NAME
docs/running.pod - Running
SYNOPSIS
parrot [-options] <file> [arguments ...]
DESCRIPTION
This document describes Parrot's command line options.
VERSION
$Revision$
ENVIRONMENT
- PARROT_RUNTIME
-
If this environment variable is set, parrot will use this path as its runtime prefix instead of the compiled in path.
- PARROT_GC_DEBUG
-
Turn on the --gc-debug flag.
OPTIONS
Assembler options
- -a, --pasm
-
Assume PASM input on stdin.
- -c, --pbc
-
Assume PBC file on stdin, run it.
- -d, --imcc-debug [hexbits]
-
The -d switch takes an optional argument which is considered to hold a hex value of debug bits. Without a value, debug is set to 1.
The individual bits can be listed on the command line by use of the --help-debug switch.
To produce really huge output on stderr run
"parrot -d 0ffff ..."
. Note: If the argument is separated by whitespace from the -d switch, it has to start with a number. - -h, --help
-
Print command line option summary.
- --help-debug
-
Print debugging and tracing flag bits summary.
- -o outputfile, --output=outputfile
-
Act like an assembler. Don't run code, unless -r is given too. If the outputfile ends with .pbc, a PBC file is written. If it ends with .pasm, a PASM output is generated, even from PASM input. This can be handy to check various optimizations, including
-Op
. - --output-pbc
-
Act like an assembler, but always output bytecode, even if the output file does not end in .pbc
- -r, --run-pbc
-
Only useful after
-o
or--output-pbc
. Run the program from the compiled in-memory image. If two-r
options are given, the .pbc file is read from disc and run. This is mainly needed for tests. - -v, --verbose
-
One
-v
shows which files are worked on and prints a summary over register usage and optimization stats per subroutine. With two-v
switches,parrot
prints a line per individual processing step too. - -y, --yydebug
-
Turn on yydebug in yacc/bison.
- -V, --version
-
Print version information and exit.
- -Ox
-
Optimize
-O0 no optimization (default) -O1 optimizations without life info (e.g. branches) -O same -O2 optimizations with life info -Op rewrite I and N PASM registers most used first -Ot select fastest runcore -Oc turns on the optional/experimental tail call optimizations
See docs/dev/optimizer.pod for more information on the optimizer. Note that optimization is currently experimental and these options are likely to change.
- -E, --pre-process-only
-
Preprocess source file (expand macros) and print result to stdout:
$ parrot -E t/op/macro_10.pasm $ parrot -E t/op/macro_10.pasm | parrot -- -
Runcore Options
These options select the runcore, which is useful for performance tuning and debugging. See "About runcores" for details.
- -R, --runcore CORE
-
Select the runcore. The following cores are available in Parrot, but not all may be available on your system:
slow, bounds bounds checking core (default) gcdebug performs a full GC run before every op dispatch (good for debugging GC problems) trace bounds checking core w/ trace info (see 'parrot --help-debug') profiling see F<docs/dev/profilling.pod>
The
jit
,switch-jit
, andcgp-jit
options are currently aliases for thefast
,switch
, andcgp
options, respectively. We do not recommend their use in new code; they will continue working for existing code per our deprecation policy. - -p, --profile
-
Run with the slow core and print an execution profile.
- -t, --trace
-
Run with the slow core and print trace information to stderr. See
parrot --help-debug
for available flag bits.
VM Options
- -w, --warnings
-
Turn on warnings. See
parrot --help-debug
for available flag bits. - -D, --parrot-debug
-
Turn on interpreter debug flag. See
parrot --help-debug
for available flag bits. - --hash-seed <hexnum>
-
Sets the hash seed to the provided value. Only useful for debugging intermittent failures, and harmful in production.
- --gc-debug
-
Turn on GC (Garbage Collection) debugging. This imposes some stress on the GC subsystem and can slow down execution considerably.
- -G, --no-gc
-
This turns off GC. This may be useful to find GC related bugs. Don't use this option for longer running programs: as memory is no longer recycled, it may quickly become exhausted.
- --leak-test, --destroy-at-end
-
Free all memory of the last interpreter. This is useful when running leak checkers.
- -., --wait
-
Read a keystroke before starting. This is useful when you want to attach a debugger on platforms such as Windows.
- --runtime-prefix
-
Print the runtime prefix path and exit.
- -L path
-
Add
path
to the library search path
<file>
If the file ends in .pbc it will be interpreted immediately.
If the file ends in .pasm, then it is parsed as PASM code. Otherwise, it is parsed as PIR code. In both cases, it will then be run, unless the -o
flag was given.
If the file
is a single dash, input from stdin
is read.
[arguments ...]
Optional arguments passed to the running program as ARGV. The program is assumed to know what to do with these.
GENERATED FILES
ABOUT RUNCORES
The runcore (or runloop) tells Parrot how to find the C code that implements each instruction. Parrot provides more than one way to do this, partly because no single runcore will perform optimally on all architectures (or even for all problems on a given architecture), and partly because some of the runcores have specific debugging and tracing capabilities.
In the default "slow" runcore, each opcode is a separate C function. That's pretty easy in pseudocode:
slow_runcore( op ):
while ( op ):
op = op_function( op )
check_for_events()
The GC debugging runcore is similar:
gcdebug_runcore( op ):
while ( op ):
perform_full_gc_run()
op = op_function( op )
check_for_events()
Of course, this is much slower, but is extremely helpful for pinning memory corruption problems that affect GC down to single-instruction resolution. See http://www.oreillynet.com/onlamp/blog/2007/10/debugging_gc_problems_in_parro.html for more information.
The trace and profile cores are also based on the "slow" core, doing full bounds checking, and also printing runtime information to stderr.
OPERATION TABLE
Command Line Action Output
---------------------------------------------
parrot x.pir run
parrot x.pasm run
parrot x.pbc run
-o x.pasm x.pir ass x.pasm
-o x.pasm y.pasm ass x.pasm
-o x.pbc x.pir ass x.pbc
-o x.pbc x.pasm ass x.pbc
-o x.pbc -r x.pasm ass/run pasm x.pbc
-o x.pbc -r -r x.pasm ass/run pbc x.pbc
-o x.o x.pbc obj
... where the possible actions are:
run ... yes, run the program
ass ... assemble sourcefile
obj .. produce native (ELF) object file for the EXEC subsystem
FILES
main.c