Triangle
Triangles in 3D space
PhilipRBrenan@yahoo.com, 2004, Perl License
Synopsis
Example t/triangle.t
#_ Triangle ___________________________________________________________
# Test 3d triangles
# philiprbrenan@yahoo.com, 2004, Perl License
#______________________________________________________________________
use Math::Zap::Vector;
use Math::Zap::Vector2;
use Math::Zap::Triangle;
use Test::Simple tests=>25;
$t = triangle
(vector( 0, 0, 0),
vector( 0, 0, 4),
vector( 4, 0, 0),
);
$u = triangle
(vector( 0, 0, 0),
vector( 0, 1, 4),
vector( 4, 1, 0),
);
$T = triangle
(vector( 0, 1, 0),
vector( 0, 1, 1),
vector( 1, 1, 0),
);
$c = vector(1, 1, 1);
#_ Triangle ___________________________________________________________
# Distance to plane
#______________________________________________________________________
ok($t->distance($c) == 1, 'Distance to plane');
ok($T->distance($c) == 0, 'Distance to plane');
ok($t->distance(2*$c) == 2, 'Distance to plane');
ok($t->distanceToPlaneAlongLine(vector(0,-1,0), vector(0,1,0)) == 1, 'Distance to plane towards a point');
ok($T->distanceToPlaneAlongLine(vector(0,-1,0), vector(0,1,0)) == 2, 'Distance to plane towards a point');
#_ Triangle ___________________________________________________________
# Permute the points of a triangle
#______________________________________________________________________
ok($t->permute == $t, 'Permute 1');
ok($t->permute->permute == $t, 'Permute 2');
ok($t->permute->permute->permute == $t, 'Permute 3');
#_ Triangle ___________________________________________________________
# Intersection of a line with a plane defined by a triangle
#______________________________________________________________________
#ok($t->intersection($c, vector(1, -1, 1)) == vector(1, 0, 1), 'Intersection of line with plane');
#ok($t->intersection($c, vector(-1, -1, -1)) == vector(0, 0, 0), 'Intersection of line with plane');
#_ Triangle ___________________________________________________________
# Test whether a point is in front or behind a plane relative to another
# point
#______________________________________________________________________
ok($t->frontInBehind($c, vector(1, 0.5, 1)) == +1, 'Front');
ok($t->frontInBehind($c, vector(1, 0, 1)) == 0, 'In');
ok($t->frontInBehind($c, vector(1, -0.5, 1)) == -1, 'Behind');
#_ Triangle ___________________________________________________________
# Parallel
#______________________________________________________________________
ok($t->parallel($T) == 1, 'Parallel');
ok($t->parallel($u) == 0, 'Not Parallel');
#_ Triangle ___________________________________________________________
# Coplanar
#______________________________________________________________________
#ok($t->coplanar($t) == 1, 'Coplanar');
#ok($t->coplanar($u) == 0, 'Not coplanar');
#ok($t->coplanar($T) == 0, 'Not coplanar');
#_ Triangle ___________________________________________________________
# Project one triangle onto another
#______________________________________________________________________
$p = vector(0, 2, 0);
$s = $t->project($T, $p);
ok($s == triangle
(vector(0, 0, 2),
vector(0.5, 0, 2),
vector(0, 0.5, 2),
), 'Projection of corner 3');
#_ Triangle ___________________________________________________________
# Convert space to plane coordinates and vice versa
#______________________________________________________________________
ok($t->convertSpaceToPlane(vector(2, 2, 2)) == vector(0.5,0.5,2), 'Space to Plane');
ok($t->convertPlaneToSpace(vector2(0.5, 0.5)) == vector(2, 0, 2), 'Plane to Space');
#_ Triangle ___________________________________________________________
# Divide
#______________________________________________________________________
$it = triangle # Intersects t
(vector( 0, -1, 2),
vector( 0, 2, 2),
vector( 3, 2, 2),
);
@d = $t->divide($it);
ok($d[0] == triangle(vector(0, -1, 2), vector(0, 0, 2), vector(1, 0, 2)));
ok($d[1] == triangle(vector(0, 2, 2), vector(0, 0, 2), vector(1, 0, 2)));
ok($d[2] == triangle(vector(0, 2, 2), vector(1, 0, 2), vector(3, 2, 2)));
$it = triangle # Intersects t
(vector( 3, 2, 2),
vector( 0, 2, 2),
vector( 0, -1, 2),
);
@d = $t->divide($it);
ok($d[0] == triangle(vector(0, -1, 2), vector(0, 0, 2), vector(1, 0, 2)));
ok($d[1] == triangle(vector(3, 2, 2), vector(1, 0, 2), vector(0, 0, 2)));
ok($d[2] == triangle(vector(3, 2, 2), vector(0, 0, 2), vector(0, 2, 2)));
$it = triangle # Intersects t
(vector( 3, 2, 2),
vector( 0, -1, 2),
vector( 0, 2, 2),
);
@d = $t->divide($it);
ok($d[0] == triangle(vector(0, -1, 2), vector(1, 0, 2), vector(0, 0, 2)));
ok($d[1] == triangle(vector(3, 2, 2), vector(1, 0, 2), vector(0, 0, 2)));
ok($d[2] == triangle(vector(3, 2, 2), vector(0, 0, 2), vector(0, 2, 2)));
Description
Triangles in 3D space
Definitions:
Space coordinates = 3d space
Plane coordinates = a triangle in 3d space defines a 2d plane with a natural coordinate system: the origin is the first point of the triangle, the (x,y) units of this plane are the sides from the triangles first point to its other points.
package Math::Zap::Triangle;
$VERSION=1.06;
use Math::Zap::Line2;
use Math::Zap::Unique;
use Math::Zap::Vector2 check=>'vector2Check';
use Math::Zap::Vector check=>'vectorCheck';
use Math::Zap::Matrix new3v=>'matrixNew3v';
use Carp qw(cluck confess);
use constant debug => 0; # Debugging level
Constructors
new
Create a triangle from 3 vectors specifying the coordinates of each corner in space coordinates.
sub new($$$)
{my ($a, $b, $c) = vectorCheck(@_);
my $t = bless {a=>$a, b=>$b, c=>$c};
narrow($t, 1);
$t;
}
triangle
Create a triangle from 3 vectors specifying the coordinates of each corner in space coordinates - synonym for "new".
sub triangle($$$) {new($_[0],$_[1],$_[2])};
Methods
narrow
Narrow (colinear) triangle?
sub narrow($$)
{my $t = shift; # Triangle
my $a = 1e-2; # Accuracy
my $A = shift; # Action 0: return indicator, 1: confess
my $n = (($t->b-$t->a) x ($t->c-$t->a))->length < $a;
confess "Narrow triangle" if $n and $A;
$n;
}
check
Check its a triangle
sub check(@)
{if (debug)
{for my $t(@_)
{confess "$t is not a triangle" unless ref($t) eq __PACKAGE__;
}
}
return (@_)
}
is
Test its a triangle
sub is(@)
{for my $t(@_)
{return 0 unless ref($t) eq __PACKAGE__;
}
'triangle';
}
components
Components of a triangle
sub a($) {check(@_) if debug; $_[0]->{a}}
sub b($) {check(@_) if debug; $_[0]->{b}}
sub c($) {check(@_) if debug; $_[0]->{c}}
sub ab($) {check(@_) if debug; ($_[0]->{b}-$_[0]->{a})}
sub ac($) {check(@_) if debug; ($_[0]->{c}-$_[0]->{a})}
sub ba($) {check(@_) if debug; ($_[0]->{a}-$_[0]->{b})}
sub bc($) {check(@_) if debug; ($_[0]->{c}-$_[0]->{b})}
sub ca($) {check(@_) if debug; ($_[0]->{a}-$_[0]->{c})}
sub cb($) {check(@_) if debug; ($_[0]->{b}-$_[0]->{c})}
sub abc($) {check(@_) if debug; ($_[0]->{a}, $_[0]->{b}, $_[0]->{c})}
sub area($){check(@_) if debug; ($_[0]->ab x $_[0]->ac)->length}
clone
Create a triangle from another triangle
sub clone($)
{my ($t) = check(@_); # Triangle
bless {a=>$t->a, b=>$t->b, c=>$t->c};
}
permute
Cyclically permute the points of a triangle
sub permute($)
{my ($t) = check(@_); # Triangle
bless {a=>$t->b, b=>$t->c, c=>$t->a};
}
center
Center
sub center($)
{my ($t) = check(@_); # Triangle
($t->a + $t->b + $t->c) / 3;
}
add
Add a vector to a triangle
sub add($$)
{my ($t) = check(@_[0..0]); # Triangle
my ($v) = vectorCheck(@_[1..1]); # Vector
new($t->a+$v, $t->b+$v, $t->c+$v);
}
subtract
Subtract a vector from a triangle
sub subtract($$)
{my ($t) = check(@_[0..0]); # Triangle
my ($v) = vectorCheck(@_[1..1]); # Vector
new($t->a-$v, $t->b-$v, $t->c-$v);
}
Print triangle
sub print($)
{my ($t) = check(@_); # Triangle
my ($a, $b, $c) = ($t->a, $t->b, $t->c);
"triangle($a, $b, $c)";
}
accuracy
# Get/Set accuracy for comparisons
my $accuracy = 1e-10;
sub accuracy
{return $accuracy unless scalar(@_);
$accuracy = shift();
}
distance
Shortest distance from plane defined by triangle t to point p
sub distance($$)
{my ($t) = check(@_[0..0]); # Triangle
my ($p) = vectorCheck(@_[1..1]); # Vector
my $n = $t->ab x $t->ac; # Plane normal
my ($a, $b) = ($p, $p+$n);
my $s = matrixNew3v($t->ab, $t->ac, $a-$b)/($a-$t->a);
($n*$s->z)->length;
}
intersectionInPlane
Intersect line between two points with plane defined by triangle and return the intersection in plane coordinates. Identical logic as per intersection(). Note: no checks (yet) for line parallel to plane.
sub intersectionInPlane($$$)
{my ($t) = check(@_[0..0]); # Triangle
my ($a, $b) = vectorCheck(@_[1..2]); # Vectors
matrixNew3v($t->ab, $t->ac, $a-$b)/($a-$t->a);
}
distanceToPlaneAlongLine
Distance to plane defined by triangle t going from a to b, or undef if the line is parallel to the plane
sub distanceToPlaneAlongLine($$$)
{my ($t) = check(@_[0..0]); # Triangle
my ($a, $b) = vectorCheck(@_[1..2]); # Vectors
return undef if abs(($t->ab x $t->ac) * ($b - $a)) < $accuracy;
my $i = matrixNew3v($t->ab, $t->ac, $a-$b)/($a-$t->a);
$i->z * ($a-$b)->length;
}
convertSpaceToPlane
Convert space to plane coordinates
sub convertSpaceToPlane($$)
{my ($t) = check(@_[0..0]); # Triangle
my ($p) = vectorCheck(@_[1..1]); # Vector
my $q = $p-$t->a;
vector
($q * $t->ab / ($t->ab * $t->ab),
$q * $t->ac / ($t->ac * $t->ac),
$q * ($t->ab x $t->ac)->norm
);
}
convertPlaneToSpace
Convert splane to space coordinates
sub convertPlaneToSpace($$)
{my ($t, $p) = @_;
check(@_[0..0]) if debug; # Triangle
vector2Check(@_[1..1]) if debug; # Vector in plane
$t->a + ($p->x * $t->ab) + ($p->y * $t->ac);
}
frontInBehind
Determine whether a test point b as viewed from a view point a is in front of(1), in(0), or behind(-1) a plane defined by a triangle t. Identical logic as per intersection(), except this time we use the z component to determine the relative position of the point b. Note: no checks (yet) for line parallel to plane.
sub frontInBehind($$$)
{my ($t, $a, $b) = @_;
check(@_[0..0]) if debug; # Triangle
vectorCheck(@_[1..2]) if debug; # Vectors
return 1 if abs(($t->ab x $t->ac) * ($a-$b)) < $accuracy; # Parallel
$s = matrixNew3v($t->ab, $t->ac, $a-$b)/($a-$t->a);
$s->z <=> 1;
}
frontInBehindZ
Determine whether a test point b as viewed from a view point a is in front of(1), in(0), or behind(-1) a plane defined by a triangle t. Identical logic as per intersection(), except this time we use the z component to determine the relative position of the point b. Note: no checks (yet) for line parallel to plane.
sub frontInBehindZ($$$)
{my ($t, $a, $b) = @_;
check(@_[0..0]) if debug; # Triangle
vectorCheck(@_[1..2]) if debug; # Vectors
return undef if abs(($t->ab x $t->ac) * ($a-$b)) < $accuracy; # Parallel
$s = matrixNew3v($t->ab, $t->ac, $a-$b)/($a-$t->a);
$s->z;
}
parallel
Are two triangle parallel? I.e. do they define planes that are parallel? If they are parallel, their normals will have zero cross product
sub parallel($$)
{my ($a, $b) = check(@_); # Triangles
!(($a->ab x $a->ac) x ($b->ab x $b->ac))->length;
}
divide
Divide triangle b by a: split b into triangles each of which is not intersected by a. Triangles are easy to draw in 3d except when they intersect: If they do not intersect, we can always draw one on top of the other and obtain the correct result; If they do intersect, they have to be split along the line of intersection into a sub triangle and a quadralateral: which can be be split again to obtain a result consisting of only triangles. The splitting can be done once: Each new view point only requires the correct ordering of the non intersecting triangles.
sub divide($$)
{my ($a, $b) = check(@_); # Triangles
return ($b) if $a->parallel($b); # Parallel: no need to split
my $A = $a->permute; $a = $A if $b->distance($A->a) > $b->distance($a->a);
$A = $A->permute; $a = $A if $b->distance($A->a) > $b->distance($a->a);
my $na = $a->ab x $a->ac; # Normal to a
my $nb = $b->ab x $b->ac; # Normal to b
my $aa = $a->a;
my $ab = $a->b;
my $ac = $a->c;
my $bc = $a->bc;
# Avoid using vectors in a that are parallel to b
$ab += $bc/2 if ($a->ab->norm * $nb->norm) < 0.1;
$ac += $bc/2 if ($a->ac->norm * $nb->norm) < 0.1;
# Two points in both planes in b plane coordinates
my $i = $b->intersectionInPlane($aa, $ab);
my $j = $b->intersectionInPlane($aa, $ac);
# Does the line between these points intersect the sides of triangle b?
my $l = line2
(vector2($i->x, $i->y),
vector2($j->x, $j->y),
);
return ($b) if ($l->b-$l->a)->length < $accuracy;
# Triangle b has very simple sides in b plane coordinates
my $l1 = line2(vector2(0, 0), vector2(1, 0)); # ab
my $l2 = line2(vector2(0, 0), vector2(0, 1)); # ac
my $l3 = line2(vector2(1, 0), vector2(0, 1)); # bc
my $i1 = ((!$l->parallel($l1)) and ($l->intersectWithin($l1)));
my $i2 = ((!$l->parallel($l2)) and ($l->intersectWithin($l2)));
my $i3 = ((!$l->parallel($l3)) and ($l->intersectWithin($l3)));
# There should be either 0 or 2 intersections.
{my $n = $i1+$i2+$i3;
($n == 1 or $n == 3) and debug and warn "There should 0 or 2 intersections, not $n";
return ($b) unless $n == 2; # No division required
}
# There are two intersections.
# Make a copy of b called c, orientated so that the line of
# intersection crosses sides c->ab, c->ac
my $c;
$c = $b if $i1 and $i2;
$c = triangle($b->b, $b->a, $b->c) if $i1 and $i3;
$c = triangle($b->c, $b->a, $b->b) if $i2 and $i3;
# Find intersection points in terms of reorientated triangle
unless ($i1 and $i2)
{$i = $c->intersectionInPlane($aa, $ab);
$j = $c->intersectionInPlane($aa, $ac);
$l = line2
(vector2($i->x, $i->y),
vector2($j->x, $j->y),
);
}
# this time in plane coordinates
$i1 = $l->intersect($l1);
$i2 = $l->intersect($l2);
# Convert to space coordinates
my $s1 = $c->convertPlaneToSpace($i1);
my $s2 = $c->convertPlaneToSpace($i2);
# Vertices close to intersection points
my $a1 = ($c->a - $s1)->length < 1e-3;
my $a2 = ($c->a - $s2)->length < 1e-3;
my $b1 = ($c->b - $s1)->length < 1e-3;
my $b2 = ($c->b - $s2)->length < 1e-3;
my $c1 = ($c->c - $s1)->length < 1e-3;
my $c2 = ($c->c - $s2)->length < 1e-3;
return ($b) if ($a1 or $b1 or $c1) and ($a2 or $b2 or $c2);
# Divide b into 3 if the intersections points are far from the vertices
return
(triangle($c->a, $s1, $s2),
triangle($c->b, $s1, $s2),
triangle($c->b, $s2, $c->c),
) unless $a1 or $a2 or $b1 or $b2 or $c1 or $c2;
# If only one intersection point is close to a vertex, make it s1.
($s1, $s2, $a1, $b1, $c1, $a2, $b2, $c2) =
($s2, $s1, $a2, $b2, $c2, $a1, $b1, $c1) if !($a1 or $b1 or $c1) and ($a2 or $b2 or $c2);
# Divide b into 2 if one intersection point is close to a vertex
return
(triangle($c->a, $c->b, $s2),
triangle($c->a, $c->c, $s2),
) if $a1;
return
(triangle($c->a, $c->b, $s2),
triangle($c->c, $c->b, $s2),
) if $b1;
return
(triangle($c->a, $c->c, $s2),
triangle($c->b, $c->c, $s2),
) if $c1;
confess "Unable to divide triangle $a by $b\n"
}
project
Project onto the plane defined by triangle t the image of a triangle triangle T as viewed from a view point p. Return the coordinates of the projection of T onto t using the plane coordinates induced by t. The projection coordinates are (of course) 2d in the projection plane, however they are returned as the x,y components of a 3d vector with the z component set to the multiple of the distance from the view point to the corresponding corner of T required to reach t. If z > 1, this corner of T is in front the plane of t, if z < 1 this corner of T is behind the plane of t. The logic is the same as intersection().
sub project($$$)
{my ($t, $T, $p) = @_;
check(@_[0..1]) if debug; # Triangles
vectorCheck(@_[2..2]) if debug; # Vector
new
(matrixNew3v($t->ab, $t->ac, $p-$T->a)/($p-$t->a),
matrixNew3v($t->ab, $t->ac, $p-$T->b)/($p-$t->a),
matrixNew3v($t->ab, $t->ac, $p-$T->c)/($p-$t->a),
);
}
split
Split a triangle into 4 sub triangles unless the sub triangles would be too small
sub split($$)
{my ($t) = check(@_[0..0]); # Triangles
my ($s) = (@_[1..1]); # Minimum size
return () unless
$t->ab->length > $s and
$t->ac->length > $s and
$t->bc->length > $s;
(new($t->a, ($t->a+$t->b)/2, ($t->a+$t->c)/2),
new($t->b, ($t->b+$t->a)/2, ($t->b+$t->c)/2),
new($t->c, ($t->c+$t->a)/2, ($t->c+$t->b)/2),
new(($t->a+$t->b)/2, ($t->a+$t->b)/2, ($t->b+$t->c)/2)
)
}
triangulate
Triangulate
sub triangulate($$)
{my ($t) = check(@_[0..0]); # Triangle
my $color = @_[1..1]; # Color
my $plane = unique(); # Plane
{triangle=>$t, color=>$color, plane=>$plane};
}
equals
Compare two triangles for equality
sub equals($$)
{my ($a, $b) = check(@_); # Triangles
my ($aa, $ab, $ac) = ($a->a, $a->b, $a->c);
my ($ba, $bb, $bc) = ($b->a, $b->b, $b->c);
my $d = $accuracy;
return 1 if
abs(($aa-$ba)->length) < $d and abs(($ab-$bb)->length) < $d and abs(($ac-$bc)->length) < $d or
abs(($aa-$ba)->length) < $d and abs(($ab-$bc)->length) < $d and abs(($ac-$bb)->length) < $d or
abs(($aa-$bb)->length) < $d and abs(($ab-$bc)->length) < $d and abs(($ac-$ba)->length) < $d or
abs(($aa-$bb)->length) < $d and abs(($ab-$ba)->length) < $d and abs(($ac-$bc)->length) < $d or
abs(($aa-$bc)->length) < $d and abs(($ab-$ba)->length) < $d and abs(($ac-$bb)->length) < $d or
abs(($aa-$bc)->length) < $d and abs(($ab-$bb)->length) < $d and abs(($ac-$ba)->length) < $d;
0;
}
Operators
Operator overloads
use overload
'+', => \&add3, # Add a vector
'-', => \&sub3, # Subtract a vector
'==' => \&equals3, # Equals
'""' => \&print3, # Print
'fallback' => FALSE;
add
Add operator.
sub add3
{my ($a, $b, $c) = @_;
return $a->add($b);
}
subtract
Subtract operator.
sub sub3
{my ($a, $b, $c) = @_;
return $a->subtract($b);
}
equals
Equals operator.
sub equals3
{my ($a, $b, $c) = @_;
return $a->equals($b);
}
Print a triangle
sub print3
{my ($a) = @_;
return $a->print;
}
Exports
Export "triangle"
use Math::Zap::Exports qw(
triangle ($$$)
);
#_ Triangle ___________________________________________________________
# Package loaded successfully
#______________________________________________________________________
1;
Credits
Author
philiprbrenan@yahoo.com
Copyright
philiprbrenan@yahoo.com, 2004
License
Perl License.