NAME

PDL::LinearAlgebra::Complex - PDL interface to the lapack linear algebra programming library (complex number)

SYNOPSIS

use PDL;
use PDL::LinearAlgebra::Complex;
$a = random(cdouble, 100, 100);
$s = zeroes(cdouble, 100);
$u = zeroes(cdouble, 100, 100);
$v = zeroes(cdouble, 100, 100);
$info = 0;
$job = 0;
cgesdd($a, $job, $info, $s , $u, $v);

DESCRIPTION

This module provides an interface to parts of the lapack library (complex numbers). These routines accept either float or double ndarrays.

cgtsv

Signature: (complex [io]DL(n);complex  [io]D(n);complex  [io]DU(n);complex  [io]B(n,nrhs); int [o]info())

Solves the equation

A * X = B

where A is an n by n tridiagonal matrix, by Gaussian elimination with partial pivoting, and B is an n by nrhs matrix.

Note that the equation A**T*X = B may be solved by interchanging the order of the arguments DU and DL.

NB This differs from the LINPACK function cgtsl in that DL starts from its first element, while the LINPACK equivalent starts from its second element.

Arguments
=========

DL:   On entry, DL must contain the (n-1) sub-diagonal elements of A.

      On exit, DL is overwritten by the (n-2) elements of the
      second super-diagonal of the upper triangular matrix U from
      the LU factorization of A, in DL(1), ..., DL(n-2).

D:    On entry, D must contain the diagonal elements of A.

      On exit, D is overwritten by the n diagonal elements of U.

DU:   On entry, DU must contain the (n-1) super-diagonal elements of A.

      On exit, DU is overwritten by the (n-1) elements of the
      first super-diagonal of the U.

B:    On entry, the n by nrhs matrix of right hand side matrix B.
      On exit, if info = 0, the n by nrhs solution matrix X.

info:   = 0:  successful exit
        < 0:  if info = -i, the i-th argument had an illegal value
        > 0:  if info = i, U(i,i) is exactly zero, and the solution
              has not been computed.  The factorization has not been
              completed unless i = n.
$dl = random(float, 9) + random(float, 9) * i;
$d = random(float, 10) + random(float, 10) * i;
$du = random(float, 9) + random(float, 9) * i;
$b = random(10,5) + random(10,5) * i;
cgtsv($dl, $d, $du, $b, ($info=null));
print "X is:\n$b" unless $info;

cgesvd

Signature: (complex [io]A(m,n); int jobu(); int jobvt(); [o]s(minmn=CALC(PDLMIN($SIZE(m),$SIZE(n))));complex  [o]U(p,p);complex  [o]VT(s,s); int [o]info(); [t]rwork(rworkn=CALC(5*$SIZE(minmn))))

Complex version of "gesvd" in PDL::LinearAlgebra::Real.

The SVD is written

A = U * SIGMA * ConjugateTranspose(V)

cgesdd

Signature: (complex [io]A(m,n); int jobz(); [o]s(minmn=CALC(PDLMIN($SIZE(m),$SIZE(n))));complex  [o]U(p,p);complex  [o]VT(s,s); int [o]info(); int [t]iwork(iworkn))

Complex version of "gesdd" in PDL::LinearAlgebra::Real.

The SVD is written

A = U * SIGMA * ConjugateTranspose(V)

cggsvd

Signature: (complex [io]A(m,n); int jobu(); int jobv(); int jobq();complex  [io]B(p,n); int [o]k(); int [o]l();[o]alpha(n);[o]beta(n);complex  [o]U(q,q);complex  [o]V(r,r);complex  [o]Q(s,s); int [o]iwork(n); int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))))

Complex version of "ggsvd" in PDL::LinearAlgebra::Real

cgeev

Signature: (complex [io]A(n,n); int jobvl(); int jobvr();complex  [o]w(n);complex  [o]vl(m,m);complex  [o]vr(p,p); int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))))

Complex version of "geev" in PDL::LinearAlgebra::Real

cgeevx

Signature: (complex [io]A(n,n);  int jobvl(); int jobvr(); int balance(); int sense();complex  [o]w(n);complex  [o]vl(m,m);complex  [o]vr(p,p); int [o]ilo(); int [o]ihi(); [o]scale(n); [o]abnrm(); [o]rconde(q); [o]rcondv(r); int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))))

Complex version of "geevx" in PDL::LinearAlgebra::Real

cggev

Signature: (complex [io]A(n,n); int jobvl();int jobvr();complex [io]B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VL(m,m);complex [o]VR(p,p);int [o]info(); [t]rwork(rworkn=CALC(8*$SIZE(n))))

Complex version of "ggev" in PDL::LinearAlgebra::Real

cggevx

Signature: (complex [io]A(n,n);int balanc();int jobvl();int jobvr();int sense();complex [io]B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VL(m,m);complex [o]VR(p,p);int [o]ilo();int [o]ihi();[o]lscale(n);[o]rscale(n);[o]abnrm();[o]bbnrm();[o]rconde(r);[o]rcondv(s);int [o]info(); [t]rwork(rworkn=CALC(6*$SIZE(n))); int [t]bwork(bworkn); int [t]iwork(iworkn))

Complex version of "ggevx" in PDL::LinearAlgebra::Real

cgees

Signature: (complex [io]A(n,n);  int jobvs(); int sort();complex  [o]w(n);complex  [o]vs(p,p); int [o]sdim(); int [o]info(); [t]rwork(n); int [t]bwork(bworkn);SV* select_func)

Complex version of "gees" in PDL::LinearAlgebra::Real

select_func:
        If sort = 1, select_func is used to select eigenvalues to sort
        to the top left of the Schur form.
        If sort = 0, select_func is not referenced.
        An complex eigenvalue w is selected if
        select_func(complex(w)) is true;
        Note that a selected complex eigenvalue may no longer
        satisfy select_func(complex(w)) = 1 after ordering, since
        ordering may change the value of complex eigenvalues
        (especially if the eigenvalue is ill-conditioned); in this
        case info is set to N+2.

cgeesx

Signature: (complex [io]A(n,n);  int jobvs(); int sort(); int sense();complex  [o]w(n);complex [o]vs(p,p); int [o]sdim(); [o]rconde();[o]rcondv(); int [o]info(); [t]rwork(n); int [t]bwork(bworkn);SV* select_func)

Complex version of "geesx" in PDL::LinearAlgebra::Real

select_func:
        If sort = 1, select_func is used to select eigenvalues to sort
        to the top left of the Schur form.
        If sort = 0, select_func is not referenced.
        An complex eigenvalue w is selected if
        select_func(complex(w)) is true;
        Note that a selected complex eigenvalue may no longer
        satisfy select_func(complex(w)) = 1 after ordering, since
        ordering may change the value of complex eigenvalues
        (especially if the eigenvalue is ill-conditioned); in this
        case info is set to N+2.

cgges

Signature: (complex [io]A(n,n); int jobvsl();int jobvsr();int sort();complex [io]B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VSL(m,m);complex [o]VSR(p,p);int [o]sdim();int [o]info(); [t]rwork(rworkn=CALC(8*$SIZE(n))); int [t]bwork(bworkn);SV* select_func)

Complex version of "ggees" in PDL::LinearAlgebra::Real

select_func:
        If sort = 1, select_func is used to select eigenvalues to sort
        to the top left of the Schur form.
        If sort = 0, select_func is not referenced.
        An eigenvalue w = w/beta is selected if
        select_func(complex(w), complex(beta)) is true;
        Note that a selected complex eigenvalue may no longer
        satisfy select_func(complex(w),complex(beta)) = 1 after ordering, since
        ordering may change the value of complex eigenvalues
        (especially if the eigenvalue is ill-conditioned); in this
        case info is set to N+2.

cggesx

Signature: (complex [io]A(n,n); int jobvsl();int jobvsr();int sort();int sense();complex [io]B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VSL(m,m);complex [o]VSR(p,p);int [o]sdim();[o]rconde(q=2);[o]rcondv(q=2);int [o]info(); [t]rwork(rworkn=CALC(8*$SIZE(n))); int [t]bwork(bworkn); int [t]iwork(iworkn=CALC($SIZE(n)+2));SV* select_func)

Complex version of "ggeesx" in PDL::LinearAlgebra::Real

select_func:
        If sort = 1, select_func is used to select eigenvalues to sort
        to the top left of the Schur form.
        If sort = 0, select_func is not referenced.
        An eigenvalue w = w/beta is selected if
        select_func(complex(w), complex(beta)) is true;
        Note that a selected complex eigenvalue may no longer
        satisfy select_func(complex(w),complex(beta)) = 1 after ordering, since
        ordering may change the value of complex eigenvalues
        (especially if the eigenvalue is ill-conditioned); in this
        case info is set to N+3.

cheev

Signature: (complex [io]A(n,n); int jobz(); int uplo(); [o]w(n); int [o]info(); [t]rwork(rworkn=CALC(3*($SIZE(n)-2))))

Complex version of "syev" in PDL::LinearAlgebra::Real for Hermitian matrix

cheevd

Signature: (complex [io]A(n,n);  int jobz(); int uplo(); [o]w(n); int [o]info())

Complex version of "syevd" in PDL::LinearAlgebra::Real for Hermitian matrix

cheevx

Signature: (complex [io]A(n,n);  int jobz(); int range(); int uplo(); vl(); vu(); int il(); int iu(); abstol(); int [o]m(); [o]w(n);complex  [o]z(p,p);int [o]ifail(n); int [o]info(); [t]rwork(rworkn=CALC(7*$SIZE(n))); int [t]iwork(iworkn=CALC(5*$SIZE(n))))

Complex version of "syevx" in PDL::LinearAlgebra::Real for Hermitian matrix

cheevr

Signature: (complex [io]A(n,n);  int jobz(); int range(); int uplo(); vl(); vu(); int il(); int iu(); abstol(); int [o]m(); [o]w(n);complex  [o]z(p,q);int [o]isuppz(r); int [o]info())

Complex version of "syevr" in PDL::LinearAlgebra::Real for Hermitian matrix

chegv

Signature: (complex [io]A(n,n);int itype();int jobz(); int uplo();complex [io]B(n,n);[o]w(n); int [o]info(); [t]rwork(rworkn=CALC(3*($SIZE(n)-2))))

Complex version of "sygv" in PDL::LinearAlgebra::Real for Hermitian matrix

chegvd

Signature: (complex [io]A(n,n);int itype();int jobz(); int uplo();complex [io]B(n,n);[o]w(n); int [o]info())

Complex version of "sygvd" in PDL::LinearAlgebra::Real for Hermitian matrix

chegvx

  Signature: (complex [io]A(n,n);int itype();int jobz();int range();
	  int uplo();complex [io]B(n,n);vl();vu();int il();
	  int iu();abstol();int [o]m();[o]w(n);complex 
	  [o]Z(p,p);int [o]ifail(n);int [o]info(); [t]rwork(rworkn=CALC(7*$SIZE(n))); int [t]iwork(iworkn=CALC(5*$SIZE(n)));
	)

Complex version of "sygvx" in PDL::LinearAlgebra::Real for Hermitian matrix

cgesv

Signature: (complex [io]A(n,n);complex   [io]B(n,m); int [o]ipiv(n); int [o]info())

Complex version of "gesv" in PDL::LinearAlgebra::Real

cgesvx

Signature: (complex [io]A(n,n); int trans(); int fact();complex  [io]B(n,m);complex  [io]af(n,n); int [io]ipiv(n); int [io]equed(); [o]r(p); [o]c(q);complex  [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); [o]rpvgrw(); int [o]info(); [t]rwork(rworkn=CALC(4*$SIZE(n))); [t]work(rworkn))

Complex version of "gesvx" in PDL::LinearAlgebra::Real.

trans:  Specifies the form of the system of equations:
        = 0:  A * X = B     (No transpose)
        = 1:  A' * X = B  (Transpose)
        = 2:  A**H * X = B  (Conjugate transpose)

csysv

Signature: (complex [io]A(n,n);  int uplo();complex  [io]B(n,m); int [o]ipiv(n); int [o]info())

Complex version of "sysv" in PDL::LinearAlgebra::Real

csysvx

Signature: (complex A(n,n); int uplo(); int fact();complex  B(n,m);complex  [io]af(n,n); int [io]ipiv(n);complex  [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); int [o]info(); [t]rwork(n))

Complex version of "sysvx" in PDL::LinearAlgebra::Real

chesv

Signature: (complex [io]A(n,n);  int uplo();complex  [io]B(n,m); int [o]ipiv(n); int [o]info())

Complex version of "sysv" in PDL::LinearAlgebra::Real for Hermitian matrix

chesvx

Signature: (complex A(n,n); int uplo(); int fact();complex  B(n,m);complex  [io]af(n,n); int [io]ipiv(n);complex  [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); int [o]info(); [t]rwork(n))

Complex version of "sysvx" in PDL::LinearAlgebra::Real for Hermitian matrix

cposv

Signature: (complex [io]A(n,n);  int uplo();complex  [io]B(n,m); int [o]info())

Complex version of "posv" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix

cposvx

Signature: (complex [io]A(n,n); int uplo(); int fact();complex  [io]B(n,m);complex  [io]af(n,n); int [io]equed(); [o]s(p);complex  [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))); [t]work(workn=CALC(4*$SIZE(n))))

Complex version of "posvx" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix

cgels

Signature: (complex [io]A(m,n); int trans();complex  [io]B(p,q);int [o]info())

Solves overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its conjugate-transpose. Complex version of "gels" in PDL::LinearAlgebra::Real.

trans:  = 0: the linear system involves A;
        = 1: the linear system involves A**H.

cgelsy

Signature: (complex [io]A(m,n);complex  [io]B(p,q); rcond(); int [io]jpvt(n); int [o]rank();int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))))

Complex version of "gelsy" in PDL::LinearAlgebra::Real

cgelss

Signature: (complex [io]A(m,n);complex  [io]B(p,q); rcond(); [o]s(r); int [o]rank();int [o]info(); [t]rwork(rworkn=CALC(5*PDLMIN($SIZE(m),$SIZE(n)))))

Complex version of "gelss" in PDL::LinearAlgebra::Real

cgelsd

Signature: (complex [io]A(m,n);complex  [io]B(p,q); rcond(); [o]s(minmn=CALC(PDLMAX(1,PDLMIN($SIZE(m),$SIZE(n))))); int [o]rank();int [o]info(); int [t]iwork(iworkn); [t]rwork(rworkn))

Complex version of "gelsd" in PDL::LinearAlgebra::Real

cgglse

Signature: (complex [io]A(m,n);complex  [io]B(p,n);complex [io]c(m);complex [io]d(p);complex [o]x(n);int [o]info())

Complex version of "gglse" in PDL::LinearAlgebra::Real

cggglm

Signature: (complex [io]A(n,m);complex  [io]B(n,p);complex [io]d(n);complex [o]x(m);complex [o]y(p);int [o]info())

Complex version of "ggglm" in PDL::LinearAlgebra::Real

cgetrf

Signature: (complex [io]A(m,n); int [o]ipiv(p=CALC(PDLMIN($SIZE(m),$SIZE(n)))); int [o]info())

Complex version of "getrf" in PDL::LinearAlgebra::Real

cgetf2

Signature: (complex [io]A(m,n); int [o]ipiv(p=CALC(PDLMIN($SIZE(m),$SIZE(n)))); int [o]info())

Complex version of "getf2" in PDL::LinearAlgebra::Real

csytrf

Signature: (complex [io]A(n,n); int uplo(); int [o]ipiv(n); int [o]info())

Complex version of "sytrf" in PDL::LinearAlgebra::Real

csytf2

Signature: (complex [io]A(n,n); int uplo(); int [o]ipiv(n); int [o]info())

Complex version of "sytf2" in PDL::LinearAlgebra::Real

cchetrf

Signature: (complex [io]A(n,n); int uplo(); int [o]ipiv(n); int [o]info(); [t]work(workn))

Complex version of "sytrf" in PDL::LinearAlgebra::Real for Hermitian matrix

chetf2

Signature: (complex [io]A(n,n); int uplo(); int [o]ipiv(n); int [o]info())

Complex version of "sytf2" in PDL::LinearAlgebra::Real for Hermitian matrix

cpotrf

Signature: (complex [io]A(n,n); int uplo(); int [o]info())

Complex version of "potrf" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix

cpotf2

Signature: (complex [io]A(n,n); int uplo(); int [o]info())

Complex version of "potf2" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix

cgetri

Signature: (complex [io]A(n,n); int ipiv(n); int [o]info())

Complex version of "getri" in PDL::LinearAlgebra::Real

csytri

Signature: (complex [io]A(n,n); int uplo(); int ipiv(n); int [o]info(); [t]work(workn=CALC(2*$SIZE(n))))

Complex version of "sytri" in PDL::LinearAlgebra::Real

chetri

Signature: (complex [io]A(n,n); int uplo(); int ipiv(n); int [o]info(); [t]work(workn=CALC(2*$SIZE(n))))

Complex version of "sytri" in PDL::LinearAlgebra::Real for Hermitian matrix

cpotri

Signature: (complex [io]A(n,n); int uplo(); int [o]info())

Complex version of "potri" in PDL::LinearAlgebra::Real

ctrtri

Signature: (complex [io]A(n,n); int uplo(); int diag(); int [o]info())

Complex version of "trtri" in PDL::LinearAlgebra::Real

ctrti2

Signature: (complex [io]A(n,n); int uplo(); int diag(); int [o]info())

Complex version of "trti2" in PDL::LinearAlgebra::Real

cgetrs

Signature: (complex A(n,n); int trans();complex  [io]B(n,m); int ipiv(n); int [o]info())

Complex version of "getrs" in PDL::LinearAlgebra::Real

    Arguments
    =========
	trans:   = 0:  No transpose;
		 = 1:  Transpose;
		 = 2:  Conjugate transpose;

csytrs

Signature: (complex A(n,n); int uplo();complex [io]B(n,m); int ipiv(n); int [o]info())

Complex version of "sytrs" in PDL::LinearAlgebra::Real

chetrs

Signature: (complex A(n,n); int uplo();complex [io]B(n,m); int ipiv(n); int [o]info())

Complex version of "sytrs" in PDL::LinearAlgebra::Real for Hermitian matrix

cpotrs

Signature: (complex A(n,n); int uplo();complex  [io]B(n,m); int [o]info())

Complex version of "potrs" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix

ctrtrs

Signature: (complex A(n,n); int uplo(); int trans(); int diag();complex [io]B(n,m); int [o]info())

Complex version of "trtrs" in PDL::LinearAlgebra::Real

    Arguments
    =========
	trans:   = 0:  No transpose;
		 = 1:  Transpose;
		 = 2:  Conjugate transpose;

clatrs

Signature: (complex A(n,n); int uplo(); int trans(); int diag(); int normin();complex [io]x(n); [o]scale();[io]cnorm(n);int [o]info())

Complex version of "latrs" in PDL::LinearAlgebra::Real

    Arguments
    =========
	trans:   = 0:  No transpose;
		 = 1:  Transpose;
		 = 2:  Conjugate transpose;

cgecon

Signature: (complex A(n,n); int norm(); anorm(); [o]rcond();int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))); [t]work(workn=CALC(4*$SIZE(n))))

Complex version of "gecon" in PDL::LinearAlgebra::Real

csycon

Signature: (complex A(n,n); int uplo(); int ipiv(n); anorm(); [o]rcond();int [o]info(); [t]work(workn=CALC(4*$SIZE(n))))

Complex version of "sycon" in PDL::LinearAlgebra::Real

checon

Signature: (complex A(n,n); int uplo(); int ipiv(n); anorm(); [o]rcond();int [o]info(); [t]work(workn=CALC(4*$SIZE(n))))

Complex version of "sycon" in PDL::LinearAlgebra::Real for Hermitian matrix

cpocon

Signature: (complex A(n,n); int uplo(); anorm(); [o]rcond();int [o]info(); [t]work(workn=CALC(4*$SIZE(n))); [t]rwork(n))

Complex version of "pocon" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix

ctrcon

Signature: (complex A(n,n); int norm();int uplo();int diag(); [o]rcond();int [o]info(); [t]work(workn=CALC(4*$SIZE(n))); [t]rwork(n))

Complex version of "trcon" in PDL::LinearAlgebra::Real

cgeqp3

Signature: (complex [io]A(m,n); int [io]jpvt(n);complex  [o]tau(k); int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))))

Complex version of "geqp3" in PDL::LinearAlgebra::Real

cgeqrf

Signature: (complex [io]A(m,n);complex  [o]tau(k); int [o]info())

Complex version of "geqrf" in PDL::LinearAlgebra::Real

cungqr

Signature: (complex [io]A(m,n);complex  tau(k); int [o]info())

Complex version of "orgqr" in PDL::LinearAlgebra::Real

cunmqr

Signature: (complex A(p,k); int side(); int trans();complex  tau(k);complex  [io]C(m,n);int [o]info())

Complex version of "ormqr" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.

cgelqf

Signature: (complex [io]A(m,n);complex  [o]tau(k); int [o]info())

Complex version of "gelqf" in PDL::LinearAlgebra::Real

cunglq

Signature: (complex [io]A(m,n);complex  tau(k); int [o]info())

Complex version of "orglq" in PDL::LinearAlgebra::Real

cunmlq

Signature: (complex A(k,p); int side(); int trans();complex  tau(k);complex  [io]C(m,n);int [o]info())

Complex version of "ormlq" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.

cgeqlf

Signature: (complex [io]A(m,n);complex  [o]tau(k); int [o]info())

Complex version of "geqlf" in PDL::LinearAlgebra::Real

cungql

Signature: (complex [io]A(m,n);complex  tau(k); int [o]info())

cunmql

Signature: (complex A(p,k); int side(); int trans();complex  tau(k);complex  [io]C(m,n);int [o]info())

Complex version of "ormql" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.

cgerqf

Signature: (complex [io]A(m,n);complex  [o]tau(k); int [o]info())

Complex version of "gerqf" in PDL::LinearAlgebra::Real

cungrq

Signature: (complex [io]A(m,n);complex  tau(k); int [o]info())

Complex version of "orgrq" in PDL::LinearAlgebra::Real.

cunmrq

Signature: (complex A(k,p); int side(); int trans();complex  tau(k);complex  [io]C(m,n);int [o]info())

Complex version of "ormrq" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.

ctzrzf

Signature: (complex [io]A(m,n);complex  [o]tau(k); int [o]info())

Complex version of "tzrzf" in PDL::LinearAlgebra::Real

cunmrz

Signature: (complex A(k,p); int side(); int trans();complex  tau(k);complex  [io]C(m,n);int [o]info())

Complex version of "ormrz" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.

cgehrd

Signature: (complex [io]A(n,n); int ilo();int ihi();complex [o]tau(k); int [o]info())

Complex version of "gehrd" in PDL::LinearAlgebra::Real

cunghr

Signature: (complex [io]A(n,n); int ilo();int ihi();complex tau(k); int [o]info())

Complex version of "orghr" in PDL::LinearAlgebra::Real

chseqr

Signature: (complex [io]H(n,n); int job();int compz();int ilo();int ihi();complex [o]w(n);complex  [o]Z(m,m); int [o]info())

Complex version of "hseqr" in PDL::LinearAlgebra::Real

ctrevc

Signature: (complex T(n,n); int side();int howmny();int select(q);complex [o]VL(m,m);complex  [o]VR(p,p);int [o]m(); int [o]info(); [t]work(workn=CALC(5*$SIZE(n))))

Complex version of "trevc" in PDL::LinearAlgebra::Real

ctgevc

Signature: (complex A(n,n); int side();int howmny();complex  B(n,n);int select(q);complex [o]VL(m,m);complex  [o]VR(p,p);int [o]m(); int [o]info(); [t]work(workn=CALC(6*$SIZE(n))))

Complex version of "tgevc" in PDL::LinearAlgebra::Real

cgebal

Signature: (complex [io]A(n,n); int job(); int [o]ilo();int [o]ihi();[o]scale(n); int [o]info())

Complex version of "gebal" in PDL::LinearAlgebra::Real

clange

Signature: (complex A(n,m); int norm(); [o]b(); [t]work(workn))

Complex version of "lange" in PDL::LinearAlgebra::Real

clansy

Signature: (complex A(n,n); int uplo(); int norm(); [o]b(); [t]work(workn))

Complex version of "lansy" in PDL::LinearAlgebra::Real

clantr

Signature: (complex A(m,n); int uplo(); int norm();int diag(); [o]b(); [t]work(workn))

Complex version of "lantr" in PDL::LinearAlgebra::Real

cgemm

Signature: (complex A(m,n); int transa(); int transb();complex  B(p,q);complex alpha();complex  beta();complex  [io]C(r,s))

Complex version of "gemm" in PDL::LinearAlgebra::Real.

    Arguments
    =========
	transa:  = 0:  No transpose;
		 = 1:  Transpose;
		 = 2:  Conjugate transpose;

	transb:  = 0:  No transpose;
		 = 1:  Transpose;
		 = 2:  Conjugate transpose;

cmmult

Signature: (complex A(m,n);complex  B(p,m);complex  [o]C(p,n))

Complex version of "mmult" in PDL::LinearAlgebra::Real

ccrossprod

Signature: (complex A(n,m);complex  B(p,m);complex  [o]C(p,n))

Complex version of "crossprod" in PDL::LinearAlgebra::Real

csyrk

Signature: (complex A(m,n); int uplo(); int trans();complex  alpha();complex  beta();complex  [io]C(p,p))

Complex version of "syrk" in PDL::LinearAlgebra::Real

cdot

Signature: (complex a(n);complex b(n);complex [o]c())

Complex version of "dot" in PDL::LinearAlgebra::Real

cdotc

Signature: (complex a(n);complex b(n);complex [o]c())

Forms the dot product of two vectors, conjugating the first vector.

caxpy

Signature: (complex a(n);complex  alpha();complex [io]b(n))

Complex version of "axpy" in PDL::LinearAlgebra::Real

cnrm2

Signature: (complex a(n);[o]b())

Complex version of "nrm2" in PDL::LinearAlgebra::Real

casum

Signature: (complex a(n);[o]b())

Complex version of "asum" in PDL::LinearAlgebra::Real

cscal

Signature: (complex [io]a(n);complex scale())

Complex version of "scal" in PDL::LinearAlgebra::Real

csscal

Signature: (complex [io]a(n);scale())

Scales a complex vector by a real constant.

crotg

Signature: (complex [io]a();complex b();[o]c();complex  [o]s())

Complex version of "rotg" in PDL::LinearAlgebra::Real

clacpy

Signature: (complex A(m,n); int uplo();complex  [o]B(p,n))

Complex version of "lacpy" in PDL::LinearAlgebra::Real

claswp

Signature: (complex [io]A(m,n); int k1(); int k2(); int ipiv(p))

Complex version of "laswp" in PDL::LinearAlgebra::Real

ccharpol

Signature: (A(c=2,n,n);[o]Y(c=2,n,n);[o]out(c=2,p=CALC($SIZE(n)+1)); [t]rwork(rworkn=CALC(2*$SIZE(n)*$SIZE(n))))

Complex version of "charpol" in PDL::LinearAlgebra::Real

AUTHOR

Copyright (C) Gr�gory Vanuxem 2005-2018.

This library is free software; you can redistribute it and/or modify it under the terms of the Perl Artistic License as in the file Artistic_2 in this distribution.