NAME

Tinkerforge::BrickletIsolator - Galvanically isolates any Bricklet from any Brick

CONSTANTS

DEVICE_IDENTIFIER

This constant is used to identify a Isolator Bricklet.

The get_identity() subroutine and the CALLBACK_ENUMERATE callback of the IP Connection have a device_identifier parameter to specify the Brick's or Bricklet's type.

DEVICE_DISPLAY_NAME

This constant represents the display name of a Isolator Bricklet.

CALLBACK_STATISTICS

This constant is used with the register_callback() subroutine to specify the CALLBACK_STATISTICS callback.

FUNCTION_GET_STATISTICS

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_SET_SPITFP_BAUDRATE_CONFIG

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_SPITFP_BAUDRATE_CONFIG

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_SET_SPITFP_BAUDRATE

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_SPITFP_BAUDRATE

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_ISOLATOR_SPITFP_ERROR_COUNT

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_SET_STATISTICS_CALLBACK_CONFIGURATION

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_STATISTICS_CALLBACK_CONFIGURATION

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_SPITFP_ERROR_COUNT

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_SET_BOOTLOADER_MODE

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_BOOTLOADER_MODE

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_SET_WRITE_FIRMWARE_POINTER

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_WRITE_FIRMWARE

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_SET_STATUS_LED_CONFIG

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_STATUS_LED_CONFIG

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_CHIP_TEMPERATURE

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_RESET

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_WRITE_UID

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_READ_UID

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTION_GET_IDENTITY

This constant is used with the get_response_expected(), set_response_expected() and set_response_expected_all() subroutines.

FUNCTIONS

new()

Creates an object with the unique device ID *uid* and adds it to the IP Connection *ipcon*.

get_statistics()

Returns statistics for the Isolator Bricklet.

set_spitfp_baudrate_config()

The SPITF protocol can be used with a dynamic baudrate. If the dynamic baudrate is enabled, the Isolator Bricklet will try to adapt the baudrate for the communication between Bricks and Bricklets according to the amount of data that is transferred.

The baudrate for communication config between Brick and Isolator Bricklet can be set through the API of the Brick.

The baudrate will be increased exponentially if lots of data is sent/received and decreased linearly if little data is sent/received.

This lowers the baudrate in applications where little data is transferred (e.g. a weather station) and increases the robustness. If there is lots of data to transfer (e.g. Thermal Imaging Bricklet) it automatically increases the baudrate as needed.

In cases where some data has to transferred as fast as possible every few seconds (e.g. RS485 Bricklet with a high baudrate but small payload) you may want to turn the dynamic baudrate off to get the highest possible performance.

The maximum value of the baudrate can be set per port with the function :func:`Set SPITFP Baudrate`. If the dynamic baudrate is disabled, the baudrate as set by :func:`Set SPITFP Baudrate` will be used statically.

get_spitfp_baudrate_config()

Returns the baudrate config, see :func:`Set SPITFP Baudrate Config`.

set_spitfp_baudrate()

Sets the baudrate for a the communication between Isolator Bricklet and the connected Bricklet. The baudrate for communication between Brick and Isolator Bricklet can be set through the API of the Brick.

If you want to increase the throughput of Bricklets you can increase the baudrate. If you get a high error count because of high interference (see :func:`Get SPITFP Error Count`) you can decrease the baudrate.

If the dynamic baudrate feature is enabled, the baudrate set by this function corresponds to the maximum baudrate (see :func:`Set SPITFP Baudrate Config`).

Regulatory testing is done with the default baudrate. If CE compatibility or similar is necessary in your applications we recommend to not change the baudrate.

get_spitfp_baudrate()

Returns the baudrate, see :func:`Set SPITFP Baudrate`.

get_isolator_spitfp_error_count()

Returns the error count for the communication between Isolator Bricklet and the connected Bricklet. Call :func:`Get SPITFP Error Count` to get the error count between Isolator Bricklet and Brick.

The errors are divided into

* ACK checksum errors, * message checksum errors, * framing errors and * overflow errors.

set_statistics_callback_configuration()

The period is the period with which the :cb:`Statistics` callback is triggered periodically. A value of 0 turns the callback off.

If the `value has to change`-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

.. versionadded:: 2.0.2$nbsp;(Plugin)

get_statistics_callback_configuration()

Returns the callback configuration as set by :func:`Set Statistics Callback Configuration`.

.. versionadded:: 2.0.2$nbsp;(Plugin)

get_spitfp_error_count()

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

* ACK checksum errors, * message checksum errors, * framing errors and * overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

set_bootloader_mode()

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

get_bootloader_mode()

Returns the current bootloader mode, see :func:`Set Bootloader Mode`.

set_write_firmware_pointer()

Sets the firmware pointer for :func:`Write Firmware`. The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

write_firmware()

Writes 64 Bytes of firmware at the position as written by :func:`Set Write Firmware Pointer` before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

set_status_led_config()

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

get_status_led_config()

Returns the configuration as set by :func:`Set Status LED Config`

get_chip_temperature()

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

reset()

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

write_uid()

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

read_uid()

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

get_identity()

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an :ref:`Isolator Bricklet <isolator_bricklet>` is always at position 'z'.

The device identifier numbers can be found :ref:`here <device_identifier>`. |device_identifier_constant|