NAME

Async::Interrupt - allow C/XS libraries to interrupt perl asynchronously

SYNOPSIS

use Async::Interrupt;

DESCRIPTION

This module implements a single feature only of interest to advanced perl modules, namely asynchronous interruptions (think "UNIX signals", which are very similar).

Sometimes, modules wish to run code asynchronously (in another thread, or from a signal handler), and then signal the perl interpreter on certain events. One common way is to write some data to a pipe and use an event handling toolkit to watch for I/O events. Another way is to send a signal. Those methods are slow, and in the case of a pipe, also not asynchronous - it won't interrupt a running perl interpreter.

This module implements asynchronous notifications that enable you to signal running perl code from another thread, asynchronously, and sometimes even without using a single syscall.

USAGE SCENARIOS

Race-free signal handling

There seems to be no way to do race-free signal handling in perl: to catch a signal, you have to execute Perl code, and between entering the interpreter select function (or other blocking functions) and executing the select syscall is a small but relevant timespan during which signals will be queued, but perl signal handlers will not be executed and the blocking syscall will not be interrupted.

You can use this module to bind a signal to a callback while at the same time activating an event pipe that you can select on, fixing the race completely.

This can be used to implement the signal hadling in event loops, e.g. AnyEvent, POE, IO::Async::Loop and so on.

Background threads want speedy reporting

Assume you want very exact timing, and you can spare an extra cpu core for that. Then you can run an extra thread that signals your perl interpreter. This means you can get a very exact timing source while your perl code is number crunching, without even using a syscall to communicate between your threads.

For example the deliantra game server uses a variant of this technique to interrupt background processes regularly to send map updates to game clients.

IO::AIO and BDB could also use this to speed up result reporting.

Speedy event loop invocation

One could use this module e.g. in Coro to interrupt a running coro-thread and cause it to enter the event loop.

Or one could bind to SIGIO and tell some important sockets to send this signal, causing the event loop to be entered to reduce network latency.

HOW TO USE

You can use this module by creating an Async::Interrupt object for each such event source. This object stores a perl and/or a C-level callback that is invoked when the Async::Interrupt object gets signalled. It is executed at the next time the perl interpreter is running (i.e. it will interrupt a computation, but not an XS function or a syscall).

You can signal the Async::Interrupt object either by calling it's ->signal method, or, more commonly, by calling a C function. There is also the built-in (POSIX) signal source.

The ->signal_func returns the address of the C function that is to be called (plus an argument to be used during the call). The signalling function also takes an integer argument in the range SIG_ATOMIC_MIN to SIG_ATOMIC_MAX (guaranteed to allow at least 0..127).

Since this kind of interruption is fast, but can only interrupt a running interpreter, there is optional support for signalling a pipe - that means you can also wait for the pipe to become readable (e.g. via EV or AnyEvent). This, of course, incurs the overhead of a read and write syscall.

$async = new Async::Interrupt key => value...

Creates a new Async::Interrupt object. You may only use async notifications on this object while it exists, so you need to keep a reference to it at all times while it is used.

Optional constructor arguments include (normally you would specify at least one of cb or c_cb).

cb => $coderef->($value)

Registers a perl callback to be invoked whenever the async interrupt is signalled.

Note that, since this callback can be invoked at basically any time, it must not modify any well-known global variables such as $/ without restoring them again before returning.

The exceptions are $! and $@, which are saved and restored by Async::Interrupt.

If the callback should throw an exception, then it will be caught, and $Async::Interrupt::DIED will be called with $@ containing the exception. The default will simply warn about the message and continue.

c_cb => [$c_func, $c_arg]

Registers a C callback the be invoked whenever the async interrupt is signalled.

The C callback must have the following prototype:

void c_func (pTHX_ void *c_arg, int value);

Both $c_func and $c_arg must be specified as integers/IVs, and $value is the value passed to some earlier call to either $signal or the signal_func function.

Note that, because the callback can be invoked at almost any time, you have to be careful at saving and restoring global variables that Perl might use (the exception is errno, which is saved and restored by Async::Interrupt). The callback itself runs as part of the perl context, so you can call any perl functions and modify any perl data structures (in which case the requirements set out for cb apply as well).

signal => $signame_or_value

When this parameter is specified, then the Async::Interrupt will hook the given signal, that is, it will effectively call ->signal (0) each time the given signal is caught by the process.

Only one async can hook a given signal, and the signal will be restored to defaults when the Async::Interrupt object gets destroyed.

pipe => [$fileno_or_fh_for_reading, $fileno_or_fh_for_writing]

Specifies two file descriptors (or file handles) that should be signalled whenever the async interrupt is signalled. This means a single octet will be written to it, and before the callback is being invoked, it will be read again. Due to races, it is unlikely but possible that multiple octets are written. It is required that the file handles are both in nonblocking mode.

You can get a portable pipe and set non-blocking mode portably by using e.g. AnyEvent::Util from the AnyEvent distribution.

It is also possible to pass in a linux eventfd as both read and write handle (which is faster than a pipe).

The object will keep a reference to the file handles.

This can be used to ensure that async notifications will interrupt event frameworks as well.

($signal_func, $signal_arg) = $async->signal_func

Returns the address of a function to call asynchronously. The function has the following prototype and needs to be passed the specified $c_arg, which is a void * cast to IV:

void (*signal_func) (void *signal_arg, int value)

An example call would look like:

signal_func (signal_arg, 0);

The function is safe to call from within signal and thread contexts, at any time. The specified value is passed to both C and Perl callback.

$value must be in the valid range for a sig_atomic_t (0..127 is portable).

If the function is called while the Async::Interrupt object is already signaled but before the callbacks are being executed, then the stored value is either the old or the new one. Due to the asynchronous nature of the code, the value can even be passed to two consecutive invocations of the callback.

$async->signal ($value=0)

This signals the given async object from Perl code. Semi-obviously, this will instantly trigger the callback invocation.

$value must be in the valid range for a sig_atomic_t (0..127 is portable).

$async->block
$async->unblock

Sometimes you need a "critical section" of code that will not be interrupted by an Async::Interrupt. This can be implemented by calling $async->block before the critical section, and $async->unblock afterwards.

Note that there must be exactly one call of unblock for every previous call to block (i.e. calls can nest).

Since ensuring this in the presence of exceptions and threads is usually more difficult than you imagine, I recommend using $async->scoped_block instead.

$async->scope_block

This call $async->block and installs a handler that is called when the current scope is exited (via an exception, by canceling the Coro thread, by calling last/goto etc.).

This is the recommended (and fastest) way to implement critical sections.

$async->pipe_enable
$async->pipe_disable

Enable/disable signalling the pipe when the interrupt occurs (default is enabled). Writing to a pipe is relatively expensive, so it can be disabled when you know you are not waiting for it (for example, with EV you could disable the pipe in a check watcher, and enable it in a prepare watcher).

Note that when fd_disable is in effect, no attempt to read from the pipe will be done.

EXAMPLE

There really should be a complete C/XS example. Bug me about it. Better yet, create one.

IMPLEMENTATION DETAILS AND LIMITATIONS

This module works by "hijacking" SIGKILL, which is guaranteed to always exist, but also cannot be caught, so is always available.

Basically, this module fakes the occurance of a SIGKILL signal and then intercepts the interpreter handling it. This makes normal signal handling slower (probably unmeasurably, though), but has the advantage of not requiring a special runops function, nor slowing down normal perl execution a bit.

It assumes that sig_atomic_t and int are both async-safe to modify (sig_atomic_ is used by this module, and perl itself uses int, so we can assume that this is quite portable, at least w.r.t. signals).

AUTHOR

Marc Lehmann <schmorp@schmorp.de>
http://home.schmorp.de/