NAME
PDL::Stats::TS -- basic time series functions
DESCRIPTION
The terms FUNCTIONS and METHODS are arbitrarily used to refer to methods that are threadable and methods that are NOT threadable, respectively. Plots require PDL::Graphics::PGPLOT.
***EXPERIMENTAL!*** In particular, bad value support is spotty and may be shaky. USE WITH DISCRETION!
SYNOPSIS
use PDL::LiteF;
use PDL::NiceSlice;
use PDL::Stats::TS;
my $r = $data->acf(5);
FUNCTIONS
acf
Signature: (x(t); int h(); [o]r(h+1))
Autocorrelation function for up to lag h. If h is not specified it's set to t-1 by default.
acf does not process bad values.
usage:
perldl> $a = sequence 10
# lags 0 .. 5
perldl> p $a->acf(5)
[1 0.7 0.41212121 0.14848485 -0.078787879 -0.25757576]
acvf
Signature: (x(t); int h(); [o]v(h+1))
Autocovariance function for up to lag h. If h is not specified it's set to t-1 by default.
acvf does not process bad values.
usage:
perldl> $a = sequence 10
# lags 0 .. 5
perldl> p $a->acvf(5)
[82.5 57.75 34 12.25 -6.5 -21.25]
# autocorrelation
perldl> p $a->acvf(5) / $a->acvf(0)
[1 0.7 0.41212121 0.14848485 -0.078787879 -0.25757576]
diff
Signature: (x(t); [o]dx(t))
Differencing. DX(t) = X(t) - X(t-1), DX(0) = X(0). Can be done inplace.
diff does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
inte
Signature: (x(n); [o]ix(n))
Integration. Opposite of differencing. IX(t) = X(t) + X(t-1), IX(0) = X(0). Can be done inplace.
inte does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
dsea
Signature: (x(t); int d(); [o]xd(t))
Deseasonalize data using moving average filter the size of period d.
dsea does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
fill_ma
Signature: (x(t); int q(); [o]xf(t))
Fill missing value with moving average. xf(t) = sum(x(t-q .. t-1, t+1 .. t+q)) / 2q.
fill_ma does handle bad values. Output pdl bad flag is cleared unless the specified window size q is too small and there are still bad values.
my $x_filled = $x->fill_ma( $q );
filt_exp
Signature: (x(t); a(); [o]xf(t))
Filter, exponential smoothing. xf(t) = a * x(t) + (1-a) * xf(t-1)
filt_exp does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
filt_ma
Signature: (x(t); int q(); [o]xf(t))
Filter, moving average. xf(t) = sum(x(t-q .. t+q)) / (2q + 1)
filt_ma does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
mae
Signature: (a(n); b(n); float+ [o]c())
Mean absolute error. MAE = 1/n * sum( abs(y - y_pred) )
Usage:
$mae = $y->mae( $y_pred );
mae does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
mape
Signature: (a(n); b(n); float+ [o]c())
Mean absolute percent error. MAPE = 1/n * sum(abs((y - y_pred) / y))
Usage:
$mape = $y->mape( $y_pred );
mape does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
portmanteau
Signature: (r(h); longlong t(); [o]Q())
Portmanteau significance test (Ljung-Box) for autocorrelations.
Usage:
perldl> $a = sequence 10
# acf for lags 0-5
# lag 0 excluded from portmanteau
perldl> p $chisq = $a->acf(5)->portmanteau( $a->nelem )
11.1753902662994
# get p-value from chisq distr
perldl> use PDL::GSL::CDF
perldl> p 1 - gsl_cdf_chisq_P( $chisq, 5 )
0.0480112934306748
portmanteau does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
pred_ar
Signature: (x(d); b(p|p+1); int t(); [o]pred(t))
Calculates predicted values up to period t (extend current series up to period t) for autoregressive series, with or without constant. If there is constant, it is the last element in b, as would be returned by ols or ols_t.
pred_ar does not process bad values.
CONST => 1,
Usage:
perldl> $x = sequence 2
# last element is constant
perldl> $b = pdl(.8, -.2, .3)
perldl> p $x->pred_ar($b, 7)
[0 1 1.1 0.74 0.492 0.3656 0.31408]
# no constant
perldl> p $x->pred_ar($b(0:1), 7, {const=>0})
[0 1 0.8 0.44 0.192 0.0656 0.01408]
plot_dsea
Plots deseasonalized data and original data points. Opens and closes default window for plotting unless a pgwin object is passed in options. Returns deseasonalized data.
Default options (case insensitive):
WIN => undef,
DEV => "/xs",
COLOR => 1, # data point color
See PDL::Graphics::PGPLOT for detailed graphing options.
plot_season
Seasonal subseries plot. Given length of season, plots mean and returns sample mean and sample var for each period.
$data should be pdl dim (period) or (period x series). $data must start from period 0. If actual data starts later into the season, set previous periods to bad.
Default options (case insensitive):
WIN => undef,
DEV => "/xs",
COLOR => 1,
See PDL::Graphics::PGPLOT for detailed graphing options.
$data->plot_season( 24, { DEV=>'/png' } );
METHODS
plot_acf
Plots and returns autocorrelations for a time series.
Default options (case insensitive):
SIG => 0.05, # can specify .10, .05, .01, or .001
DEV => "/xs", # see PDL::Graphics::PGPLOT
Usage:
perldl> $a = sequence 10
perldl> p $r = $a->plot_acf(5)
[1 0.7 0.41212121 0.14848485 -0.078787879 -0.25757576]
REFERENCES
Brockwell, P.J., & Davis, R.A. (2002). Introcution to Time Series and Forecasting (2nd ed.). New York, NY: Springer.
AUTHOR
Copyright (C) 2009 Maggie J. Xiong <maggiexyz users.sourceforge.net>
All rights reserved. There is no warranty. You are allowed to redistribute this software / documentation as described in the file COPYING in the PDL distribution.