NAME

Tinkerforge::BrickletIndustrialAnalogOutV2 - Generates configurable DC voltage and current, 0V to 10V and 4mA to 20mA

CONSTANTS

DEVICE_IDENTIFIER

This constant is used to identify a Industrial Analog Out Bricklet 2.0.

The get_identity() subroutine and the CALLBACK_ENUMERATE callback of the IP Connection have a device_identifier parameter to specify the Brick's or Bricklet's type.

DEVICE_DISPLAY_NAME

This constant represents the display name of a Industrial Analog Out Bricklet 2.0.

FUNCTION_SET_ENABLED

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_ENABLED

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_SET_VOLTAGE

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_VOLTAGE

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_SET_CURRENT

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_CURRENT

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_SET_CONFIGURATION

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_CONFIGURATION

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_SET_OUT_LED_CONFIG

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_OUT_LED_CONFIG

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_SET_OUT_LED_STATUS_CONFIG

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_OUT_LED_STATUS_CONFIG

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_SPITFP_ERROR_COUNT

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_SET_BOOTLOADER_MODE

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_BOOTLOADER_MODE

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_SET_WRITE_FIRMWARE_POINTER

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_WRITE_FIRMWARE

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_SET_STATUS_LED_CONFIG

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_STATUS_LED_CONFIG

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_CHIP_TEMPERATURE

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_RESET

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_WRITE_UID

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_READ_UID

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_IDENTITY

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTIONS

new()

Creates an object with the unique device ID *uid* and adds it to the IP Connection *ipcon*.

set_enabled()

Enables/disables the output of voltage and current.

get_enabled()

Returns *true* if output of voltage and current is enabled, *false* otherwise.

set_voltage()

Sets the output voltage.

The output voltage and output current are linked. Changing the output voltage also changes the output current.

get_voltage()

Returns the voltage as set by :func:`Set Voltage`.

set_current()

Sets the output current.

The output current and output voltage are linked. Changing the output current also changes the output voltage.

get_current()

Returns the current as set by :func:`Set Current`.

set_configuration()

Configures the voltage and current range.

Possible voltage ranges are:

* 0V to 5V * 0V to 10V

Possible current ranges are:

* 4mA to 20mA * 0mA to 20mA * 0mA to 24mA

The resolution will always be 12 bit. This means, that the precision is higher with a smaller range.

get_configuration()

Returns the configuration as set by :func:`Set Configuration`.

set_out_led_config()

You can turn the Out LED off, on or show a heartbeat. You can also set the LED to "Out Status". In this mode the LED can either be turned on with a pre-defined threshold or the intensity of the LED can change with the output value (voltage or current).

You can configure the channel status behavior with :func:`Set Out LED Status Config`.

get_out_led_config()

Returns the Out LED configuration as set by :func:`Set Out LED Config`

set_out_led_status_config()

Sets the Out LED status config. This config is used if the Out LED is configured as "Out Status", see :func:`Set Out LED Config`.

For each channel you can choose between threshold and intensity mode.

In threshold mode you can define a positive or a negative threshold. For a positive threshold set the "min" parameter to the threshold value in mV or µA above which the LED should turn on and set the "max" parameter to 0. Example: If you set a positive threshold of 5V, the LED will turn on as soon as the output value exceeds 5V and turn off again if it goes below 5V. For a negative threshold set the "max" parameter to the threshold value in mV or µA below which the LED should turn on and set the "min" parameter to 0. Example: If you set a negative threshold of 5V, the LED will turn on as soon as the output value goes below 5V and the LED will turn off when the output value exceeds 5V.

In intensity mode you can define a range mV or µA that is used to scale the brightness of the LED. Example with min=2V, max=8V: The LED is off at 2V and below, on at 8V and above and the brightness is linearly scaled between the values 2V and 8V. If the min value is greater than the max value, the LED brightness is scaled the other way around.

get_out_led_status_config()

Returns the Out LED status configuration as set by :func:`Set Out LED Status Config`.

get_spitfp_error_count()

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

* ACK checksum errors, * message checksum errors, * framing errors and * overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

set_bootloader_mode()

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

get_bootloader_mode()

Returns the current bootloader mode, see :func:`Set Bootloader Mode`.

set_write_firmware_pointer()

Sets the firmware pointer for :func:`Write Firmware`. The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

write_firmware()

Writes 64 Bytes of firmware at the position as written by :func:`Set Write Firmware Pointer` before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

set_status_led_config()

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

get_status_led_config()

Returns the configuration as set by :func:`Set Status LED Config`

get_chip_temperature()

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

reset()

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

write_uid()

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

read_uid()

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

get_identity()

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). The Raspberry Pi HAT (Zero) Brick is always at position 'i' and the Bricklet connected to an :ref:`Isolator Bricklet <isolator_bricklet>` is always as position 'z'.

The device identifier numbers can be found :ref:`here <device_identifier>`. |device_identifier_constant|