NAME
AI::Categorizer::FeatureVector - Features vs. Values
SYNOPSIS
my $f1 = new AI::Categorizer::FeatureVector
(features => {howdy => 2, doody => 3});
my $f2 = new AI::Categorizer::FeatureVector
(features => {doody => 1, whopper => 2});
@names = $f1->names;
$x = $f1->length;
$x = $f1->sum;
$x = $f1->includes('howdy');
$x = $f1->value('howdy');
$x = $f1->dot($f2);
$f3 = $f1->clone;
$f3 = $f1->intersection($f2);
$f3 = $f1->add($f2);
$h = $f1->as_hash;
$h = $f1->as_boolean_hash;
$f1->normalize;
DESCRIPTION
This class implements a "feature vector", which is a flat data structure indicating the values associated with a set of features. At its base level, a FeatureVector usually represents the set of words in a document, with the value for each feature indicating the number of times each word appears in the document. However, the values are arbitrary so they can represent other quantities as well, and FeatureVectors may also be combined to represent the features of multiple documents.
METHODS
AUTHOR
Ken Williams, ken@mathforum.org
COPYRIGHT
Copyright 2000-2002 Ken Williams. All rights reserved.
This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself.
SEE ALSO
AI::Categorizer(3), Storable(3)