',
floatsuffix=>'l',
},
# the complex types need to be in the same order as their real
# counterparts, because the "real" ppforcetype relies on a fixed interval
# between each real and complex version
# they also need to occur at the end of the types, as a < PDL_CF
# comparison is done at C level to see if a type is real, analogous to
# the < PDL_F above
{
identifier => 'CF',
onecharident => 'G', # only needed if different from identifier
ctype => 'PDL_CFloat',
realctype => 'complex float',
ppforcetype => 'cfloat',
usenan => 1,
packtype => '(ff)*',
defbval => '(-FLT_MAX - I*FLT_MAX)',
real=>0,
realversion=>'F',
integer=>0,
unsigned=>0,
isnan=>'(isnan(crealf(%1$s)) || isnan(cimagf(%1$s)))',
isfinite=>'(isfinite(crealf(%1$s)) && isfinite(cimagf(%1$s)))',
floatsuffix=>'f',
},
{
identifier => 'CD',
onecharident => 'C', # only needed if different from identifier
ctype => 'PDL_CDouble',
realctype => 'complex double',
ppforcetype => 'cdouble',
usenan => 1,
packtype => '(dd)*',
defbval => '(-DBL_MAX - I*DBL_MAX)',
real=>0,
realversion=>'D',
integer=>0,
unsigned=>0,
isnan=>'(isnan(creal(%1$s)) || isnan(cimag(%1$s)))',
isfinite=>'(isfinite(creal(%1$s)) && isfinite(cimag(%1$s)))',
floatsuffix=>'',
},
{
identifier => 'CLD',
onecharident => 'H', # only needed if different from identifier
ctype => 'PDL_CLDouble',
realctype => 'complex long double',
ppforcetype => 'cldouble',
usenan => 1,
packtype => '(DD)*',
defbval => '(-LDBL_MAX - I*LDBL_MAX)',
real=>0,
realversion=>'LD',
integer=>0,
unsigned=>0,
isnan=>'(isnan(creall(%1$s)) || isnan(cimagl(%1$s)))',
isfinite=>'(isfinite(creall(%1$s)) && isfinite(cimagl(%1$s)))',
floatsuffix=>'l',
},
);
my $i = 0;
my @check_keys = (@TYPE_CHECK, qw(
identifier packtype defbval
));
for my $type (@HASHES) {
die "type is not a HASH ref but ".ref($type) unless ref $type eq 'HASH';
my @missing_keys = grep !exists $type->{$_}, @check_keys;
die "type hash missing (@missing_keys)" if @missing_keys;
$type->{shortctype} = $type->{ctype} =~ s/PDL_//r;
$type->{ioname} = $type->{convertfunc} = lc $type->{shortctype};
$type->{ppsym} = $type->{onecharident} || $type->{identifier};
$type->{numval} = $i++;
$type->{sym} = "PDL_$type->{identifier}";
$type->{realversion} ||= $type->{ppsym};
$type->{complexversion} ||= !$type->{real} ? $type->{ppsym} : 'G';
$type->{floatsuffix} //= 'INVALID';
}
our @EXPORT = (qw(@pack %typehash), my @typevars = map "\$$_->{sym}", @HASHES);
our @EXPORT_OK = (@EXPORT,
qw/types typesrtkeys mapfld typefld
ppdefs ppdefs_complex ppdefs_all
/
);
our %EXPORT_TAGS = (
All=>\@EXPORT_OK,
);
eval "our ( @{[ join ',', @typevars ]} ) = (0..$#HASHES)";
die if $@;
# Corresponding pack types
our @pack= map $_->{packtype}, @HASHES;
our @names= map $_->{sym}, @HASHES;
our %typehash = map {
my $type = $_;
$type->{sym} => +{
(map +($_ => $type->{$_}), @TYPE_VERBATIM, @TYPE_MODIFIED),
};
} @HASHES;
# Cross-reference by common names
our %typenames;
for my $h (@HASHES) {
my $n = $h->{numval};
$typenames{$_} = $n for $n, @$h{qw(sym ioname ctype ppforcetype ppsym identifier)};
}
=head1 NAME
PDL::Types - define fundamental PDL Datatypes
=head1 SYNOPSIS
use PDL::Types;
$pdl = ushort( 2.0, 3.0 );
print "The actual c type used to store ushort's is '" .
$pdl->type->realctype() . "'\n";
The actual c type used to store ushort's is 'unsigned short'
=head1 DESCRIPTION
Internal module - holds all the PDL Type info. The type info can be
accessed easily using the C<PDL::Type> object returned by
the L<type|PDL::Core/type> method as shown in the synopsis.
Skip to the end of this document to find out how to change
the set of types supported by PDL.
=head1 FUNCTIONS
A number of functions are available for module writers
to get/process type information. These are used in various
places (e.g. C<PDL::PP>, C<PDL::Core>) to generate the
appropriate type loops, etc.
=head2 typesrtkeys
=for ref
Returns an array of keys of typehash sorted in order of type complexity
=for example
pdl> @typelist = PDL::Types::typesrtkeys;
pdl> print @typelist;
PDL_SB PDL_B PDL_S PDL_US PDL_L PDL_UL PDL_IND PDL_ULL PDL_LL PDL_F PDL_D PDL_LD PDL_CF PDL_CD PDL_CLD
=cut
sub typesrtkeys { @names }
=head2 ppdefs
=for ref
Returns an array of pp symbols for all real types. This informs the
default C<GenericTypes> for C<pp_def> functions, making support for
complex types require an "opt-in".
=for example
pdl> print PDL::Types::ppdefs
A B S U L K N P Q F D E
=cut
my @PPDEFS = map $_->{ppsym}, grep $_->{real}, @HASHES;
sub ppdefs { @PPDEFS }
=head2 ppdefs_complex
=for ref
Returns an array of pp symbols for all complex types.
=for example
pdl> print PDL::Types::ppdefs_complex
G C H
=cut
my @PPDEFS_CPLX = map $_->{ppsym}, grep !$_->{real}, @HASHES;
sub ppdefs_complex { @PPDEFS_CPLX }
=head2 ppdefs_all
=for ref
Returns an array of pp symbols for all types including complex.
=for example
pdl> print PDL::Types::ppdefs_all
A B S U L K N P Q F D E G C H
=cut
my @PPDEFS_ALL = map $_->{ppsym}, @HASHES;
sub ppdefs_all { @PPDEFS_ALL }
sub typefld {
my ($type,$fld) = @_;
croak "unknown type $type" unless exists $typehash{$type};
croak "unknown field $fld in type $type"
unless exists $typehash{$type}->{$fld};
return $typehash{$type}->{$fld};
}
sub mapfld {
my ($type,$src,$trg) = @_;
my @keys = grep {$typehash{$_}->{$src} eq $type} typesrtkeys;
return @keys > 0 ? $typehash{$keys[0]}->{$trg} : undef;
}
=head2 typesynonyms
=for ref
return type related synonym definitions to be included in pdl.h .
This routine must be updated to include new types as required.
Mostly the automatic updating should take care of the vital
things.
=cut
sub typesynonyms {
my $add = join "\n",
map {"#define PDL_".typefld($_,'ppsym')." ".typefld($_,'sym')}
grep {"PDL_".typefld($_,'ppsym') ne typefld($_,'sym')} typesrtkeys;
return "$add\n";
}
=head1 PDL TYPES OVERVIEW
As of 2.065, PDL supports these types:
=over
=item SByte
Signed 8-bit value.
=item Byte
Unsigned 8-bit value.
=item Short
Signed 16-bit value.
=item UShort
Unsigned 16-bit value.
=item Long
Signed 32-bit value.
=item ULong
Unsigned 32-bit value.
=item Indx
Signed value, same size as a pointer on the system in use.
=item ULongLong
Unsigned 64-bit value.
=item LongLong
Signed 64-bit value.
=item Float
L<IEEE 754|https://en.wikipedia.org/wiki/IEEE_754> single-precision real
floating-point value.
=item Double
IEEE 754 double-precision real value.
=item LDouble
A C99 "long double", defined as "at least as precise as a double",
but often more precise.
=item CFloat
A C99 complex single-precision floating-point value.
=item CDouble
A C99 complex double-precision floating-point value.
=item CLDouble
A C99 complex "long double" - see above for description.
=back
As of 2.099, documentation for L<PDL::Type> is separate. See there for more.
=cut
my @CACHED_TYPES = map bless([$_->{numval}, $_], 'PDL::Type'), @HASHES;
# return all known types as type objects
sub types { @CACHED_TYPES }
{
package PDL::Type;
use Carp;
sub new {
my ($type,$val) = @_;
return $val if "PDL::Type" eq ref $val;
if (ref $val and UNIVERSAL::isa($val, 'PDL')) {
PDL::Core::barf("Can't make a type out of non-scalar ndarray $val!")
if $val->getndims != 0;
$val = $val->at;
}
confess "Can't make a type out of non-scalar $val (".
(ref $val).")!" if ref $val;
confess "Unknown type string '$val' (should be one of ".
join(",",map $PDL::Types::typehash{$_}{ioname}, @names).
")\n"
if !defined $PDL::Types::typenames{$val};
$CACHED_TYPES[$PDL::Types::typenames{$val}];
}
sub enum { $_[0][0] }
*symbol = \&sym;
sub realversion {
$CACHED_TYPES[$PDL::Types::typenames{ $_[0][1]{realversion} }];
}
sub complexversion {
$CACHED_TYPES[$PDL::Types::typenames{ $_[0][1]{complexversion} }];
}
sub isnan { sprintf $_[0][1]{isnan}, $_[1] }
sub isfinite { sprintf $_[0][1]{isfinite}, $_[1] }
my (%bswap_cache, %howbig_cache);
sub bswap {
PDL::Core::barf('Usage: $type->bswap with no args') if @_ > 1;
return $bswap_cache{$_[0][0]} if $bswap_cache{$_[0][0]};
my $size = $_[0]->howbig;
return $bswap_cache{$_[0][0]} = sub {} if $size < 2;
require PDL::IO::Misc;
my $swapper = PDL->can("bswap$size");
PDL::Core::barf("Type::bswap couldn't find swap function for $_[0][1]{shortctype}, size was '$size'") if !defined $swapper;
$bswap_cache{$_[0][0]} = $swapper;
}
sub howbig {
$howbig_cache{$_[0][0]} ||= PDL::Core::howbig($_[0][0]);
}
foreach my $name (@TYPE_VERBATIM) {
no strict 'refs';
*$name = sub { $_[0][1]{$name}; };
}
sub badvalue {
PDL::Bad::_badvalue_int( $_[1], $_[0][0] );
}
sub orig_badvalue {
PDL::Bad::_default_badvalue_int($_[0][0]);
}
# make life a bit easier
use overload (
'""' => sub { lc $_[0]->shortctype },
"eq" => sub { my ($self, $other, $swap) = @_; ("$self" eq $other); },
"cmp" => sub { my ($self, $other, $swap) = @_;
$swap ? $other cmp "$self" : "$self" cmp $other;
},
"<=>" => sub { $_[2] ? $_[1][0] <=> $_[0][0] : $_[0][0] <=> $_[1][0] },
);
} # package: PDL::Type
# Return
1;
__END__
=head1 DEVELOPER NOTES ON ADDING/REMOVING TYPES
You can change the types that PDL knows about by editing entries in
the definition of the variable C<@types> that appears close to the
top of the file F<lib/PDL/Types.pm>.
=head2 Format of a type entry
Each entry in the C<@HASHES> array is a hash reference. Here is an example
taken from the actual code that defines the C<ushort> type:
{
identifier => 'US',
onecharident => 'U', # only needed if different from identifier
ctype => 'PDL_Ushort',
realctype => 'unsigned short',
ppforcetype => 'ushort',
usenan => 0,
packtype => 'S*',
defbval => 'USHRT_MAX',
real=>1,
integer=>1,
unsigned=>1,
},
Before we start to explain the fields please take this important
message on board:
I<entries must be listed in order of increasing complexity>. This
is critical to ensure that PDL's type conversion works correctly.
Basically, a less complex type will be converted to a more complex
type as required.
=head2 Fields in a type entry
Each type entry has a number of required and optional entry.
A list of all the entries:
=over
=item *
identifier
I<Required>. A short sequence of uppercase letters that identifies this
type uniquely. More than three characters is probably overkill.
=item *
onecharident
I<Optional>. Only required if the C<identifier> has more than one character.
This should be a unique uppercase character that will be used to reference
this type in PP macro expressions of the C<TBSULFD> type - see L<PDL::PP/$T>.
=item *
ctype
I<Required>. The C<typedef>ed name that will be used to access this type
from C code.
=item *
realctype
I<Required>. The C compiler type that is used to implement this type.
For portability reasons this one might be platform dependent.
=item *
ppforcetype
I<Required>. The type name used in PP signatures to refer to this type.
=item *
usenan
I<Required>. Flag that signals if this type has to deal with NaN issues.
Generally only required for floating point types.
=item *
packtype
I<Required>. The Perl pack type used to pack Perl values into the machine representation for this type. For details see C<perldoc -f pack>.
=item *
integer
I<Required>. Boolean - is this an integer type?
=item *
unsigned
I<Required>. Boolean - is this an unsigned type?
=item *
real
I<Required>. Boolean - is this a real (not complex) type?
=item *
realversion
String - the real version of this type (e.g. cdouble -> 'D').
=item *
complexversion
String - the complex version of this type (e.g. double -> 'C').
=back
Also have a look at the entries at the top of F<lib/PDL/Types.pm>.
=head2 Other things you need to do
You need to check modules that do I/O (generally in the F<IO>
part of the directory tree). In the future we might add fields to
type entries to automate this. This requires changes to those IO
modules first though.
You may also need to update any type macros in PP files
(i.e. C<$TBSULFD...>) to reflect the new type - PP will throw an
error if you have a C<$T...> macro which misses types supported by
the operation.
=cut