NAME
Math::PlanePath::MathImageWunderlichSerpentine -- 3x3 self-similar quadrant traversal
SYNOPSIS
use Math::PlanePath::MathImageWunderlichSerpentine;
my $path = Math::PlanePath::MathImageWunderlichSerpentine->new (serpentine_type => 0b111000111;
my ($x, $y) = $path->n_to_xy (123);
# or another radix digits ...
my $path5 = Math::PlanePath::MathImageWunderlichSerpentine->new (radix => 5);
DESCRIPTION
In progress.
This is an integer version of Walter Wunderlich's variations on the PeanoCurve. A "serpentine type" controls which combination of the nine sub-parts are transposed. For example "010 101 010" gives
8 60--61--62--63 68--69 78--79--80--81
| | | | | |
7 59--58--57 64 67 70 77--76--75 ...
| | | | |
6 54--55--56 65--66 71--72--73--74
|
5 53 48--47 38--37--36--35 30--29
| | | | | | |
4 52 49 46 39--40--41 34 31 28
| | | | | | |
3 51--50 45--44--43--42 33--32 27
|
2 6-- 7-- 8-- 9 14--15 24--25--26
| | | | |
1 5-- 4-- 3 10 13 16 23--22--21
| | | | |
Y=0 0-- 1-- 2 11--12 17--18--19--20
X=0 1 2 3 4 5 6 7 8
Coil Order
serpentine_type => -1
transposes all parts, giving what is sometimes called a "coil order",
8 24--25--26--27--28--29 78--79--80--81--...
| | |
7 23--22--21 32--31--30 77--76--75
| | |
6 18--19--20 33--34--35 72--73--74
| | |
5 17--16--15 38--37--36 71--70--69
| | |
4 12--13--14 39--40--41 66--67--68
| | |
3 11--10-- 9 44--43--42 65--64--63
| | |
2 6-- 7-- 8 45--46--47 60--61--62
| | |
1 5-- 4-- 3 50--49--48 59--58--57
| | |
Y=0 0-- 1-- 2 51--52--53--54--55--56
X=0 1 2 3 4 5 6 7 8
FUNCTIONS
See "FUNCTIONS" in Math::PlanePath for the behaviour common to all path classes.
$path = Math::PlanePath::MathImageWunderlichSerpentine->new ()
$path = Math::PlanePath::MathImageWunderlichSerpentine->new (radix => $r)
-
Create and return a new path object.
The optional
radix
parameter gives the base for digit splitting. The default is ternary, radix 3. The radix should be an odd number, 3, 5, 7, 9 etc.
SEE ALSO
Math::PlanePath, Math::PlanePath::PeanoSerpentine
Walter Wunderlich "Uber Peano-Kurven", Elemente der Mathematik, 28(1):1-10, 1973.
http://sodwana.uni-ak.ac.at/geom/mitarbeiter/wallner/wunderlich/
http://sodwana.uni-ak.ac.at/geom/mitarbeiter/wallner/wunderlich/pdf/125.pdf