Name

Nasm::X86 - Generate X86 assembler code using Perl as a macro pre-processor.

Synopsis

Write and execute x64 instructions using Perl as a macro assembler as shown in the following examples.

Examples

Avx512 instructions

Use avx512 instructions to do 64 comparisons in parallel:

my $P = "2F";                                                                 # Value to test for
my $l = Rb 0;  Rb $_ for 1..RegisterSize zmm0;                                # 0..63
Vmovdqu8 zmm0, "[$l]";                                                        # Load data to test
PrintOutRegisterInHex zmm0;

Mov rax, "0x$P";                                                              # Broadcast the value to be tested
Vpbroadcastb zmm1, rax;
PrintOutRegisterInHex zmm1;

for my $c(0..7)                                                               # Each possible test
 {my $m = "k$c";
  Vpcmpub $m, zmm1, zmm0, $c;
  PrintOutRegisterInHex $m;
 }

Kmovq rax, k0;                                                                # Count the number of trailing zeros in k0
Tzcnt rax, rax;
PrintOutRegisterInHex rax;

is_deeply Assemble, <<END;                                                    # Assemble and test
zmm0: 3F3E 3D3C 3B3A 3938   3736 3534 3332 3130   2F2E 2D2C 2B2A 2928   2726 2524 2322 2120   1F1E 1D1C 1B1A 1918   1716 1514 1312 1110   0F0E 0D0C 0B0A 0908   0706 0504 0302 0100
zmm1: 2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F
  k0: 0000 8000 0000 0000
  k1: FFFF 0000 0000 0000
  k2: FFFF 8000 0000 0000
  k3: 0000 0000 0000 0000
  k4: FFFF 7FFF FFFF FFFF
  k5: 0000 FFFF FFFF FFFF
  k6: 0000 7FFF FFFF FFFF
  k7: FFFF FFFF FFFF FFFF
 rax: 0000 0000 0000 002F
END

Dynamic string held in an arena

Create a dynamic byte string, add some content to it, write the byte string to stdout:

my $a = CreateByteString;                                                     # Create a string
my $b = CreateByteString;                                                     # Create a string
$a->q('aa');
$b->q('bb');
$a->q('AA');
$b->q('BB');
$a->q('aa');
$b->q('bb');
$a->out;
$b->out;
PrintOutNL;
is_deeply Assemble, <<END;                                                    # Assemble and execute
aaAAaabbBBbb
END

Process management

Start a child process and wait for it, printing out the process identifiers of each process involved:

Fork;                                                                         # Fork

Test rax,rax;
If                                                                            # Parent
 {Mov rbx, rax;
  WaitPid;
  PrintOutRegisterInHex rax;
  PrintOutRegisterInHex rbx;
  GetPid;                                                                     # Pid of parent as seen in parent
  Mov rcx,rax;
  PrintOutRegisterInHex rcx;
 }
sub                                                                           # Child
 {Mov r8,rax;
  PrintOutRegisterInHex r8;
  GetPid;                                                                     # Child pid as seen in child
  Mov r9,rax;
  PrintOutRegisterInHex r9;
  GetPPid;                                                                    # Parent pid as seen in child
  Mov r10,rax;
  PrintOutRegisterInHex r10;
 };

my $r = Assemble;

#    r8: 0000 0000 0000 0000   #1 Return from fork as seen by child
#    r9: 0000 0000 0003 0C63   #2 Pid of child
#   r10: 0000 0000 0003 0C60   #3 Pid of parent from child
#   rax: 0000 0000 0003 0C63   #4 Return from fork as seen by parent
#   rbx: 0000 0000 0003 0C63   #5 Wait for child pid result
#   rcx: 0000 0000 0003 0C60   #6 Pid of parent

Read a file

Read this file:

ReadFile(Vq(file, Rs($0)), (my $s = Vq(size)), my $a = Vq(address));          # Read file
$a->setReg(rax);                                                              # Address of file in memory
$s->setReg(rdi);                                                              # Length  of file in memory
PrintOutMemory;                                                               # Print contents of memory to stdout

my $r = Assemble(1 => (my $f = temporaryFile));                               # Assemble and execute
ok fileMd5Sum($f) eq fileMd5Sum($0);                                          # Output contains this file

Call functions in Libc

Call C functions by naming them as external and including their library:

my $format = Rs "Hello %s\n";
my $data   = Rs "World";

Extern qw(printf exit malloc strcpy); Link 'c';

CallC 'malloc', length($format)+1;
Mov r15, rax;
CallC 'strcpy', r15, $format;
CallC 'printf', r15, $data;
CallC 'exit', 0;

ok Assemble(eq => <<END);
Hello World
END

Installation

The Intel Software Development Emulator will be required if you do not have a computer with the avx512 instruction set and wish to execute code containing these instructions. For details see:

https://software.intel.com/content/dam/develop/external/us/en/documents/downloads/sde-external-8.63.0-2021-01-18-lin.tar.bz2

The Networkwide Assembler is required to assemble the code produced For full details see:

https://github.com/philiprbrenan/NasmX86/blob/main/.github/workflows/main.yml

Execution Options

The "Assemble(%)" function takes the keywords described below to control assembly and execution of the assembled code:

"Assemble(%)" runs the generated program after a successful assembly unless the keep option is specified. The output on stdout is captured in file zzzOut.txt and that on stderr is captured in file zzzErr.txt.

The amount of output displayed is controlled by the debug keyword.

The eq keyword can be used to test that the output by the run.

The output produced by the program execution is returned as the result of the "Assemble(%)" function.

Keep

To produce a named executable without running it, specify:

keep=>"executable file name"

Emulator

To run the executable produced by "Assemble(%)" without the Intel emulator, which is used by default if it is present, specify:

emulator=>0

eq

The eq keyword supplies the expected output from the execution of the assembled program. If the expected output is not obtained on stdout then we confess and stop further testing. Output on stderr is ignored for test purposes.

The point at which the wanted output diverges from the output actually got is displayed to assist debugging as in:

Comparing wanted with got failed at line: 4, character: 22
Start:
    k7: 0000 0000 0000 0001
    k6: 0000 0000 0000 0003
    k5: 0000 0000 0000 0007
    k4: 0000 0000 000
Want ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 0002
    k3: 0000 0000 0000 0006
    k2: 0000 0000 0000 000E
    k1: 0000 0000
Got  ________________________________________________________________________________
0 0002
    k3: 0000 0000 0000 0006
    k2: 0000 0000 0000 000E
    k1: 0000 0000

Debug

The debug keyword controls how much output is printed after each assemble and run.

debug => 0

produces no output unless the eq keyword was specified and the actual output fails to match the expected output. If such a test fails we Carp::confess.

debug => 1

shows all the output produces and conducts the test specified by the eq is present. If the test fails we Carp::confess.

debug => 2

shows all the output produces and conducts the test specified by the eq is present. If the test fails we continue rather than calling Carp::confess.

Description

Generate X86 assembler code using Perl as a macro pre-processor.

Version "20210528".

The following sections describe the methods in each functional area of this module. For an alphabetic listing of all methods by name see Index.

Data

Layout data

SetLabel($l)

Set a label in the code section

   Parameter  Description
1  $l         Label

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;

  SetLabel $l;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

Ds(@d)

Layout bytes in memory and return their label

   Parameter  Description
1  @d         Data to be laid out

Example:

my $q = Rs('a'..'z');

Mov rax, Ds('0'x64);                                                          # Output area  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

Vmovdqu32(xmm0, "[$q]");                                                      # Load
Vprolq   (xmm0,   xmm0, 32);                                                  # Rotate double words in quad words
Vmovdqu32("[rax]", xmm0);                                                     # Save
Mov rdi, 16;
PrintOutMemory;

ok Assemble =~ m(efghabcdmnopijkl)s;

Rs(@d)

Layout bytes in read only memory and return their label

   Parameter  Description
1  @d         Data to be laid out

Example:

Comment "Print a string from memory";
my $s = "Hello World";

Mov rax, Rs($s);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

Mov rdi, length $s;
PrintOutMemory;

ok Assemble =~ m(Hello World);


my $q = Rs('abababab');  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

Mov(rax, 1);
Mov(rbx, 2);
Mov(rcx, 3);
Mov(rdx, 4);
Mov(r8,  5);
Lea r9,  "[rax+rbx]";
PrintOutRegistersInHex;

my $r = Assemble;
ok $r =~ m( r8: 0000 0000 0000 0005.* r9: 0000 0000 0000 0003.*rax: 0000 0000 0000 0001)s;
ok $r =~ m(rbx: 0000 0000 0000 0002.*rcx: 0000 0000 0000 0003.*rdx: 0000 0000 0000 0004)s;

Db(@bytes)

Layout bytes in the data segment and return their label

   Parameter  Description
1  @bytes     Bytes to layout

Example:

my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;

my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


Vmovdqu8 xmm0, "[$s]";
Vmovdqu8 xmm1, "[$t]";
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;
Sub rsp, 16;

Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
Mov rdi, 16;
Mov rsi, $s;
CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));
PrintOutMemoryInHex;

my $r = Assemble;
ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

Dw(@words)

Layout words in the data segment and return their label

   Parameter  Description
1  @words     Words to layout

Example:

my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;

my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


Vmovdqu8 xmm0, "[$s]";
Vmovdqu8 xmm1, "[$t]";
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;
Sub rsp, 16;

Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
Mov rdi, 16;
Mov rsi, $s;
CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));
PrintOutMemoryInHex;

my $r = Assemble;
ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

Dd(@dwords)

Layout double words in the data segment and return their label

   Parameter  Description
1  @dwords    Double words to layout

Example:

my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;

my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


Vmovdqu8 xmm0, "[$s]";
Vmovdqu8 xmm1, "[$t]";
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;
Sub rsp, 16;

Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
Mov rdi, 16;
Mov rsi, $s;
CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));
PrintOutMemoryInHex;

my $r = Assemble;
ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

Dq(@qwords)

Layout quad words in the data segment and return their label

   Parameter  Description
1  @qwords    Quad words to layout

Example:

my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;

my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


Vmovdqu8 xmm0, "[$s]";
Vmovdqu8 xmm1, "[$t]";
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;
Sub rsp, 16;

Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
Mov rdi, 16;
Mov rsi, $s;
CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));
PrintOutMemoryInHex;

my $r = Assemble;
ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

Rb(@bytes)

Layout bytes in the data segment and return their label

   Parameter  Description
1  @bytes     Bytes to layout

Example:

my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;

Vmovdqu8 xmm0, "[$s]";
Vmovdqu8 xmm1, "[$t]";
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;
Sub rsp, 16;

Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
Mov rdi, 16;
Mov rsi, $s;
CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));
PrintOutMemoryInHex;

my $r = Assemble;
ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

Rw(@words)

Layout words in the data segment and return their label

   Parameter  Description
1  @words     Words to layout

Example:

my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;

Vmovdqu8 xmm0, "[$s]";
Vmovdqu8 xmm1, "[$t]";
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;
Sub rsp, 16;

Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
Mov rdi, 16;
Mov rsi, $s;
CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));
PrintOutMemoryInHex;

my $r = Assemble;
ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

Rd(@dwords)

Layout double words in the data segment and return their label

   Parameter  Description
1  @dwords    Double words to layout

Example:

my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;

Vmovdqu8 xmm0, "[$s]";
Vmovdqu8 xmm1, "[$t]";
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;
Sub rsp, 16;

Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
Mov rdi, 16;
Mov rsi, $s;
CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));
PrintOutMemoryInHex;

my $r = Assemble;
ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

Rq(@qwords)

Layout quad words in the data segment and return their label

   Parameter  Description
1  @qwords    Quad words to layout

Example:

my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;

Vmovdqu8 xmm0, "[$s]";
Vmovdqu8 xmm1, "[$t]";
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;
Sub rsp, 16;

Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
Mov rdi, 16;
Mov rsi, $s;
CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));
PrintOutMemoryInHex;

my $r = Assemble;
ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

Float32($float)

32 bit float

   Parameter  Description
1  $float     Float

Float64($float)

64 bit float

   Parameter  Description
1  $float     Float

Registers

Operations on registers

Save and Restore

Saving and restoring registers via the stack

SaveFirstFour(@keep)

Save the first 4 parameter registers making any parameter registers read only

   Parameter  Description
1  @keep      Registers to mark as read only

Example:

  Mov rax, 1;
  Mov rdi, 1;

  SaveFirstFour;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;


  SaveFirstFour;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;


  SaveFirstFour;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

RestoreFirstFour()

Restore the first 4 parameter registers

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;

  RestoreFirstFour;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

RestoreFirstFourExceptRax()

Restore the first 4 parameter registers except rax so it can return its value

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;

  RestoreFirstFourExceptRax;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

RestoreFirstFourExceptRaxAndRdi()

Restore the first 4 parameter registers except rax and rdi so we can return a pair of values

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  RestoreFirstFourExceptRaxAndRdi;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

SaveFirstSeven()

Save the first 7 parameter registers

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;

  SaveFirstSeven;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;

  SaveFirstSeven;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;

  SaveFirstSeven;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

RestoreFirstSeven()

Restore the first 7 parameter registers

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;

  RestoreFirstSeven;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

RestoreFirstSevenExceptRax()

Restore the first 7 parameter registers except rax which is being used to return the result

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;

  RestoreFirstSevenExceptRax;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

RestoreFirstSevenExceptRaxAndRdi()

Restore the first 7 parameter registers except rax and rdi which are being used to return the results

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;

  RestoreFirstSevenExceptRaxAndRdi;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

ReorderSyscallRegisters(@registers)

Map the list of registers provided to the 64 bit system call sequence

   Parameter   Description
1  @registers  Registers

Example:

Mov rax, 1;  Mov rdi, 2;  Mov rsi,  3;  Mov rdx,  4;
Mov r8,  8;  Mov r9,  9;  Mov r10, 10;  Mov r11, 11;


ReorderSyscallRegisters   r8,r9;                                              # Reorder the registers for syscall  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

PrintOutRegisterInHex rax;
PrintOutRegisterInHex rdi;

UnReorderSyscallRegisters r8,r9;                                              # Unreorder the registers to recover their original values
PrintOutRegisterInHex rax;
PrintOutRegisterInHex rdi;

ok Assemble =~ m(rax:.*08.*rdi:.*9.*rax:.*1.*rdi:.*2.*)s;

UnReorderSyscallRegisters(@registers)

Recover the initial values in registers that were reordered

   Parameter   Description
1  @registers  Registers

Example:

Mov rax, 1;  Mov rdi, 2;  Mov rsi,  3;  Mov rdx,  4;
Mov r8,  8;  Mov r9,  9;  Mov r10, 10;  Mov r11, 11;

ReorderSyscallRegisters   r8,r9;                                              # Reorder the registers for syscall
PrintOutRegisterInHex rax;
PrintOutRegisterInHex rdi;


UnReorderSyscallRegisters r8,r9;                                              # Unreorder the registers to recover their original values  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

PrintOutRegisterInHex rax;
PrintOutRegisterInHex rdi;

ok Assemble =~ m(rax:.*08.*rdi:.*9.*rax:.*1.*rdi:.*2.*)s;

ReorderXmmRegisters(@registers) = map {"xmm$_"} @_;)

Map the list of xmm registers provided to 0-31

   Parameter                        Description
1  @registers) = map {"xmm$_"} @_;  Registers

Example:

  my $t = GenTree(2,2);                                                         # Tree description
  $t->node->();                                                                 # Root
  Movdqa xmm1, xmm0;                                                            # Root is in xmm1

  if (1)                                                                        # New left node
   {$t->node->();                                                               # Node in xmm0
    Movdqa xmm2, xmm0;                                                          # Left is in xmm2

    cxr {$t->insertLeft->()} 1,2;                                               # Insert left under root
    cxr {$t->dump->("Left")} 2;                                                 # Left node after insertion
   }

  if (1)                                                                        # New right node in xmm0
   {$t->node->();
    Movdqa xmm3, xmm0;                                                          # Right is in xmm3

    cxr {$t->insertRight->()} 1,3;                                              # Insert left under root
    cxr {$t->dump->("Right")} 3;                                                # Right node after insertion
   }

  cxr
   {$t->dump->("Root");                                                         # Root node after insertions
    $t->isRoot->();
    IfNz {PrintOutStringNL "root"} sub {PrintOutStringNL "NOT root"};
   } 1;

  PushRR xmm0;                                                                  # Dump underlying  byte string
  PopRR rdi, rax;
  $t->byteString->dump;

  Exit;                                                                         # Return to operating system

  is_deeply Assemble, <<END;                                                    # Test tree so produced
Left
ArenaTreeNode at: 0000 0000 0000 00B0
   up: 0000 0000 0000 0010
 left: 0000 0000 0000 0000
right: 0000 0000 0000 0000
Right
ArenaTreeNode at: 0000 0000 0000 0150
   up: 0000 0000 0000 0010
 left: 0000 0000 0000 0000
right: 0000 0000 0000 0000
Root
ArenaTreeNode at: 0000 0000 0000 0010
   up: 0000 0000 0000 0000
 left: 0000 0000 0000 00B0
right: 0000 0000 0000 0150
root
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 01E0
END

UnReorderXmmRegisters(@registers)

Recover the initial values in the xmm registers that were reordered

   Parameter   Description
1  @registers  Registers

Example:

  my $t = GenTree(2,2);                                                         # Tree description
  $t->node->();                                                                 # Root
  Movdqa xmm1, xmm0;                                                            # Root is in xmm1

  if (1)                                                                        # New left node
   {$t->node->();                                                               # Node in xmm0
    Movdqa xmm2, xmm0;                                                          # Left is in xmm2

    cxr {$t->insertLeft->()} 1,2;                                               # Insert left under root
    cxr {$t->dump->("Left")} 2;                                                 # Left node after insertion
   }

  if (1)                                                                        # New right node in xmm0
   {$t->node->();
    Movdqa xmm3, xmm0;                                                          # Right is in xmm3

    cxr {$t->insertRight->()} 1,3;                                              # Insert left under root
    cxr {$t->dump->("Right")} 3;                                                # Right node after insertion
   }

  cxr
   {$t->dump->("Root");                                                         # Root node after insertions
    $t->isRoot->();
    IfNz {PrintOutStringNL "root"} sub {PrintOutStringNL "NOT root"};
   } 1;

  PushRR xmm0;                                                                  # Dump underlying  byte string
  PopRR rdi, rax;
  $t->byteString->dump;

  Exit;                                                                         # Return to operating system

  is_deeply Assemble, <<END;                                                    # Test tree so produced
Left
ArenaTreeNode at: 0000 0000 0000 00B0
   up: 0000 0000 0000 0010
 left: 0000 0000 0000 0000
right: 0000 0000 0000 0000
Right
ArenaTreeNode at: 0000 0000 0000 0150
   up: 0000 0000 0000 0010
 left: 0000 0000 0000 0000
right: 0000 0000 0000 0000
Root
ArenaTreeNode at: 0000 0000 0000 0010
   up: 0000 0000 0000 0000
 left: 0000 0000 0000 00B0
right: 0000 0000 0000 0150
root
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 01E0
END

RegisterSize($r)

Return the size of a register

   Parameter  Description
1  $r         Register

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END


  ok 8 == RegisterSize rax;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

ClearRegisters(@registers)

Clear registers by setting them to zero

   Parameter   Description
1  @registers  Registers

Example:

Mov rax,1;
Kmovq k0,  rax;
Kaddb k0,  k0, k0;
Kaddb k0,  k0, k0;
Kaddb k0,  k0, k0;
Kmovq rax, k0;
PushR k0;

ClearRegisters k0;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

Kmovq k1, k0;
PopR  k0;
PrintOutRegisterInHex k0;
PrintOutRegisterInHex k1;

ok Assemble =~ m(k0: 0000 0000 0000 0008.*k1: 0000 0000 0000 0000)s;

SetRegisterToMinusOne($register)

Set the specified register to -1

   Parameter  Description
1  $register  Register to set

Example:

SetRegisterToMinusOne rax;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

PrintOutRegisterInHex rax;

ok Assemble =~ m(rax: FFFF FFFF FFFF FFFF);

SetMaskRegister($mask, $start, $length)

Set the mask register to ones starting at the specified position for the specified length and zeroes elsewhere

   Parameter  Description
1  $mask      Mask register to set
2  $start     Register containing start position or 0 for position 0
3  $length    Register containing end position

Example:

  Mov rax, 8;
  Mov rsi, -1;

  Inc rsi; SetMaskRegister(k0, rax, rsi); PrintOutRegisterInHex k0;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Inc rsi; SetMaskRegister(k1, rax, rsi); PrintOutRegisterInHex k1;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Inc rsi; SetMaskRegister(k2, rax, rsi); PrintOutRegisterInHex k2;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Inc rsi; SetMaskRegister(k3, rax, rsi); PrintOutRegisterInHex k3;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Inc rsi; SetMaskRegister(k4, rax, rsi); PrintOutRegisterInHex k4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Inc rsi; SetMaskRegister(k5, rax, rsi); PrintOutRegisterInHex k5;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Inc rsi; SetMaskRegister(k6, rax, rsi); PrintOutRegisterInHex k6;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Inc rsi; SetMaskRegister(k7, rax, rsi); PrintOutRegisterInHex k7;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  is_deeply Assemble, <<END;
    k0: 0000 0000 0000 0000
    k1: 0000 0000 0000 0100
    k2: 0000 0000 0000 0300
    k3: 0000 0000 0000 0700
    k4: 0000 0000 0000 0F00
    k5: 0000 0000 0000 1F00
    k6: 0000 0000 0000 3F00
    k7: 0000 0000 0000 7F00
END

SetZF()

Set the zero flag

Example:

SetZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

PrintOutZF;
ClearZF;
PrintOutZF;

SetZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

PrintOutZF;

SetZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

PrintOutZF;
ClearZF;
PrintOutZF;

ok Assemble =~ m(ZF=1.*ZF=0.*ZF=1.*ZF=1.*ZF=0)s;

ClearZF()

Clear the zero flag

Example:

SetZF;
PrintOutZF;

ClearZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

PrintOutZF;
SetZF;
PrintOutZF;
SetZF;
PrintOutZF;

ClearZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

PrintOutZF;

ok Assemble =~ m(ZF=1.*ZF=0.*ZF=1.*ZF=1.*ZF=0)s;

Tracking

Track the use of registers so that we do not accidently use unset registers or write into registers that are already in use.

Keep(@target)

Mark free registers so that they are not updated until we Free them or complain if the register is already in use.

   Parameter  Description
1  @target    Registers to keep

KeepSet($target)

Confirm that the specified registers are in use

   Parameter  Description
1  $target    Registers to keep

KeepPush(@target)

Push the current status of the specified registers and then mark them as free

   Parameter  Description
1  @target    Registers to keep

KeepPop(@target)

Reset the status of the specified registers to the status quo ante the last push

   Parameter  Description
1  @target    Registers to keep

KeepReturn(@target)

Pop the specified register and mark it as in use to effect a subroutine return with this register.

   Parameter  Description
1  @target    Registers to return

KeepFree(@target)

Free registers so that they can be reused

   Parameter  Description
1  @target    Registers to free

Arithmetic

Arithmetic operations on registers

Copy($target, $source)

Copy the source to the target register

   Parameter  Description
1  $target    Target register
2  $source    Source expression

Example:

  my $s = Rb(13, 1..13);
  my $t = Rb(1..64);
  my $source = rax;                                                             # Address to load from
  my $start  = rsi;                                                             # Start position in the zmm register
  my $length = rdi;                                                             # Length of copy


  Copy $source, $s;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  LoadShortStringFromMemoryToZmm 0, $s;                                         # Load a sample string
  KeepFree $source;
  PrintOutRegisterInHex xmm0;


  LoadZmmFromMemory 0, Increment(GetLengthOfShortString($start, 0)), Copy($length, 1), Copy($source, $t);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex xmm0;

  LoadZmmFromMemory 0, $start, $length, $source;
  PrintOutRegisterInHex xmm0;

  KeepFree $length;

  LoadZmmFromMemory 0, $start, Minus($length, Copy(r13, 56), $start), $source;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  SetLengthOfShortString 0, sil;                                                # Set current length of zmm0
  PrintOutRegisterInHex xmm0, zmm0;

  is_deeply Assemble, <<END;
  xmm0: 0000 0D0C 0B0A 0908   0706 0504 0302 010D
  xmm0: 0001 0D0C 0B0A 0908   0706 0504 0302 010D
  xmm0: 0201 0D0C 0B0A 0908   0706 0504 0302 010D
  xmm0: 0201 0D0C 0B0A 0908   0706 0504 0302 0138
  zmm0: 0000 0000 0000 0000   2A29 2827 2625 2423   2221 201F 1E1D 1C1B   1A19 1817 1615 1413   1211 100F 0E0D 0C0B   0A09 0807 0605 0403   0201 0D0C 0B0A 0908   0706 0504 0302 0138
END

MaximumOfTwoRegisters($result, $first, $second)

Return in the specified register the value in the second register if it is greater than the value in the first register

   Parameter  Description
1  $result    Result register
2  $first     First register
3  $second    Second register

Example:

  Mov rax, 1;
  Mov rdi, 2;

  PrintOutRegisterInHex MaximumOfTwoRegisters r15, rax, rdi;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex MinimumOfTwoRegisters r14, rax, rdi;

  is_deeply Assemble, <<END;
   r15: 0000 0000 0000 0002
   r14: 0000 0000 0000 0001
END

MinimumOfTwoRegisters($result, $first, $second)

Return in the specified register the value in the second register if it is less than the value in the first register

   Parameter  Description
1  $result    Result register
2  $first     First register
3  $second    Second register

Example:

  Mov rax, 1;
  Mov rdi, 2;
  PrintOutRegisterInHex MaximumOfTwoRegisters r15, rax, rdi;

  PrintOutRegisterInHex MinimumOfTwoRegisters r14, rax, rdi;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  is_deeply Assemble, <<END;
   r15: 0000 0000 0000 0002
   r14: 0000 0000 0000 0001
END

Increment($target, $amount)

Increment the specified register

   Parameter  Description
1  $target    Target register
2  $amount    Optional amount if not 1

Decrement($target, $amount)

Decrement the specified register

   Parameter  Description
1  $target    Target register
2  $amount    Optional amount if not 1

Plus($target, @source)

Add the last operands and place the result in the first operand

   Parameter  Description
1  $target    Target register
2  @source    Source registers

Example:

  Copy r15, 2;
  Copy r14, 3;
  KeepFree r15;

  Plus(r15, r15, r14);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex r15;
  Copy r13, 4;
  Minus(r12, r15, r13);
  PrintOutRegisterInHex r12;

  is_deeply Assemble, <<END;
   r15: 0000 0000 0000 0005
   r12: 0000 0000 0000 0001
END

Minus($target, $s1, $s2)

Subtract the third operand from the second operand and place the result in the first operand

   Parameter  Description
1  $target    Target register
2  $s1        Register to subtract from
3  $s2        Register to subtract

Example:

  Copy r15, 2;
  Copy r14, 3;
  KeepFree r15;
  Plus(r15, r15, r14);
  PrintOutRegisterInHex r15;
  Copy r13, 4;

  Minus(r12, r15, r13);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex r12;

  is_deeply Assemble, <<END;
   r15: 0000 0000 0000 0005
   r12: 0000 0000 0000 0001
END

Zmm

Operations on zmm registers

InsertIntoXyz($reg, $unit, $pos)

Shift and insert the specified word, double, quad from rax or the contents of xmm0 into the specified xyz register at the specified position shifting data above it to the left towards higher order bytes.

   Parameter  Description
1  $reg       Register to insert into
2  $unit      Width of insert
3  $pos       Position of insert in units from least significant byte starting at 0

Example:

my $s    = Rb 0..63;
Vmovdqu8 xmm0,"[$s]";                                                         # Number each byte
Vmovdqu8 ymm1,"[$s]";
Vmovdqu8 zmm2,"[$s]";
Vmovdqu8 zmm3,"[$s]";

SetRegisterToMinusOne rax;                                                    # Insert some ones

InsertIntoXyz xmm0, 2, 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


InsertIntoXyz ymm1, 4, 5;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


InsertIntoXyz zmm2, 8, 6;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


PrintOutRegisterInHex xmm0;                                                   # Print the insertions
PrintOutRegisterInHex ymm1;
PrintOutRegisterInHex zmm2;

ClearRegisters xmm0;                                                          # Insert some zeroes

InsertIntoXyz zmm3, 16, 2;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

PrintOutRegisterInHex zmm3;

my $r = Assemble;
ok $r =~ m(xmm0: 0D0C 0B0A 0908 FFFF   0706 0504 0302 0100);
ok $r =~ m(ymm1: 1B1A 1918 1716 1514   FFFF FFFF 1312 1110   0F0E 0D0C 0B0A 0908   0706 0504 0302 0100);
ok $r =~ m(zmm2: 3736 3534 3332 3130   FFFF FFFF FFFF FFFF   2F2E 2D2C 2B2A 2928   2726 2524 2322 2120   1F1E 1D1C 1B1A 1918   1716 1514 1312 1110   0F0E 0D0C 0B0A 0908   0706 0504 0302 0100);
ok $r =~ m(zmm3: 2F2E 2D2C 2B2A 2928   2726 2524 2322 2120   0000 0000 0000 0000   0000 0000 0000 0000   1F1E 1D1C 1B1A 1918   1716 1514 1312 1110   0F0E 0D0C 0B0A 0908   0706 0504 0302 0100);

LoadTargetZmmFromSourceZmm($target, $targetOffset, $source, $sourceOffset, $length)

Load bytes into the numbered target zmm register at a register specified offset with source bytes from a numbered source zmm register at a specified register offset for a specified register length.

   Parameter      Description
1  $target        Number of zmm register to load
2  $targetOffset  Register containing start or 0 if from the start
3  $source        Numbered source zmm register
4  $sourceOffset  Register containing length
5  $length        Optional offset from stack top

Example:

  my $s = Rb(17, 1..17);
  LoadShortStringFromMemoryToZmm 0, $s;                                         # Load a sample string
  Keep zmm0;
  PrintOutRegisterInHex xmm0;

  LoadTargetZmmFromSourceZmm 1, Copy(rdi, 3), 0, Copy(rdx, 8), Copy(rsi, 2);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex xmm1;
  KeepFree rdi;


  LoadTargetZmmFromSourceZmm 2, Copy(rdi, 4), 0, rdx, rsi;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex xmm2;

  Copy(zmm3, zmm0);
  PrintOutRegisterInHex xmm3;

  ClearRegisters zmm4;
  Lea rax, "[$s+4]";
  LoadZmmFromMemory 4, rdx, rsi, rax;
  Sub rax, 4;
  PrintOutRegisterInHex xmm4;

  is_deeply Assemble, <<END;
  xmm0: 0F0E 0D0C 0B0A 0908   0706 0504 0302 0111
  xmm1: 0000 0000 0000 0000   0000 0009 0800 0000
  xmm2: 0000 0000 0000 0000   0000 0908 0000 0000
  xmm3: 0F0E 0D0C 0B0A 0908   0706 0504 0302 0111
  xmm4: 0000 0000 0000 0504   0000 0000 0000 0000
END

  my $s = Rb(13, 1..13);
  my $t = Rb(1..64);
  my $source = rax;                                                             # Address to load from
  my $start  = rsi;                                                             # Start position in the zmm register
  my $length = rdi;                                                             # Length of copy

  Copy $source, $s;
  LoadShortStringFromMemoryToZmm 0, $s;                                         # Load a sample string
  KeepFree $source;
  PrintOutRegisterInHex xmm0;

  LoadZmmFromMemory 0, Increment(GetLengthOfShortString($start, 0)), Copy($length, 1), Copy($source, $t);
  PrintOutRegisterInHex xmm0;

  LoadZmmFromMemory 0, $start, $length, $source;
  PrintOutRegisterInHex xmm0;

  KeepFree $length;
  LoadZmmFromMemory 0, $start, Minus($length, Copy(r13, 56), $start), $source;
  SetLengthOfShortString 0, sil;                                                # Set current length of zmm0
  PrintOutRegisterInHex xmm0, zmm0;

  is_deeply Assemble, <<END;
  xmm0: 0000 0D0C 0B0A 0908   0706 0504 0302 010D
  xmm0: 0001 0D0C 0B0A 0908   0706 0504 0302 010D
  xmm0: 0201 0D0C 0B0A 0908   0706 0504 0302 010D
  xmm0: 0201 0D0C 0B0A 0908   0706 0504 0302 0138
  zmm0: 0000 0000 0000 0000   2A29 2827 2625 2423   2221 201F 1E1D 1C1B   1A19 1817 1615 1413   1211 100F 0E0D 0C0B   0A09 0807 0605 0403   0201 0D0C 0B0A 0908   0706 0504 0302 0138
END

LoadZmmFromMemory($target, $targetOffset, $length, $source)

Load bytes into the numbered target zmm register at a register specified offset with source bytes from memory addressed by a specified register for a specified register length from memory addressed by a specified register.

   Parameter      Description
1  $target        Number of zmm register to load
2  $targetOffset  Register containing start or 0 if from the start
3  $length        Register containing length
4  $source        Register addressing memory to load from

Structured Programming

Structured programming constructs

If($jump, $then, $else)

If

   Parameter  Description
1  $jump      Jump op code of variable
2  $then      Then - required
3  $else      Else - optional

Example:

Mov rax, 0;
Test rax,rax;
IfNz
 {PrintOutRegisterInHex rax;
 } sub
 {PrintOutRegisterInHex rbx;
 };
KeepFree rax;
Mov rax, 1;
Test rax,rax;
IfNz
 {PrintOutRegisterInHex rcx;
 } sub
 {PrintOutRegisterInHex rdx;
 };

ok Assemble =~ m(rbx.*rcx)s;

IfEq($then, $else)

If equal execute the then body else the else body

   Parameter  Description
1  $then      Then - required
2  $else      Else - optional

IfNe($then, $else)

If not equal execute the then body else the else body

   Parameter  Description
1  $then      Then - required
2  $else      Else - optional

IfNz($then, $else)

If not zero execute the then body else the else body

   Parameter  Description
1  $then      Then - required
2  $else      Else - optional

IfLt($then, $else)

If less than execute the then body else the else body

   Parameter  Description
1  $then      Then - required
2  $else      Else - optional

IfLe($then, $else)

If less than or equal execute the then body else the else body

   Parameter  Description
1  $then      Then - required
2  $else      Else - optional

IfGt($then, $else)

If greater than execute the then body else the else body

   Parameter  Description
1  $then      Then - required
2  $else      Else - optional

IfGe($then, $else)

If greater than or equal execute the then body else the else body

   Parameter  Description
1  $then      Then - required
2  $else      Else - optional

For($body, $register, $limit, $increment)

For - iterate the body as long as register is less than limit incrementing by increment each time

   Parameter   Description
1  $body       Body
2  $register   Register
3  $limit      Limit on loop
4  $increment  Increment on each iteration

Example:

For  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

 {PrintOutRegisterInHex rax
 } rax, 16, 1;

my $r = Assemble;
ok $r =~ m(( 0000){3} 0000)i;
ok $r =~ m(( 0000){3} 000F)i;

ForIn($full, $last, $register, $limit, $increment)

For - iterate the full body as long as register plus increment is less than than limit incrementing by increment each time then increment the last body for the last non full block.

   Parameter   Description
1  $full       Body for full block
2  $last       Body for last block
3  $register   Register
4  $limit      Limit on loop
5  $increment  Increment on each iteration

ForEver($body)

Iterate for ever

   Parameter  Description
1  $body      Body to iterate

Macro($body, %options)

Create a sub with optional parameters name=> the name of the subroutine so it can be reused rather than regenerated, comment=> a comment describing the sub

   Parameter  Description
1  $body      Body
2  %options   Options.

Subroutine($body, %options)

Create a subroutine that can be called in assembler code

   Parameter  Description
1  $body      Body
2  %options   Options.

Nasm::X86::Sub::call($sub, @parameters)

Call a sub passing it some parameters

   Parameter    Description
1  $sub         Subroutine descriptor
2  @parameters  Parameter variables

cr($body, @registers)

Call a subroutine with a reordering of the registers.

   Parameter   Description
1  $body       Code to execute with reordered registers
2  @registers  Registers to reorder

cxr($body, @registers)

Call a subroutine with a reordering of the xmm registers.

   Parameter   Description
1  $body       Code to execute with reordered registers
2  @registers  Registers to reorder

Example:

  my $t = GenTree(2,2);                                                         # Tree description
  $t->node->();                                                                 # Root
  Movdqa xmm1, xmm0;                                                            # Root is in xmm1

  if (1)                                                                        # New left node
   {$t->node->();                                                               # Node in xmm0
    Movdqa xmm2, xmm0;                                                          # Left is in xmm2


    cxr {$t->insertLeft->()} 1,2;                                               # Insert left under root  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


    cxr {$t->dump->("Left")} 2;                                                 # Left node after insertion  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

   }

  if (1)                                                                        # New right node in xmm0
   {$t->node->();
    Movdqa xmm3, xmm0;                                                          # Right is in xmm3


    cxr {$t->insertRight->()} 1,3;                                              # Insert left under root  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


    cxr {$t->dump->("Right")} 3;                                                # Right node after insertion  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

   }


  cxr  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

   {$t->dump->("Root");                                                         # Root node after insertions
    $t->isRoot->();
    IfNz {PrintOutStringNL "root"} sub {PrintOutStringNL "NOT root"};
   } 1;

  PushRR xmm0;                                                                  # Dump underlying  byte string
  PopRR rdi, rax;
  $t->byteString->dump;

  Exit;                                                                         # Return to operating system

  is_deeply Assemble, <<END;                                                    # Test tree so produced
Left
ArenaTreeNode at: 0000 0000 0000 00B0
   up: 0000 0000 0000 0010
 left: 0000 0000 0000 0000
right: 0000 0000 0000 0000
Right
ArenaTreeNode at: 0000 0000 0000 0150
   up: 0000 0000 0000 0010
 left: 0000 0000 0000 0000
right: 0000 0000 0000 0000
Root
ArenaTreeNode at: 0000 0000 0000 0010
   up: 0000 0000 0000 0000
 left: 0000 0000 0000 00B0
right: 0000 0000 0000 0150
root
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 01E0
END

Comment(@comment)

Insert a comment into the assembly code

   Parameter  Description
1  @comment   Text of comment

Example:

Comment "Print a string from memory";  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

my $s = "Hello World";
Mov rax, Rs($s);
Mov rdi, length $s;
PrintOutMemory;

ok Assemble =~ m(Hello World);

DComment(@comment)

Insert a comment into the data segment

   Parameter  Description
1  @comment   Text of comment

RComment(@comment)

Insert a comment into the read only data segment

   Parameter  Description
1  @comment   Text of comment

Print

Print

PrintNL($channel)

Print a new line to stdout or stderr

   Parameter  Description
1  $channel   Channel to write on

PrintErrNL()

Print a new line to stderr

PrintOutNL()

Print a new line to stderr

Example:

my $q = Rs('abababab');
Mov(rax, "[$q]");
PrintOutString "rax: ";
PrintOutRaxInHex;

PrintOutNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

Xor rax, rax;
PrintOutString "rax: ";
PrintOutRaxInHex;

PrintOutNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


ok Assemble =~ m(rax: 6261 6261 6261 6261.*rax: 0000 0000 0000 0000)s;

PrintString($channel, @string)

Print a constant string to the specified channel

   Parameter  Description
1  $channel   Channel
2  @string    Strings

PrintErrString(@string)

Print a constant string to stderr.

   Parameter  Description
1  @string    String

PrintOutString(@string)

Print a constant string to stdout.

   Parameter  Description
1  @string    String

PrintErrStringNL(@string)

Print a constant string followed by a new line to stderr

   Parameter  Description
1  @string    Strings

Example:

  PrintOutStringNL "Hello World";
  PrintOutStringNL "Hello
World";

  PrintErrStringNL "Hello World";  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  ok Assemble(debug => 0, eq => <<END);
Hello World
Hello
World
END

PrintOutStringNL(@string)

Print a constant string followed by a new line to stdout

   Parameter  Description
1  @string    Strings

Example:

  PrintOutStringNL "Hello World";  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  PrintOutStringNL "Hello
World";  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintErrStringNL "Hello World";

  ok Assemble(debug => 0, eq => <<END);
Hello World
Hello
World
END

  my $t = GenTree(2,2);                                                         # Tree description
  $t->node->();                                                                 # Root
  Movdqa xmm1, xmm0;                                                            # Root is in xmm1

  if (1)                                                                        # New left node
   {$t->node->();                                                               # Node in xmm0
    Movdqa xmm2, xmm0;                                                          # Left is in xmm2

    cxr {$t->insertLeft->()} 1,2;                                               # Insert left under root
    cxr {$t->dump->("Left")} 2;                                                 # Left node after insertion
   }

  if (1)                                                                        # New right node in xmm0
   {$t->node->();
    Movdqa xmm3, xmm0;                                                          # Right is in xmm3

    cxr {$t->insertRight->()} 1,3;                                              # Insert left under root
    cxr {$t->dump->("Right")} 3;                                                # Right node after insertion
   }

  cxr
   {$t->dump->("Root");                                                         # Root node after insertions
    $t->isRoot->();

    IfNz {PrintOutStringNL "root"} sub {PrintOutStringNL "NOT root"};  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

   } 1;

  PushRR xmm0;                                                                  # Dump underlying  byte string
  PopRR rdi, rax;
  $t->byteString->dump;

  Exit;                                                                         # Return to operating system

  is_deeply Assemble, <<END;                                                    # Test tree so produced
Left
ArenaTreeNode at: 0000 0000 0000 00B0
   up: 0000 0000 0000 0010
 left: 0000 0000 0000 0000
right: 0000 0000 0000 0000
Right
ArenaTreeNode at: 0000 0000 0000 0150
   up: 0000 0000 0000 0010
 left: 0000 0000 0000 0000
right: 0000 0000 0000 0000
Root
ArenaTreeNode at: 0000 0000 0000 0010
   up: 0000 0000 0000 0000
 left: 0000 0000 0000 00B0
right: 0000 0000 0000 0150
root
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 01E0
END

PrintRaxInHex($channel)

Write the content of register rax in hexadecimal in big endian notation to the specified channel

   Parameter  Description
1  $channel   Channel

PrintErrRaxInHex()

Write the content of register rax in hexadecimal in big endian notation to stderr

PrintOutRaxInHex()

Write the content of register rax in hexadecimal in big endian notation to stderr

Example:

my $q = Rs('abababab');
Mov(rax, "[$q]");
PrintOutString "rax: ";

PrintOutRaxInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

PrintOutNL;
Xor rax, rax;
PrintOutString "rax: ";

PrintOutRaxInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

PrintOutNL;

ok Assemble =~ m(rax: 6261 6261 6261 6261.*rax: 0000 0000 0000 0000)s;

PrintOutRaxInReverseInHex()

Write the content of register rax to stderr in hexadecimal in little endian notation

Example:

  Mov rax, 0x07654321;
  Shl rax, 32;
  Or  rax, 0x07654321;
  PushR rax;

  PrintOutRaxInHex;
  PrintOutNL;

  PrintOutRaxInReverseInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutNL;
  KeepFree rax;

  Mov rax, rsp;
  Mov rdi, 8;
  PrintOutMemoryInHex;
  PrintOutNL;
  PopR rax;
  KeepFree rax, rdi;

  Mov rax, 4096;
  PushR rax;
  Mov rax, rsp;
  Mov rdi, 8;
  PrintOutMemoryInHex;
  PrintOutNL;
  PopR rax;

  is_deeply Assemble, <<END;
0765 4321 0765 4321
2143 6507 2143 6507
2143 6507 2143 6507
0010 0000 0000 0000
END

PrintRegisterInHex($channel, @r)

Print the named registers as hex strings

   Parameter  Description
1  $channel   Channel to print on
2  @r         Names of the registers to print

PrintErrRegisterInHex(@r)

Print the named registers as hex strings on stderr

   Parameter  Description
1  @r         Names of the registers to print

PrintOutRegisterInHex(@r)

Print the named registers as hex strings on stdout

   Parameter  Description
1  @r         Names of the registers to print

Example:

my $q = Rs(('a'..'p')x4);
Mov r8,"[$q]";

PrintOutRegisterInHex r8;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


ok Assemble =~ m(r8: 6867 6665 6463 6261)s;

PrintOutRegistersInHex()

Print the general purpose registers in hex

Example:

my $q = Rs('abababab');
Mov(rax, 1);
Mov(rbx, 2);
Mov(rcx, 3);
Mov(rdx, 4);
Mov(r8,  5);
Lea r9,  "[rax+rbx]";

PrintOutRegistersInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


my $r = Assemble;
ok $r =~ m( r8: 0000 0000 0000 0005.* r9: 0000 0000 0000 0003.*rax: 0000 0000 0000 0001)s;
ok $r =~ m(rbx: 0000 0000 0000 0002.*rcx: 0000 0000 0000 0003.*rdx: 0000 0000 0000 0004)s;

PrintOutZF()

Print the zero flag without disturbing it

Example:

SetZF;

PrintOutZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

ClearZF;

PrintOutZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

SetZF;

PrintOutZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

SetZF;

PrintOutZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

ClearZF;

PrintOutZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


ok Assemble =~ m(ZF=1.*ZF=0.*ZF=1.*ZF=1.*ZF=0)s;

Variables

Variable definitions and operations

Scopes

Each variable is contained in a scope in an effort to detect references to out of scope variables

Scope($name)

Create and stack a new scope and continue with it as the current scope

   Parameter  Description
1  $name      Scope name

Example:

if (1)

 {my $start = Scope(start);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $s1    = Scope(s1);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $s2    = Scope(s2);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  is_deeply $s2->depth, 2;
  is_deeply $s2->name,  q(s2);
  ScopeEnd;


  my $t1    = Scope(t1);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $t2    = Scope(t2);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  is_deeply $t1->depth, 2;
  is_deeply $t1->name,  q(t1);
  is_deeply $t2->depth, 3;
  is_deeply $t2->name,  q(t2);

  ok  $s1->currentlyVisible;
  ok !$s2->currentlyVisible;

  ok  $s1->contains($t2);
  ok !$s2->contains($t2);

  ScopeEnd;

  is_deeply $s1->depth, 1;
  is_deeply $s1->name,  q(s1);
  ScopeEnd;
 }

ScopeEnd()

End the current scope and continue with the containing parent scope

Example:

if (1)
 {my $start = Scope(start);
  my $s1    = Scope(s1);
  my $s2    = Scope(s2);
  is_deeply $s2->depth, 2;
  is_deeply $s2->name,  q(s2);

  ScopeEnd;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $t1    = Scope(t1);
  my $t2    = Scope(t2);
  is_deeply $t1->depth, 2;
  is_deeply $t1->name,  q(t1);
  is_deeply $t2->depth, 3;
  is_deeply $t2->name,  q(t2);

  ok  $s1->currentlyVisible;
  ok !$s2->currentlyVisible;

  ok  $s1->contains($t2);
  ok !$s2->contains($t2);


  ScopeEnd;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  is_deeply $s1->depth, 1;
  is_deeply $s1->name,  q(s1);

  ScopeEnd;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

 }

Nasm::X86::Scope::contains($parent, $child)

Check that the named parent scope contains the specified child scope. If no child scope is supplied we use the current scope to check that the parent scope is currently visible

   Parameter  Description
1  $parent    Parent scope
2  $child     Child scope

Nasm::X86::Scope::currentlyVisible($scope)

Check that the named parent scope is currently visible

   Parameter  Description
1  $scope     Scope to check for visibility

Definitions

Variable definitions

Variable($size, $name, $expr)

Create a new variable with the specified size and name initialized via an expression

   Parameter  Description
1  $size      Size as a power of 2
2  $name      Name of variable
3  $expr      Optional expression initializing variable

Vb($name, $expr)

Define a byte variable

   Parameter  Description
1  $name      Name of variable
2  $expr      Initializing expression

Vw($name, $expr)

Define a word variable

   Parameter  Description
1  $name      Name of variable
2  $expr      Initializing expression

Vd($name, $expr)

Define a double word variable

   Parameter  Description
1  $name      Name of variable
2  $expr      Initializing expression

Vq($name, $expr)

Define a quad variable

   Parameter  Description
1  $name      Name of variable
2  $expr      Initializing expression

Example:

  my $a = Vq(a, 3);   $a->print;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  my $c = $a +  2;    $c->print;
  my $d = $c -  $a;   $d->print;
  my $e = $d == 2;    $e->print;
  my $f = $d != 2;    $f->print;
  my $g = $a *  2;    $g->print;
  my $h = $g /  2;    $h->print;
  my $i = $a %  2;    $i->print;

  If ($a == 3, sub{PrintOutStringNL "a == 3"});

  is_deeply Assemble, <<END;
0300 0000 0000 0000
0500 0000 0000 0000
0200 0000 0000 0000
0100 0000 0000 0000
0000 0000 0000 0000
0600 0000 0000 0000
0300 0000 0000 0000
0100 0000 0000 0000
a == 3
END

VxyzInit($var, @expr)

Initialize an xyz register from general purpose registers

   Parameter  Description
1  $var       Variable
2  @expr      Initializing general purpose registers or undef

Vx($name, @expr)

Define an xmm variable

   Parameter  Description
1  $name      Name of variable
2  @expr      Initializing expression

Vy($name, @expr)

Define an ymm variable

   Parameter  Description
1  $name      Name of variable
2  @expr      Initializing expression

Vz($name, @expr)

Define an zmm variable

   Parameter  Description
1  $name      Name of variable
2  @expr      Initializing expression

Vr($name, $size)

Define a reference variable

   Parameter  Description
1  $name      Name of variable
2  $size      Variable being referenced

Operations

Variable operations

Nasm::X86::Variable::address($left, $offset)

Get the address of a variable with an optional offset

   Parameter  Description
1  $left      Left variable
2  $offset    Optional offset

Nasm::X86::Variable::copy($left, $right)

Copy one variable into another

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::copyRef($left, $right)

Copy one variable into an referenced variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::copyAddress($left, $right)

Copy a reference to a variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::equals($op, $left, $right)

Equals operator

   Parameter  Description
1  $op        Operator
2  $left      Left variable
3  $right     Right variable

Nasm::X86::Variable::assign($left, $op, $right)

Assign to the left hand side the value of the right hand side

   Parameter  Description
1  $left      Left variable
2  $op        Operator
3  $right     Right variable

Nasm::X86::Variable::plusAssign($left, $right)

Implement plus and assign

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::minusAssign($left, $right)

Implement minus and assign

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::arithmetic($op, $name, $left, $right)

Return a variable containing the result of an arithmetic operation on the left hand and right hand side variables

   Parameter  Description
1  $op        Operator
2  $name      Operator name
3  $left      Left variable
4  $right     Right variable

Nasm::X86::Variable::add($left, $right)

Add the right hand variable to the left hand variable and return the result as a new variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Example:

  my $a = Vq(a, 3);   $a->print;
  my $c = $a +  2;    $c->print;
  my $d = $c -  $a;   $d->print;
  my $e = $d == 2;    $e->print;
  my $f = $d != 2;    $f->print;
  my $g = $a *  2;    $g->print;
  my $h = $g /  2;    $h->print;
  my $i = $a %  2;    $i->print;

  If ($a == 3, sub{PrintOutStringNL "a == 3"});

  is_deeply Assemble, <<END;
0300 0000 0000 0000
0500 0000 0000 0000
0200 0000 0000 0000
0100 0000 0000 0000
0000 0000 0000 0000
0600 0000 0000 0000
0300 0000 0000 0000
0100 0000 0000 0000
a == 3
END

Nasm::X86::Variable::sub($left, $right)

Subtract the right hand variable from the left hand variable and return the result as a new variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::times($left, $right)

Multiply the left hand variable by the right hand variable and return the result as a new variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::division($op, $left, $right)

Return a variable containing the result or the remainder that occurs when the left hand side is divided by the right hand side

   Parameter  Description
1  $op        Operator
2  $left      Left variable
3  $right     Right variable

Nasm::X86::Variable::divide($left, $right)

Divide the left hand variable by the right hand variable and return the result as a new variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::mod($left, $right)

Divide the left hand variable by the right hand variable and return the remainder as a new variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::boolean($sub, $op, $left, $right)

Combine the left hand variable with the right hand variable via a boolean operator

   Parameter  Description
1  $sub       Operator
2  $op        Operator name
3  $left      Left variable
4  $right     Right variable

Nasm::X86::Variable::eq($left, $right)

Check whether the left hand variable is equal to the right hand variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::ne($left, $right)

Check whether the left hand variable is not equal to the right hand variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::ge($left, $right)

Check whether the left hand variable is greater than or equal to the right hand variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::gt($left, $right)

Check whether the left hand variable is greater than the right hand variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::le($left, $right)

Check whether the left hand variable is less than or equal to the right hand variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::lt($left, $right)

Check whether the left hand variable is less than the right hand variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::print($left)

Write the value of a variable on stdout

   Parameter  Description
1  $left      Left variable

Example:

  my $a = Vq(a, 3);   $a->print;
  my $c = $a +  2;    $c->print;
  my $d = $c -  $a;   $d->print;
  my $e = $d == 2;    $e->print;
  my $f = $d != 2;    $f->print;
  my $g = $a *  2;    $g->print;
  my $h = $g /  2;    $h->print;
  my $i = $a %  2;    $i->print;

  If ($a == 3, sub{PrintOutStringNL "a == 3"});

  is_deeply Assemble, <<END;
0300 0000 0000 0000
0500 0000 0000 0000
0200 0000 0000 0000
0100 0000 0000 0000
0000 0000 0000 0000
0600 0000 0000 0000
0300 0000 0000 0000
0100 0000 0000 0000
a == 3
END

  my $a = Vq(a, 3); $a->outNL;
  my $b = Vq(b, 2); $b->outNL;
  my $c = $a +  $b; $c->outNL;
  my $d = $c -  $a; $d->outNL;
  my $e = $d == $b; $e->outNL;
  my $f = $d != $b; $f->outNL;
  my $g = $a *  $b; $g->outNL;
  my $h = $g /  $b; $h->outNL;
  my $i = $a %  $b; $i->outNL;
  is_deeply Assemble, <<END;
a: 0000 0000 0000 0003
b: 0000 0000 0000 0002
(a add b): 0000 0000 0000 0005
((a add b) sub a): 0000 0000 0000 0002
(((a add b) sub a) eq b): 0000 0000 0000 0001
(((a add b) sub a) ne b): 0000 0000 0000 0000
(a times b): 0000 0000 0000 0006
((a times b) / b): 0000 0000 0000 0003
(a % b): 0000 0000 0000 0001
END

Nasm::X86::Variable::dump($left, $channel, $newLine, $title1, $title2)

Dump the value of a variable to the specified channel adding an optional title and new line if requested

   Parameter  Description
1  $left      Left variable
2  $channel   Channel
3  $newLine   New line required
4  $title1    Optional leading title
5  $title2    Optional trailing title

Example:

  my $a = Vq(a, 3); $a->outNL;
  my $b = Vq(b, 2); $b->outNL;
  my $c = $a +  $b; $c->outNL;
  my $d = $c -  $a; $d->outNL;
  my $e = $d == $b; $e->outNL;
  my $f = $d != $b; $f->outNL;
  my $g = $a *  $b; $g->outNL;
  my $h = $g /  $b; $h->outNL;
  my $i = $a %  $b; $i->outNL;
  is_deeply Assemble, <<END;
a: 0000 0000 0000 0003
b: 0000 0000 0000 0002
(a add b): 0000 0000 0000 0005
((a add b) sub a): 0000 0000 0000 0002
(((a add b) sub a) eq b): 0000 0000 0000 0001
(((a add b) sub a) ne b): 0000 0000 0000 0000
(a times b): 0000 0000 0000 0006
((a times b) / b): 0000 0000 0000 0003
(a % b): 0000 0000 0000 0001
END

Nasm::X86::Variable::err($left, $title1, $title2)

Dump the value of a variable on stderr

   Parameter  Description
1  $left      Left variable
2  $title1    Optional leading title
3  $title2    Optional trailing title

Nasm::X86::Variable::out($left, $title1, $title2)

Dump the value of a variable on stdout

   Parameter  Description
1  $left      Left variable
2  $title1    Optional leading title
3  $title2    Optional trailing title

Nasm::X86::Variable::errNL($left, $title1, $title2)

Dump the value of a variable on stderr and append a new line

   Parameter  Description
1  $left      Left variable
2  $title1    Optional leading title
3  $title2    Optional trailing title

Nasm::X86::Variable::outNL($left, $title1, $title2)

Dump the value of a variable on stdout and append a new line

   Parameter  Description
1  $left      Left variable
2  $title1    Optional leading title
3  $title2    Optional trailing title

Nasm::X86::Variable::debug($left)

Dump the value of a variable on stdout with an indication of where the dump came from

   Parameter  Description
1  $left      Left variable

Nasm::X86::Variable::isRef($variable)

Check whether the specified variable is a reference to another variable

   Parameter  Description
1  $variable  Variable

Nasm::X86::Variable::setReg($variable, $register, @registers)

Set the named registers from the content of the variable

   Parameter   Description
1  $variable   Variable
2  $register   Register to load
3  @registers  Optional further registers to load

Nasm::X86::Variable::getReg($variable, $register, @registers)

Load the variable from the named registers

   Parameter   Description
1  $variable   Variable
2  $register   Register to load
3  @registers  Optional further registers to load from

Nasm::X86::Variable::incDec($left, $op)

Increment or decrement a variable

   Parameter  Description
1  $left      Left variable operator
2  $op        Address of operator to perform inc or dec

Nasm::X86::Variable::inc($left)

Increment a variable

   Parameter  Description
1  $left      Variable

Nasm::X86::Variable::dec($left)

Decrement a variable

   Parameter  Description
1  $left      Variable

Nasm::X86::Variable::str($left)

The name of the variable

   Parameter  Description
1  $left      Variable

Nasm::X86::Variable::min($left, $right)

Minimum of two variables

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Example:

  my $a = Vq("a", 1);
  my $b = Vq("b", 2);
  my $c = $a->min($b);
  my $d = $a->max($b);
  $a->outNL;
  $b->outNL;
  $c->outNL;
  $d->outNL;

  is_deeply Assemble,<<END;
a: 0000 0000 0000 0001
b: 0000 0000 0000 0002
Minimum(a, b): 0000 0000 0000 0001
Maximum(a, b): 0000 0000 0000 0002
END

Nasm::X86::Variable::max($left, $right)

Maximum of two variables

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Example:

  my $a = Vq("a", 1);
  my $b = Vq("b", 2);
  my $c = $a->min($b);
  my $d = $a->max($b);
  $a->outNL;
  $b->outNL;
  $c->outNL;
  $d->outNL;

  is_deeply Assemble,<<END;
a: 0000 0000 0000 0001
b: 0000 0000 0000 0002
Minimum(a, b): 0000 0000 0000 0001
Maximum(a, b): 0000 0000 0000 0002
END

Nasm::X86::Variable::and($left, $right)

And two variables

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::or($left, $right)

Or two variables

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::setMask($start, $length, $mask)

Set the mask register to ones starting at the specified position for the specified length and zeroes elsewhere

   Parameter  Description
1  $start     Variable containing start of mask
2  $length    Variable containing length of mask
3  $mask      Mask register

Example:

  my $start  = Vq("Start",  7);
  my $length = Vq("Length", 3);
  $start->setMask($length, k7);
  PrintOutRegisterInHex k7;

  is_deeply Assemble, <<END;
    k7: 0000 0000 0000 0380
END

  my $z = Vq('zero', 0);
  my $o = Vq('one',  1);
  my $t = Vq('two',  2);
  $z->setMask($o,       k7); PrintOutRegisterInHex k7;
  $z->setMask($t,       k6); PrintOutRegisterInHex k6;
  $z->setMask($o+$t,    k5); PrintOutRegisterInHex k5;
  $o->setMask($o,       k4); PrintOutRegisterInHex k4;
  $o->setMask($t,       k3); PrintOutRegisterInHex k3;
  $o->setMask($o+$t,    k2); PrintOutRegisterInHex k2;

  $t->setMask($o,       k1); PrintOutRegisterInHex k1;
  $t->setMask($t,       k0); PrintOutRegisterInHex k0;


  ok Assemble(debug => 0, eq => <<END);
    k7: 0000 0000 0000 0001
    k6: 0000 0000 0000 0003
    k5: 0000 0000 0000 0007
    k4: 0000 0000 0000 0002
    k3: 0000 0000 0000 0006
    k2: 0000 0000 0000 000E
    k1: 0000 0000 0000 0004
    k0: 0000 0000 0000 000C
END

Nasm::X86::Variable::setZmm($source, $zmm, $offset, $length)

Load bytes from the memory addressed by specified source variable into the numbered zmm register at the offset in the specified offset moving the number of bytes in the specified variable

   Parameter  Description
1  $source    Variable containing the address of the source
2  $zmm       Number of zmm to load
3  $offset    Variable containing offset in zmm to move to
4  $length    Variable containing length of move

Example:

  my $s = Rb(0..128);
  my $source = Vq(Source, $s);

  if (1)                                                                        # First block
   {my $offset = Vq(Offset, 7);
    my $length = Vq(Length, 3);
    $source->setZmm(0, $offset, $length);
   }

  if (1)                                                                        # Second block
   {my $offset = Vq(Offset, 33);
    my $length = Vq(Length, 12);
    $source->setZmm(0, $offset, $length);
   }

  PrintOutRegisterInHex zmm0;

  is_deeply Assemble, <<END;
  zmm0: 0000 0000 0000 0000   0000 0000 0000 0000   0000 000B 0A09 0807   0605 0403 0201 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0201   0000 0000 0000 0000
END

  my $a = Vz a, Rb((map {"0x${_}0"} 0..9, 'a'..'f')x4);
  my $b = Vz b, Rb((map {"0x0${_}"} 0..9, 'a'..'f')x4);

   $a      ->loadZmm(0);                                                        # Show variable in zmm0
   $b      ->loadZmm(1);                                                        # Show variable in zmm1

  ($a + $b)->loadZmm(2);                                                        # Add bytes      and show in zmm2
  ($a - $b)->loadZmm(3);                                                        # Subtract bytes and show in zmm3

  PrintOutRegisterInHex "zmm$_" for 0..3;

  is_deeply Assemble, <<END;
  zmm0: F0E0 D0C0 B0A0 9080   7060 5040 3020 1000   F0E0 D0C0 B0A0 9080   7060 5040 3020 1000   F0E0 D0C0 B0A0 9080   7060 5040 3020 1000   F0E0 D0C0 B0A0 9080   7060 5040 3020 1000
  zmm1: 0F0E 0D0C 0B0A 0908   0706 0504 0302 0100   0F0E 0D0C 0B0A 0908   0706 0504 0302 0100   0F0E 0D0C 0B0A 0908   0706 0504 0302 0100   0F0E 0D0C 0B0A 0908   0706 0504 0302 0100
  zmm2: FFEE DDCC BBAA 9988   7766 5544 3322 1100   FFEE DDCC BBAA 9988   7766 5544 3322 1100   FFEE DDCC BBAA 9988   7766 5544 3322 1100   FFEE DDCC BBAA 9988   7766 5544 3322 1100
  zmm3: E1D2 C3B4 A596 8778   695A 4B3C 2D1E 0F00   E1D2 C3B4 A596 8778   695A 4B3C 2D1E 0F00   E1D2 C3B4 A596 8778   695A 4B3C 2D1E 0F00   E1D2 C3B4 A596 8778   695A 4B3C 2D1E 0F00
END

Nasm::X86::Variable::loadZmm($source, $zmm)

Load bytes from the memory addressed by the specified source variable into the numbered zmm register.

   Parameter  Description
1  $source    Variable containing the address of the source
2  $zmm       Number of zmm to get

Nasm::X86::Variable::saveZmm($target, $zmm)

Save bytes into the memory addressed by the target variable from the numbered zmm register.

   Parameter  Description
1  $target    Variable containing the address of the source
2  $zmm       Number of zmm to put

getBwdqFromMmAsVariable($size, $mm, $offset)

Get the numbered byte|word|double word|quad word from the numbered zmm register and return it in a variable

   Parameter  Description
1  $size      Size of get
2  $mm        Register
3  $offset    Offset in bytes

getBFromXmmAsVariable($xmm, $offset)

Get the byte from the numbered xmm register and return it in a variable

   Parameter  Description
1  $xmm       Numbered xmm
2  $offset    Offset in bytes

getWFromXmmAsVariable($xmm, $offset)

Get the word from the numbered xmm register and return it in a variable

   Parameter  Description
1  $xmm       Numbered xmm
2  $offset    Offset in bytes

getDFromXmmAsVariable($xmm, $offset)

Get the double word from the numbered xmm register and return it in a variable

   Parameter  Description
1  $xmm       Numbered xmm
2  $offset    Offset in bytes

getQFromXmmAsVariable($xmm, $offset)

Get the quad word from the numbered xmm register and return it in a variable

   Parameter  Description
1  $xmm       Numbered xmm
2  $offset    Offset in bytes

getBFromZmmAsVariable($zmm, $offset)

Get the byte from the numbered zmm register and return it in a variable

   Parameter  Description
1  $zmm       Numbered zmm
2  $offset    Offset in bytes

getWFromZmmAsVariable($zmm, $offset)

Get the word from the numbered zmm register and return it in a variable

   Parameter  Description
1  $zmm       Numbered zmm
2  $offset    Offset in bytes

getDFromZmmAsVariable($zmm, $offset)

Get the double word from the numbered zmm register and return it in a variable

   Parameter  Description
1  $zmm       Numbered zmm
2  $offset    Offset in bytes

Example:

  my $s = Rb(0..8);
  my $c = Vq("Content",   "[$s]");
     $c->putBIntoZmm(0,  4);
     $c->putWIntoZmm(0,  6);
     $c->putDIntoZmm(0, 10);
     $c->putQIntoZmm(0, 16);
  PrintOutRegisterInHex zmm0;
  getBFromZmmAsVariable(0, 12)->outNL;
  getWFromZmmAsVariable(0, 12)->outNL;

  getDFromZmmAsVariable(0, 12)->outNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  getQFromZmmAsVariable(0, 12)->outNL;

  is_deeply Assemble, <<END;
  zmm0: 0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0706 0504 0302 0100   0000 0302 0100 0000   0100 0000 0000 0000
b at offset 12 in zmm0: 0000 0000 0000 0002
w at offset 12 in zmm0: 0000 0000 0000 0302
d at offset 12 in zmm0: 0000 0000 0000 0302
q at offset 12 in zmm0: 0302 0100 0000 0302
END

getQFromZmmAsVariable($zmm, $offset)

Get the quad word from the numbered zmm register and return it in a variable

   Parameter  Description
1  $zmm       Numbered zmm
2  $offset    Offset in bytes

Nasm::X86::Variable::getBFromZmm($variable, $zmm, $offset)

Get the byte from the numbered zmm register and put it in a variable

   Parameter  Description
1  $variable  Variable
2  $zmm       Numbered zmm
3  $offset    Offset in bytes

Nasm::X86::Variable::getWFromZmm($variable, $zmm, $offset)

Get the word from the numbered zmm register and put it in a variable

   Parameter  Description
1  $variable  Variable
2  $zmm       Numbered zmm
3  $offset    Offset in bytes

Nasm::X86::Variable::getDFromZmm($variable, $zmm, $offset)

Get the double word from the numbered zmm register and put it in a variable

   Parameter  Description
1  $variable  Variable
2  $zmm       Numbered zmm
3  $offset    Offset in bytes

Nasm::X86::Variable::getQFromZmm($variable, $zmm, $offset)

Get the quad word from the numbered zmm register and put it in a variable

   Parameter  Description
1  $variable  Variable
2  $zmm       Numbered zmm
3  $offset    Offset in bytes

Nasm::X86::Variable::putBwdqIntoMm($content, $size, $mm, $offset)

Place the value of the content variable at the byte|word|double word|quad word in the numbered zmm register

   Parameter  Description
1  $content   Variable with content
2  $size      Size of put
3  $mm        Numbered zmm
4  $offset    Offset in bytes

Nasm::X86::Variable::putBIntoXmm($content, $xmm, $offset)

Place the value of the content variable at the byte in the numbered xmm register

   Parameter  Description
1  $content   Variable with content
2  $xmm       Numbered xmm
3  $offset    Offset in bytes

Nasm::X86::Variable::putWIntoXmm($content, $xmm, $offset)

Place the value of the content variable at the word in the numbered xmm register

   Parameter  Description
1  $content   Variable with content
2  $xmm       Numbered xmm
3  $offset    Offset in bytes

Nasm::X86::Variable::putDIntoXmm($content, $xmm, $offset)

Place the value of the content variable at the double word in the numbered xmm register

   Parameter  Description
1  $content   Variable with content
2  $xmm       Numbered xmm
3  $offset    Offset in bytes

Nasm::X86::Variable::putQIntoXmm($content, $xmm, $offset)

Place the value of the content variable at the quad word in the numbered xmm register

   Parameter  Description
1  $content   Variable with content
2  $xmm       Numbered xmm
3  $offset    Offset in bytes

Nasm::X86::Variable::putBIntoZmm($content, $zmm, $offset)

Place the value of the content variable at the byte in the numbered zmm register

   Parameter  Description
1  $content   Variable with content
2  $zmm       Numbered zmm
3  $offset    Offset in bytes

Nasm::X86::Variable::putWIntoZmm($content, $zmm, $offset)

Place the value of the content variable at the word in the numbered zmm register

   Parameter  Description
1  $content   Variable with content
2  $zmm       Numbered zmm
3  $offset    Offset in bytes

Nasm::X86::Variable::putDIntoZmm($content, $zmm, $offset)

Place the value of the content variable at the double word in the numbered zmm register

   Parameter  Description
1  $content   Variable with content
2  $zmm       Numbered zmm
3  $offset    Offset in bytes

Example:

  my $s = Rb(0..8);
  my $c = Vq("Content",   "[$s]");
     $c->putBIntoZmm(0,  4);
     $c->putWIntoZmm(0,  6);
     $c->putDIntoZmm(0, 10);
     $c->putQIntoZmm(0, 16);
  PrintOutRegisterInHex zmm0;
  getBFromZmmAsVariable(0, 12)->outNL;
  getWFromZmmAsVariable(0, 12)->outNL;
  getDFromZmmAsVariable(0, 12)->outNL;
  getQFromZmmAsVariable(0, 12)->outNL;

  is_deeply Assemble, <<END;
  zmm0: 0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0706 0504 0302 0100   0000 0302 0100 0000   0100 0000 0000 0000
b at offset 12 in zmm0: 0000 0000 0000 0002
w at offset 12 in zmm0: 0000 0000 0000 0302
d at offset 12 in zmm0: 0000 0000 0000 0302
q at offset 12 in zmm0: 0302 0100 0000 0302
END

Nasm::X86::Variable::putQIntoZmm($content, $zmm, $offset)

Place the value of the content variable at the quad word in the numbered zmm register

   Parameter  Description
1  $content   Variable with content
2  $zmm       Numbered zmm
3  $offset    Offset in bytes

Nasm::X86::Variable::clearMemory($memory)

Clear the memory described in this variable

   Parameter  Description
1  $memory    Variable describing memory as returned by Allocate Memory

Nasm::X86::Variable::copyMemoryFrom($target, $source)

Copy from one block of memory to another

   Parameter  Description
1  $target    Variable describing the target
2  $source    Variable describing the source

Nasm::X86::Variable::printOutMemoryInHex($memory)

Print allocated memory in hex

   Parameter  Description
1  $memory    Variable describing the memory

Nasm::X86::Variable::freeMemory($memory)

Free the memory described in this variable

   Parameter  Description
1  $memory    Variable describing memory as returned by Allocate Memory

Example:

  my $N = Vq(size, 2048);
  my $q = Rs('a'..'p');
  AllocateMemory($N, my $address = Vq(address));

  Vmovdqu8 xmm0, "[$q]";
  $address->setReg(rax);
  Vmovdqu8 "[rax]", xmm0;
  Mov rdi, 16;
  PrintOutMemory;
  PrintOutNL;

  FreeMemory(address => $address, size=> $N);

  ok Assemble(eq => <<END);
abcdefghijklmnop
END

Nasm::X86::Variable::for($limit, $body)

Iterate the body limit times.

   Parameter  Description
1  $limit     Limit
2  $body      Body

Example:

  Vq(limit,10)->for(sub
   {my ($i, $start, $next, $end) = @_;
    $i->print;
   });

  is_deeply Assemble, <<END;
0000 0000 0000 0000
0100 0000 0000 0000
0200 0000 0000 0000
0300 0000 0000 0000
0400 0000 0000 0000
0500 0000 0000 0000
0600 0000 0000 0000
0700 0000 0000 0000
0800 0000 0000 0000
0900 0000 0000 0000
END

Processes

Create and manage processes

Fork()

Fork

Example:

  Fork;                                                                         # Fork  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Test rax,rax;
  IfNz                                                                          # Parent
   {Mov rbx, rax;
    WaitPid;
    PrintOutRegisterInHex rax;
    PrintOutRegisterInHex rbx;
    KeepFree rax;
    GetPid;                                                                     # Pid of parent as seen in parent
    Mov rcx,rax;
    PrintOutRegisterInHex rcx;
   }
  sub                                                                           # Child
   {Mov r8,rax;
    PrintOutRegisterInHex r8;
    KeepFree rax;
    GetPid;                                                                     # Child pid as seen in child
    Mov r9,rax;
    PrintOutRegisterInHex r9;
    KeepFree rax;
    GetPPid;                                                                    # Parent pid as seen in child
    Mov r10,rax;
    PrintOutRegisterInHex r10;
   };

  my $r = Assemble;

#    r8: 0000 0000 0000 0000   #1 Return from fork as seen by child
#    r9: 0000 0000 0003 0C63   #2 Pid of child
#   r10: 0000 0000 0003 0C60   #3 Pid of parent from child
#   rax: 0000 0000 0003 0C63   #4 Return from fork as seen by parent
#   rbx: 0000 0000 0003 0C63   #5 Wait for child pid result
#   rcx: 0000 0000 0003 0C60   #6 Pid of parent

  if ($r =~ m(r8:( 0000){4}.*r9:(.*)\s{5,}r10:(.*)\s{5,}rax:(.*)\s{5,}rbx:(.*)\s{5,}rcx:(.*)\s{2,})s)
   {ok $2 eq $4;
    ok $2 eq $5;
    ok $3 eq $6;
    ok $2 gt $6;
   }

GetPid()

Get process identifier

Example:

  Fork;                                                                         # Fork

  Test rax,rax;
  IfNz                                                                          # Parent
   {Mov rbx, rax;
    WaitPid;
    PrintOutRegisterInHex rax;
    PrintOutRegisterInHex rbx;
    KeepFree rax;

    GetPid;                                                                     # Pid of parent as seen in parent  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Mov rcx,rax;
    PrintOutRegisterInHex rcx;
   }
  sub                                                                           # Child
   {Mov r8,rax;
    PrintOutRegisterInHex r8;
    KeepFree rax;

    GetPid;                                                                     # Child pid as seen in child  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Mov r9,rax;
    PrintOutRegisterInHex r9;
    KeepFree rax;
    GetPPid;                                                                    # Parent pid as seen in child
    Mov r10,rax;
    PrintOutRegisterInHex r10;
   };

  my $r = Assemble;

#    r8: 0000 0000 0000 0000   #1 Return from fork as seen by child
#    r9: 0000 0000 0003 0C63   #2 Pid of child
#   r10: 0000 0000 0003 0C60   #3 Pid of parent from child
#   rax: 0000 0000 0003 0C63   #4 Return from fork as seen by parent
#   rbx: 0000 0000 0003 0C63   #5 Wait for child pid result
#   rcx: 0000 0000 0003 0C60   #6 Pid of parent

  if ($r =~ m(r8:( 0000){4}.*r9:(.*)\s{5,}r10:(.*)\s{5,}rax:(.*)\s{5,}rbx:(.*)\s{5,}rcx:(.*)\s{2,})s)
   {ok $2 eq $4;
    ok $2 eq $5;
    ok $3 eq $6;
    ok $2 gt $6;
   }

GetPidInHex()

Get process identifier in hex as 8 zero terminated bytes in rax

Example:

GetPidInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

PrintOutRegisterInHex rax;

ok Assemble =~ m(rax: 00);

GetPPid()

Get parent process identifier

Example:

  Fork;                                                                         # Fork

  Test rax,rax;
  IfNz                                                                          # Parent
   {Mov rbx, rax;
    WaitPid;
    PrintOutRegisterInHex rax;
    PrintOutRegisterInHex rbx;
    KeepFree rax;
    GetPid;                                                                     # Pid of parent as seen in parent
    Mov rcx,rax;
    PrintOutRegisterInHex rcx;
   }
  sub                                                                           # Child
   {Mov r8,rax;
    PrintOutRegisterInHex r8;
    KeepFree rax;
    GetPid;                                                                     # Child pid as seen in child
    Mov r9,rax;
    PrintOutRegisterInHex r9;
    KeepFree rax;

    GetPPid;                                                                    # Parent pid as seen in child  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Mov r10,rax;
    PrintOutRegisterInHex r10;
   };

  my $r = Assemble;

#    r8: 0000 0000 0000 0000   #1 Return from fork as seen by child
#    r9: 0000 0000 0003 0C63   #2 Pid of child
#   r10: 0000 0000 0003 0C60   #3 Pid of parent from child
#   rax: 0000 0000 0003 0C63   #4 Return from fork as seen by parent
#   rbx: 0000 0000 0003 0C63   #5 Wait for child pid result
#   rcx: 0000 0000 0003 0C60   #6 Pid of parent

  if ($r =~ m(r8:( 0000){4}.*r9:(.*)\s{5,}r10:(.*)\s{5,}rax:(.*)\s{5,}rbx:(.*)\s{5,}rcx:(.*)\s{2,})s)
   {ok $2 eq $4;
    ok $2 eq $5;
    ok $3 eq $6;
    ok $2 gt $6;
   }

GetUid()

Get userid of current process

Example:

GetUid;                                                                       # Userid  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

PrintOutRegisterInHex rax;

my $r = Assemble;
ok $r =~ m(rax:( 0000){3});

WaitPid()

Wait for the pid in rax to complete

Example:

  Fork;                                                                         # Fork

  Test rax,rax;
  IfNz                                                                          # Parent
   {Mov rbx, rax;

    WaitPid;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex rax;
    PrintOutRegisterInHex rbx;
    KeepFree rax;
    GetPid;                                                                     # Pid of parent as seen in parent
    Mov rcx,rax;
    PrintOutRegisterInHex rcx;
   }
  sub                                                                           # Child
   {Mov r8,rax;
    PrintOutRegisterInHex r8;
    KeepFree rax;
    GetPid;                                                                     # Child pid as seen in child
    Mov r9,rax;
    PrintOutRegisterInHex r9;
    KeepFree rax;
    GetPPid;                                                                    # Parent pid as seen in child
    Mov r10,rax;
    PrintOutRegisterInHex r10;
   };

  my $r = Assemble;

#    r8: 0000 0000 0000 0000   #1 Return from fork as seen by child
#    r9: 0000 0000 0003 0C63   #2 Pid of child
#   r10: 0000 0000 0003 0C60   #3 Pid of parent from child
#   rax: 0000 0000 0003 0C63   #4 Return from fork as seen by parent
#   rbx: 0000 0000 0003 0C63   #5 Wait for child pid result
#   rcx: 0000 0000 0003 0C60   #6 Pid of parent

  if ($r =~ m(r8:( 0000){4}.*r9:(.*)\s{5,}r10:(.*)\s{5,}rax:(.*)\s{5,}rbx:(.*)\s{5,}rcx:(.*)\s{2,})s)
   {ok $2 eq $4;
    ok $2 eq $5;
    ok $3 eq $6;
    ok $2 gt $6;
   }

ReadTimeStampCounter()

Read the time stamp counter and return the time in nanoseconds in rax

Example:

for(1..10)

 {ReadTimeStampCounter;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax;
 }

my @s = split /
/, Assemble;
my @S = sort @s;
is_deeply \@s, \@S;

Stack

Manage data on the stack

Push, Pop, Peek

Generic versions of push, pop, peek

PopR(@r)

Pop registers from the stack

   Parameter  Description
1  @r         Register

Example:

  Mov rax, 0x11111111;
  Mov rbx, 0x22222222;
  PushR my @save = (rax, rbx);
  Mov rax, 0x33333333;

  PopR @save;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax;
  PrintOutRegisterInHex rbx;

  is_deeply Assemble,<<END;
   rax: 0000 0000 1111 1111
   rbx: 0000 0000 2222 2222
END

PeekR($r)

Peek at register on stack

   Parameter  Description
1  $r         Register

Declarations

Declare variables and structures

Structures

Declare a structure

Structure()

Create a structure addressed by a register

Nasm::X86::Structure::field($structure, $length, $comment)

Add a field of the specified length with an optional comment

   Parameter   Description
1  $structure  Structure data descriptor
2  $length     Length of data
3  $comment    Optional comment

Nasm::X86::StructureField::addr($field, $register)

Address a field in a structure by either the default register or the named register

   Parameter  Description
1  $field     Field
2  $register  Optional address register else rax

All8Structure($N)

Create a structure consisting of 8 byte fields

   Parameter  Description
1  $N         Number of variables required

Stack Frame

Declare local variables in a frame on the stack

LocalData()

Map local data

Nasm::X86::LocalData::start($local)

Start a local data area on the stack

   Parameter  Description
1  $local     Local data descriptor

Nasm::X86::LocalData::free($local)

Free a local data area on the stack

   Parameter  Description
1  $local     Local data descriptor

Nasm::X86::LocalData::variable($local, $length, $comment)

Add a local variable

   Parameter  Description
1  $local     Local data descriptor
2  $length    Length of data
3  $comment   Optional comment

Nasm::X86::LocalVariable::stack($variable)

Address a local variable on the stack

   Parameter  Description
1  $variable  Variable

Nasm::X86::LocalData::allocate8($local, @comments)

Add some 8 byte local variables and return an array of variable definitions

   Parameter  Description
1  $local     Local data descriptor
2  @comments  Optional comment

AllocateAll8OnStack($N)

Create a local data descriptor consisting of the specified number of 8 byte local variables and return an array: (local data descriptor, variable definitions...)

   Parameter  Description
1  $N         Number of variables required

Memory

Allocate and print memory

PrintMemoryInHex($channel)

Dump memory from the address in rax for the length in rdi on the specified channel

   Parameter  Description
1  $channel   Channel

PrintErrMemoryInHex()

Dump memory from the address in rax for the length in rdi on stderr

PrintOutMemoryInHex()

Dump memory from the address in rax for the length in rdi on stdout

Example:

  Mov rax, 0x07654321;
  Shl rax, 32;
  Or  rax, 0x07654321;
  PushR rax;

  PrintOutRaxInHex;
  PrintOutNL;
  PrintOutRaxInReverseInHex;
  PrintOutNL;
  KeepFree rax;

  Mov rax, rsp;
  Mov rdi, 8;

  PrintOutMemoryInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutNL;
  PopR rax;
  KeepFree rax, rdi;

  Mov rax, 4096;
  PushR rax;
  Mov rax, rsp;
  Mov rdi, 8;

  PrintOutMemoryInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutNL;
  PopR rax;

  is_deeply Assemble, <<END;
0765 4321 0765 4321
2143 6507 2143 6507
2143 6507 2143 6507
0010 0000 0000 0000
END

PrintErrMemoryInHexNL()

Dump memory from the address in rax for the length in rdi and then print a new line

PrintOutMemoryInHexNL()

Dump memory from the address in rax for the length in rdi and then print a new line

Example:

  my $N = 256;
  my $s = Rb 0..$N-1;
  AllocateMemory(Vq(size, $N), my $a = Vq(address));
  CopyMemory(Vq(source, $s), Vq(size, $N), target => $a);

  AllocateMemory(Vq(size, $N), my $b = Vq(address));
  CopyMemory(source => $a, target => $b, Vq(size, $N));

  $b->setReg(rax);
  Mov rdi, $N;

  PrintOutMemoryInHexNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  is_deeply Assemble, <<END;
0001 0203 0405 06070809 0A0B 0C0D 0E0F1011 1213 1415 16171819 1A1B 1C1D 1E1F2021 2223 2425 26272829 2A2B 2C2D 2E2F3031 3233 3435 36373839 3A3B 3C3D 3E3F4041 4243 4445 46474849 4A4B 4C4D 4E4F5051 5253 5455 56575859 5A5B 5C5D 5E5F6061 6263 6465 66676869 6A6B 6C6D 6E6F7071 7273 7475 76777879 7A7B 7C7D 7E7F8081 8283 8485 86878889 8A8B 8C8D 8E8F9091 9293 9495 96979899 9A9B 9C9D 9E9FA0A1 A2A3 A4A5 A6A7A8A9 AAAB ACAD AEAFB0B1 B2B3 B4B5 B6B7B8B9 BABB BCBD BEBFC0C1 C2C3 C4C5 C6C7C8C9 CACB CCCD CECFD0D1 D2D3 D4D5 D6D7D8D9 DADB DCDD DEDFE0E1 E2E3 E4E5 E6E7E8E9 EAEB ECED EEEFF0F1 F2F3 F4F5 F6F7F8F9 FAFB FCFD FEFF
END

PrintMemory()

Print the memory addressed by rax for a length of rdi on the specified channel

Example:

ReadFile(Vq(file, Rs($0)), (my $s = Vq(size)), my $a = Vq(address));          # Read file
$a->setReg(rax);                                                              # Address of file in memory
$s->setReg(rdi);                                                              # Length  of file in memory
PrintOutMemory;                                                               # Print contents of memory to stdout

my $r = Assemble;                                                             # Assemble and execute
ok stringMd5Sum($r) eq fileMd5Sum($0);                                          # Output contains this file

PrintErrMemory()

Print the memory addressed by rax for a length of rdi on stderr

PrintOutMemory()

Print the memory addressed by rax for a length of rdi on stdout

Example:

Comment "Print a string from memory";
my $s = "Hello World";
Mov rax, Rs($s);
Mov rdi, length $s;

PrintOutMemory;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


ok Assemble =~ m(Hello World);

PrintErrMemoryNL()

Print the memory addressed by rax for a length of rdi followed by a new line on stderr

PrintOutMemoryNL()

Print the memory addressed by rax for a length of rdi followed by a new line on stdout

AllocateMemory(@variables)

Allocate the specified amount of memory via mmap and return its address

   Parameter   Description
1  @variables  Parameters

Example:

  my $N = Vq(size, 2048);
  my $q = Rs('a'..'p');

  AllocateMemory($N, my $address = Vq(address));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Vmovdqu8 xmm0, "[$q]";
  $address->setReg(rax);
  Vmovdqu8 "[rax]", xmm0;
  Mov rdi, 16;
  PrintOutMemory;
  PrintOutNL;

  FreeMemory(address => $address, size=> $N);

  ok Assemble(eq => <<END);
abcdefghijklmnop
END

  my $N = Vq(size, 4096);                                                       # Size of the initial allocation which should be one or more pages


  AllocateMemory($N, my $A = Vq(address));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  ClearMemory($N, $A);

  $A->setReg(rax);
  $N->setReg(rdi);
  PrintOutMemoryInHexNL;

  FreeMemory($N, $A);

  ok Assemble(eq => <<END);
0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
END

  my $N = 256;
  my $s = Rb 0..$N-1;

  AllocateMemory(Vq(size, $N), my $a = Vq(address));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  CopyMemory(Vq(source, $s), Vq(size, $N), target => $a);


  AllocateMemory(Vq(size, $N), my $b = Vq(address));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  CopyMemory(source => $a, target => $b, Vq(size, $N));

  $b->setReg(rax);
  Mov rdi, $N;
  PrintOutMemoryInHexNL;

  is_deeply Assemble, <<END;
0001 0203 0405 06070809 0A0B 0C0D 0E0F1011 1213 1415 16171819 1A1B 1C1D 1E1F2021 2223 2425 26272829 2A2B 2C2D 2E2F3031 3233 3435 36373839 3A3B 3C3D 3E3F4041 4243 4445 46474849 4A4B 4C4D 4E4F5051 5253 5455 56575859 5A5B 5C5D 5E5F6061 6263 6465 66676869 6A6B 6C6D 6E6F7071 7273 7475 76777879 7A7B 7C7D 7E7F8081 8283 8485 86878889 8A8B 8C8D 8E8F9091 9293 9495 96979899 9A9B 9C9D 9E9FA0A1 A2A3 A4A5 A6A7A8A9 AAAB ACAD AEAFB0B1 B2B3 B4B5 B6B7B8B9 BABB BCBD BEBFC0C1 C2C3 C4C5 C6C7C8C9 CACB CCCD CECFD0D1 D2D3 D4D5 D6D7D8D9 DADB DCDD DEDFE0E1 E2E3 E4E5 E6E7E8E9 EAEB ECED EEEFF0F1 F2F3 F4F5 F6F7F8F9 FAFB FCFD FEFF
END

FreeMemory(@variables)

Free memory

   Parameter   Description
1  @variables  Variables

Example:

  my $N = Vq(size, 4096);                                                       # Size of the initial allocation which should be one or more pages

  AllocateMemory($N, my $A = Vq(address));

  ClearMemory($N, $A);

  $A->setReg(rax);
  $N->setReg(rdi);
  PrintOutMemoryInHexNL;


  FreeMemory($N, $A);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  ok Assemble(eq => <<END);
0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
END

ClearMemory(@variables)

Clear memory - the address of the memory is in rax, the length in rdi

   Parameter   Description
1  @variables  Variables

Example:

  my $N = Vq(size, 4096);                                                       # Size of the initial allocation which should be one or more pages

  AllocateMemory($N, my $A = Vq(address));


  ClearMemory($N, $A);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  $A->setReg(rax);
  $N->setReg(rdi);
  PrintOutMemoryInHexNL;

  FreeMemory($N, $A);

  ok Assemble(eq => <<END);
0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
END

CopyMemory(@variables)

Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi

   Parameter   Description
1  @variables  Variables

Example:

  my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;
  my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;

  Vmovdqu8 xmm0, "[$s]";
  Vmovdqu8 xmm1, "[$t]";
  PrintOutRegisterInHex xmm0;
  PrintOutRegisterInHex xmm1;
  Sub rsp, 16;

  Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
  Mov rdi, 16;
  Mov rsi, $s;

  CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutMemoryInHex;

  my $r = Assemble;
  ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

  my $N = 256;
  my $s = Rb 0..$N-1;
  AllocateMemory(Vq(size, $N), my $a = Vq(address));

  CopyMemory(Vq(source, $s), Vq(size, $N), target => $a);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  AllocateMemory(Vq(size, $N), my $b = Vq(address));

  CopyMemory(source => $a, target => $b, Vq(size, $N));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  $b->setReg(rax);
  Mov rdi, $N;
  PrintOutMemoryInHexNL;

  is_deeply Assemble, <<END;
0001 0203 0405 06070809 0A0B 0C0D 0E0F1011 1213 1415 16171819 1A1B 1C1D 1E1F2021 2223 2425 26272829 2A2B 2C2D 2E2F3031 3233 3435 36373839 3A3B 3C3D 3E3F4041 4243 4445 46474849 4A4B 4C4D 4E4F5051 5253 5455 56575859 5A5B 5C5D 5E5F6061 6263 6465 66676869 6A6B 6C6D 6E6F7071 7273 7475 76777879 7A7B 7C7D 7E7F8081 8283 8485 86878889 8A8B 8C8D 8E8F9091 9293 9495 96979899 9A9B 9C9D 9E9FA0A1 A2A3 A4A5 A6A7A8A9 AAAB ACAD AEAFB0B1 B2B3 B4B5 B6B7B8B9 BABB BCBD BEBFC0C1 C2C3 C4C5 C6C7C8C9 CACB CCCD CECFD0D1 D2D3 D4D5 D6D7D8D9 DADB DCDD DEDFE0E1 E2E3 E4E5 E6E7E8E9 EAEB ECED EEEFF0F1 F2F3 F4F5 F6F7F8F9 FAFB FCFD FEFF
END

Files

Process a file

OpenRead()

Open a file, whose name is addressed by rax, for read and return the file descriptor in rax

Example:

  Mov rax, Rs($0);                                                              # File to read

  OpenRead;                                                                     # Open file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax;
  CloseFile;                                                                    # Close file
  PrintOutRegisterInHex rax;
  KeepFree rax, rdi;

  Mov rax, Rs(my $f = "zzzTemporaryFile.txt");                                  # File to write
  OpenWrite;                                                                    # Open file
  CloseFile;                                                                    # Close file

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rax: 0000 0000 0000 0000
END
  ok -e $f;                                                                     # Created file
  unlink $f;

OpenWrite()

Create the file named by the terminated string addressed by rax for write

Example:

  Mov rax, Rs($0);                                                              # File to read
  OpenRead;                                                                     # Open file
  PrintOutRegisterInHex rax;
  CloseFile;                                                                    # Close file
  PrintOutRegisterInHex rax;
  KeepFree rax, rdi;

  Mov rax, Rs(my $f = "zzzTemporaryFile.txt");                                  # File to write

  OpenWrite;                                                                    # Open file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  CloseFile;                                                                    # Close file

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rax: 0000 0000 0000 0000
END
  ok -e $f;                                                                     # Created file
  unlink $f;

CloseFile()

Close the file whose descriptor is in rax

Example:

  Mov rax, Rs($0);                                                              # File to read
  OpenRead;                                                                     # Open file
  PrintOutRegisterInHex rax;

  CloseFile;                                                                    # Close file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax;
  KeepFree rax, rdi;

  Mov rax, Rs(my $f = "zzzTemporaryFile.txt");                                  # File to write
  OpenWrite;                                                                    # Open file

  CloseFile;                                                                    # Close file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rax: 0000 0000 0000 0000
END
  ok -e $f;                                                                     # Created file
  unlink $f;

StatSize()

Stat a file whose name is addressed by rax to get its size in rax

Example:

Mov rax, Rs($0);                                                              # File to stat

StatSize;                                                                     # Stat the file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

PrintOutRegisterInHex rax;

my $r = Assemble =~ s( ) ()gsr;
if ($r =~ m(rax:([0-9a-f]{16}))is)                                            # Compare file size obtained with that from fileSize()
 {is_deeply $1, sprintf("%016X", fileSize($0));
 }

ReadFile(@variables)

Read a file whose name is addressed by rax into memory. The address of the mapped memory and its length are returned in registers rax,rdi

   Parameter   Description
1  @variables  Variables

Example:

ReadFile(Vq(file, Rs($0)), (my $s = Vq(size)), my $a = Vq(address));          # Read file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

$a->setReg(rax);                                                              # Address of file in memory
$s->setReg(rdi);                                                              # Length  of file in memory
PrintOutMemory;                                                               # Print contents of memory to stdout

my $r = Assemble;                                                             # Assemble and execute
ok stringMd5Sum($r) eq fileMd5Sum($0);                                          # Output contains this file

Short Strings

Operations on Short Strings

LoadShortStringFromMemoryToZmm2($zmm)

Load the short string addressed by rax into the zmm register with the specified number

   Parameter  Description
1  $zmm       Zmm register to load

LoadShortStringFromMemoryToZmm($zmm, $address)

Load the short string addressed by rax into the zmm register with the specified number

   Parameter  Description
1  $zmm       Zmm register to load
2  $address   Address of string in memory

Example:

my $s = Rb(3, 0x01, 0x02, 0x03);
my $t = Rb(7, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a);


LoadShortStringFromMemoryToZmm 0, $s;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


LoadShortStringFromMemoryToZmm 1, $t;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

ConcatenateShortStrings(0, 1);
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;

my $r = Assemble;
ok $r =~ m(xmm0: 0000 0000 000A 0908   0706 0504 0302 010A);
ok $r =~ m(xmm1: 0000 0000 0000 0000   0A09 0807 0605 0407);

GetLengthOfShortString($reg, $zmm)

Get the length of the short string held in the numbered zmm register into the specified register

   Parameter  Description
1  $reg       Register to hold length
2  $zmm       Number of zmm register containing string

SetLengthOfShortString($zmm, $reg)

Set the length of the short string held in the numbered zmm register into the specified register

   Parameter  Description
1  $zmm       Number of zmm register containing string
2  $reg       Register to hold length

ConcatenateShortStrings($left, $right)

Concatenate the numbered source zmm containing a short string with the short string in the numbered target zmm.

   Parameter  Description
1  $left      Target zmm
2  $right     Source zmm

Hash functions

Hash functions

Hash()

Hash a string addressed by rax with length held in rdi and return the hash code in r15

Example:

Mov rax, "[rbp+24]";
Cstrlen;                                                                      # Length of string to hash
Mov rdi, r15;

Hash();                                                                       # Hash string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


PrintOutRegisterInHex r15;

my $e = Assemble keep=>'hash';                                                # Assemble to the specified file name
ok qx($e "")  =~ m(r15: 0000 3F80 0000 3F80);                                 # Test well known hashes
ok qx($e "a") =~ m(r15: 0000 3F80 C000 45B2);


if (0 and $develop)                                                           # Hash various strings  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

 {my %r; my %f; my $count = 0;
  my $N = RegisterSize zmm0;

  if (1)                                                                      # Fixed blocks
   {for my $l(qw(a ab abc abcd), 'a a', 'a  a')
     {for my $i(1..$N)
       {my $t = $l x $i;
        last if $N < length $t;
        my $s = substr($t.(' ' x $N), 0, $N);
        next if $f{$s}++;
        my $r = qx($e "$s");
        say STDERR "$count  $r";
        if ($r =~ m(^.*r15:\s*(.*)$)m)
         {push $r{$1}->@*, $s;
          ++$count;
         }
       }
     }
   }

  if (1)                                                                      # Variable blocks
   {for my $l(qw(a ab abc abcd), '', 'a a', 'a  a')
     {for my $i(1..$N)
       {my $t = $l x $i;
        next if $f{$t}++;
        my $r = qx($e "$t");
        say STDERR "$count  $r";
        if ($r =~ m(^.*r15:\s*(.*)$)m)
         {push $r{$1}->@*, $t;
          ++$count;
         }
       }
     }
   }
  for my $r(keys %r)
   {delete $r{$r} if $r{$r}->@* < 2;
   }

  say STDERR dump(\%r);
  say STDERR "Keys hashed: ", $count;
  confess "Duplicates : ",  scalar keys(%r);
 }

Byte Strings

Operations on Byte Strings

Cstrlen()

Length of the C style string addressed by rax returning the length in r15

Example:

my $s = Rs("abcd");
Mov rax, $s;

Cstrlen;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

PrintOutRegisterInHex r15;
ok Assemble =~ m(r15: 0000 0000 0000 0004);

CreateByteString(%options)

Create an relocatable string of bytes in an arena and returns its address in rax. Optionally add a chain header so that 64 byte blocks of memory can be freed and reused within the byte string.

   Parameter  Description
1  %options   Free=>1 adds a free chain.

Example:

  my $a = CreateByteString;                                                     # Create a string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  $a->q('aa');
  $a->out;
  PrintOutNL;
  is_deeply Assemble, <<END;                                                    # Assemble and execute
aa
END


  my $a = CreateByteString;                                                     # Create a string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $b = CreateByteString;                                                     # Create a string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  $a->q('aa');
  $b->q('bb');
  $a->out;
  PrintOutNL;
  $b->out;
  PrintOutNL;
  is_deeply Assemble, <<END;                                                    # Assemble and execute
aa
bb
END


  my $a = CreateByteString;                                                     # Create a string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $b = CreateByteString;                                                     # Create a string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  $a->q('aa');
  $a->q('AA');
  $a->out;
  PrintOutNL;
  is_deeply Assemble, <<END;                                                    # Assemble and execute
aaAA
END


  my $a = CreateByteString;                                                     # Create a string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $b = CreateByteString;                                                     # Create a string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  $a->q('aa');
  $b->q('bb');
  $a->q('AA');
  $b->q('BB');
  $a->q('aa');
  $b->q('bb');
  $a->out;
  $b->out;
  PrintOutNL;
  is_deeply Assemble, <<END;                                                    # Assemble and execute
aaAAaabbBBbb
END


  my $a = CreateByteString;                                                     # Create a string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  $a->q('ab');

  my $b = CreateByteString;                                                     # Create target byte string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  $a->bs(r15);
  $b->append(source=>$a->bs);
  $b->append(source=>$a->bs);
  $a->append(source=>$b->bs);
  $b->append(source=>$a->bs);
  $a->append(source=>$b->bs);
  $b->append(source=>$a->bs);
  $b->append(source=>$a->bs);
  $b->append(source=>$a->bs);
  $b->append(source=>$a->bs);


  $a->out;   PrintOutNL;                                                        # Print byte string
  $b->out;   PrintOutNL;                                                        # Print byte string
  $a->length(my $sa = Vq(size)); $sa->outNL;
  $b->length(my $sb = Vq(size)); $sb->outNL;
  $a->clear;
  $a->length(my $sA = Vq(size)); $sA->outNL;
  $b->length(my $sB = Vq(size)); $sB->outNL;

  is_deeply Assemble, <<END;                                                    # Assemble and execute
abababababababab
ababababababababababababababababababababababababababababababababababababab
size: 0000 0000 0000 0010
size: 0000 0000 0000 004A
size: 0000 0000 0000 0000
size: 0000 0000 0000 004A
END

Nasm::X86::ByteString::length($byteString, @variables)

Get the length of a byte string

   Parameter    Description
1  $byteString  Byte string descriptor
2  @variables   Variables

Nasm::X86::ByteString::makeReadOnly($byteString)

Make a byte string read only

   Parameter    Description
1  $byteString  Byte string descriptor

Nasm::X86::ByteString::makeWriteable($byteString)

Make a byte string writable

   Parameter    Description
1  $byteString  Byte string descriptor

Nasm::X86::ByteString::allocate($byteString, @variables)

Allocate the amount of space indicated in rdi in the byte string addressed by rax and return the offset of the allocation in the arena in rdi

   Parameter    Description
1  $byteString  Byte string descriptor
2  @variables   Variables

Nasm::X86::ByteString::blockSize($byteString)

Size of a block

   Parameter    Description
1  $byteString  Byte string

Nasm::X86::ByteString::allocBlock($byteString, @variables)

Allocate a block to hold a zmm register in the specified byte string and return the offset of the block in a variable

   Parameter    Description
1  $byteString  Byte string
2  @variables   Variables

Example:

  my $a = CreateByteString;              $a->dump;
  $a->allocBlock(my $b1 = Vq(offset));   $a->dump;
  $a->allocBlock(my $b2 = Vq(offset));   $a->dump;
  $a->freeBlock($b2);                    $a->dump;
  $a->freeBlock($b1);                    $a->dump;

  ok Assemble(debug => 0, eq => <<END);
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0018
0000: 0010 0000 0000 00001800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0058
0000: 0010 0000 0000 00005800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0098
0000: 0010 0000 0000 00009800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0098
0000: 0010 0000 0000 00009800 0000 0000 00005800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0098
0000: 0010 0000 0000 00009800 0000 0000 00001800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 5800 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
END

Nasm::X86::ByteString::freeBlock($byteString, @variables)

Free a block in a byte string by placing it on the free chain

   Parameter    Description
1  $byteString  Byte string descriptor
2  @variables   Variables

Example:

  my $a = CreateByteString;              $a->dump;
  $a->allocBlock(my $b1 = Vq(offset));   $a->dump;
  $a->allocBlock(my $b2 = Vq(offset));   $a->dump;
  $a->freeBlock($b2);                    $a->dump;
  $a->freeBlock($b1);                    $a->dump;

  ok Assemble(debug => 0, eq => <<END);
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0018
0000: 0010 0000 0000 00001800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0058
0000: 0010 0000 0000 00005800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0098
0000: 0010 0000 0000 00009800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0098
0000: 0010 0000 0000 00009800 0000 0000 00005800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0098
0000: 0010 0000 0000 00009800 0000 0000 00001800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 5800 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
END

Nasm::X86::ByteString::getBlock($byteString, $bsa, $block, $zmm)

Get the block with the specified offset in the specified block string and return it in the numbered zmm

   Parameter    Description
1  $byteString  Byte string descriptor
2  $bsa         Byte string variable
3  $block       Offset of the block as a variable
4  $zmm         Number of zmm register to contain block

Nasm::X86::ByteString::putBlock($byteString, $bsa, $block, $zmm)

Write the numbered zmm to the block at the specified offset in the specified byte string

   Parameter    Description
1  $byteString  Byte string descriptor
2  $bsa         Byte string variable
3  $block       Block in byte string
4  $zmm         Content variable

Nasm::X86::ByteString::m($byteString, @variables)

Append the content with length rdi addressed by rsi to the byte string addressed by rax

   Parameter    Description
1  $byteString  Byte string descriptor
2  @variables   Variables

Nasm::X86::ByteString::q($byteString, $string)

Append a constant string to the byte string

   Parameter    Description
1  $byteString  Byte string descriptor
2  $string      String

Nasm::X86::ByteString::ql($byteString, $const)

Append a quoted string containing new line characters to the byte string addressed by rax

   Parameter    Description
1  $byteString  Byte string
2  $const       Constant

Nasm::X86::ByteString::char($byteString, $char)

Append a character expressed as a decimal number to the byte string addressed by rax

   Parameter    Description
1  $byteString  Byte string descriptor
2  $char        Number of character to be appended

Nasm::X86::ByteString::nl($byteString)

Append a new line to the byte string addressed by rax

   Parameter    Description
1  $byteString  Byte string descriptor

Nasm::X86::ByteString::z($byteString)

Append a trailing zero to the byte string addressed by rax

   Parameter    Description
1  $byteString  Byte string descriptor

Nasm::X86::ByteString::rdiInHex()

Add the content of register rdi in hexadecimal in big endian notation to a byte string

Nasm::X86::ByteString::append($byteString, @variables)

Append one byte string to another

   Parameter    Description
1  $byteString  Byte string descriptor
2  @variables   Variables

Nasm::X86::ByteString::clear($byteString)

Clear the byte string addressed by rax

   Parameter    Description
1  $byteString  Byte string descriptor

Nasm::X86::ByteString::write($byteString, @variables)

Write the content in a byte string addressed by rax to a temporary file and replace the byte string content with the name of the temporary file

   Parameter    Description
1  $byteString  Byte string descriptor
2  @variables   Variables

Nasm::X86::ByteString::read($byteString, @variables)

Read the named file (terminated with a zero byte) and place it into the named byte string.

   Parameter    Description
1  $byteString  Byte string descriptor
2  @variables   Variables

Nasm::X86::ByteString::out($byteString)

Print the specified byte string addressed by rax on sysout

   Parameter    Description
1  $byteString  Byte string descriptor

executeFileViaBash(@variables)

Execute the file named in the byte string addressed by rax with bash

   Parameter   Description
1  @variables  Variables

Example:

  my $s = CreateByteString;                                                     # Create a string
  $s->ql(<<END);                                                                # Write code to execute
#!/usr/bin/bash
whoami
ls -la
pwd
END
  $s->write         (my $f = Vq('file', Rs("zzz.sh")));                         # Write code to a file

  executeFileViaBash($f);                                                       # Execute the file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  unlinkFile        ($f);                                                       # Delete the file

  my $u = qx(whoami); chomp($u);
  ok Assemble(emulator=>0) =~ m($u);                                            # The Intel Software Development Emulator is way too slow on these operations.

unlinkFile(@variables)

Unlink the named file

   Parameter   Description
1  @variables  Variables

Example:

  my $s = CreateByteString;                                                     # Create a string
  $s->ql(<<END);                                                                # Write code to execute
#!/usr/bin/bash
whoami
ls -la
pwd
END
  $s->write         (my $f = Vq('file', Rs("zzz.sh")));                         # Write code to a file
  executeFileViaBash($f);                                                       # Execute the file

  unlinkFile        ($f);                                                       # Delete the file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $u = qx(whoami); chomp($u);
  ok Assemble(emulator=>0) =~ m($u);                                            # The Intel Software Development Emulator is way too slow on these operations.

Nasm::X86::ByteString::dump($byteString)

Dump details of a byte string

   Parameter    Description
1  $byteString  Byte string descriptor

Block Strings

Strings made from zmm sized blocks of text

Nasm::X86::ByteString::CreateBlockString($byteString)

Create a string from a doubly link linked list of 64 byte blocks linked via 4 byte offsets in the byte string addressed by rax and return its descriptor

   Parameter    Description
1  $byteString  Byte string description

Nasm::X86::BlockString::address($blockString)

Address of a block string

   Parameter     Description
1  $blockString  Block string descriptor

Nasm::X86::BlockString::allocBlock($blockString, @variables)

Allocate a block to hold a zmm register in the specified byte string and return the offset of the block in a variable

   Parameter     Description
1  $blockString  Block string descriptor
2  @variables    Variables

Nasm::X86::BlockString::getBlockLengthInZmm($blockString, $zmm)

Get the block length of the numbered zmm and return it in a variable

   Parameter     Description
1  $blockString  Block string descriptor
2  $zmm          Number of zmm register

Nasm::X86::BlockString::setBlockLengthInZmm($blockString, $length, $zmm)

Set the block length of the numbered zmm to the specified length

   Parameter     Description
1  $blockString  Block string descriptor
2  $length       Length as a variable
3  $zmm          Number of zmm register

Nasm::X86::BlockString::getBlock($blockString, $bsa, $block, $zmm)

Get the block with the specified offset in the specified block string and return it in the numbered zmm

   Parameter     Description
1  $blockString  Block string descriptor
2  $bsa          Byte string variable
3  $block        Offset of the block as a variable
4  $zmm          Number of zmm register to contain block

Nasm::X86::BlockString::putBlock($blockString, $bsa, $block, $zmm)

Write the numbered zmm to the block at the specified offset in the specified byte string

   Parameter     Description
1  $blockString  Block string descriptor
2  $bsa          Byte string variable
3  $block        Block in byte string
4  $zmm          Content variable

Nasm::X86::BlockString::getNextAndPrevBlockOffsetFromZmm($blockString, $zmm)

Get the offsets of the next and previous blocks as variables from the specified zmm

   Parameter     Description
1  $blockString  Block string descriptor
2  $zmm          Zmm containing block

Nasm::X86::BlockString::putNextandPrevBlockOffsetIntoZmm($blockString, $zmm, $next, $prev)

Save next and prev offsets into a zmm representing a block

   Parameter     Description
1  $blockString  Block string descriptor
2  $zmm          Zmm containing block
3  $next         Next offset as a variable
4  $prev         Prev offset as a variable

Nasm::X86::BlockString::dump($blockString)

Dump a block string to sysout

   Parameter     Description
1  $blockString  Block string descriptor

Nasm::X86::BlockString::len($blockString, $size)

Find the length of a block string

   Parameter     Description
1  $blockString  Block string descriptor
2  $size         Size variable

Nasm::X86::BlockString::concatenate($target, $source)

Concatenate two block strings by appending a copy of the source to the target block string.

   Parameter  Description
1  $target    Target block string
2  $source    Source block string

Nasm::X86::BlockString::insertChar($blockString, @variables)

Insert a character into a block string

   Parameter     Description
1  $blockString  Block string
2  @variables    Variables

Nasm::X86::BlockString::deleteChar($blockString, @variables)

Delete a character in a block string

   Parameter     Description
1  $blockString  Block string
2  @variables    Variables

Nasm::X86::BlockString::getCharacter($blockString, @variables)

Get a character from a block string

   Parameter     Description
1  $blockString  Block string
2  @variables    Variables

Nasm::X86::BlockString::append($blockString, @variables)

Append the specified content in memory to the specified block string

   Parameter     Description
1  $blockString  Block string descriptor
2  @variables    Variables

Nasm::X86::BlockString::clear($blockString)

Clear the block by freeing all but the first block

   Parameter     Description
1  $blockString  Block string descriptor

Block Array

Array constructed as a tree of blocks in a byte string

Nasm::X86::ByteString::CreateBlockArray($byteString)

Create a block array in a byte string

   Parameter    Description
1  $byteString  Byte string description

Nasm::X86::BlockArray::address($blockArray)

Address of a block string

   Parameter    Description
1  $blockArray  Block array descriptor

Nasm::X86::BlockArray::allocBlock($blockArray, @variables)

Allocate a block to hold a zmm register in the specified byte string and return the offset of the block in a variable

   Parameter    Description
1  $blockArray  Block array descriptor
2  @variables   Variables

Nasm::X86::BlockArray::dump($blockArray, @variables)

Dump a block array

   Parameter    Description
1  $blockArray  Block array descriptor
2  @variables   Variables

Nasm::X86::BlockArray::push($blockArray, @variables)

Push an element onto the array

   Parameter    Description
1  $blockArray  Block array descriptor
2  @variables   Variables

Nasm::X86::BlockArray::pop($blockArray, @variables)

Pop an element from an array

   Parameter    Description
1  $blockArray  Block array descriptor
2  @variables   Variables

Nasm::X86::BlockArray::get($blockArray, @variables)

Get an element from the array

   Parameter    Description
1  $blockArray  Block array descriptor
2  @variables   Variables

Nasm::X86::BlockArray::put($blockArray, @variables)

Put an element into an array as long as it is with in its limits established by pushing.

   Parameter    Description
1  $blockArray  Block array descriptor
2  @variables   Variables

Assemble

Assemble generated code

CallC($sub, @parameters)

Call a C subroutine

   Parameter    Description
1  $sub         Name of the sub to call
2  @parameters  Parameters

Example:

  my $format = Rs "Hello %s
";
  my $data   = Rs "World";

  Extern qw(printf exit malloc strcpy); Link 'c';


  CallC 'malloc', length($format)+1;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov r15, rax;

  CallC 'strcpy', r15, $format;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  CallC 'printf', r15, $data;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  CallC 'exit', 0;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  ok Assemble(eq => <<END);
Hello World
END

Extern(@externalReferences)

Name external references

   Parameter            Description
1  @externalReferences  External references

Example:

  my $format = Rs "Hello %s
";
  my $data   = Rs "World";


  Extern qw(printf exit malloc strcpy); Link 'c';  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  CallC 'malloc', length($format)+1;
  Mov r15, rax;
  CallC 'strcpy', r15, $format;
  CallC 'printf', r15, $data;
  CallC 'exit', 0;

  ok Assemble(eq => <<END);
Hello World
END

Link(@libraries)

Libraries to link with

   Parameter   Description
1  @libraries  External references

Example:

  my $format = Rs "Hello %s
";
  my $data   = Rs "World";


  Extern qw(printf exit malloc strcpy); Link 'c';  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  CallC 'malloc', length($format)+1;
  Mov r15, rax;
  CallC 'strcpy', r15, $format;
  CallC 'printf', r15, $data;
  CallC 'exit', 0;

  ok Assemble(eq => <<END);
Hello World
END

Start()

Initialize the assembler

Exit($c)

Exit with the specified return code or zero if no return code supplied. Assemble() automatically adds a call to Exit(0) if the last operation in the program is not a call to Exit.

   Parameter  Description
1  $c         Return code

Assemble(%options)

Assemble the generated code

   Parameter  Description
1  %options   Options

Example:

  PrintOutStringNL "Hello World";
  PrintOutStringNL "Hello
World";
  PrintErrStringNL "Hello World";


  ok Assemble(debug => 0, eq => <<END);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

Hello World
Hello
World
END

Nasm::X86 Definition

Block string definition

Output fields

bs

Bytes string definition

data

The first 8 bytes of the data

depth

Lexical depth of scope

expr

Expression that initializes the variable

first

Variable addressing first block in block string

free

Free chain offset

label

Address in memory

laneSize

Size of the lanes in this variable

length

Maximum length in a block

Location of links in bytes in zmm

name

Name of the variable

next

Location of next offset in block in bytes

number

Number of this scope

parent

Parent scope

prev

Location of prev offset in block in bytes

purpose

Purpose of this variable

reference

Reference to another variable

saturate

Computations should saturate rather then wrap if true

signed

Elements of x|y|zmm registers are signed if true

size

Size field details

slots1

Number of slots in first block

slots2

Number of slots in second and subsequent blocks

structure

Structure details

used

Used field details

width

Width of each element

Attributes

The following is a list of all the attributes in this package. A method coded with the same name in your package will over ride the method of the same name in this package and thus provide your value for the attribute in place of the default value supplied for this attribute by this package.

Replaceable Attribute List

Pi32 Pi64

Pi32

Pi as a 32 bit float

Pi64

Pi as a 64 bit float

Private Methods

Label()

Create a unique label

Dbwdq($s, @d)

Layout data

   Parameter  Description
1  $s         Element size
2  @d         Data to be laid out

Rbwdq($s, @d)

Layout data

   Parameter  Description
1  $s         Element size
2  @d         Data to be laid out

hexTranslateTable()

Create/address a hex translate table and return its label

PrintOutRipInHex()

Print the instruction pointer in hex

PrintOutRflagsInHex()

Print the flags register in hex

Nasm::X86::Variable::confirmIsMemory($memory, $address, $length)

Check that variable describes allocated memory and optionally load registers with its length and size

   Parameter  Description
1  $memory    Variable describing memory as returned by Allocate Memory
2  $address   Register to contain address
3  $length    Register to contain size

PushRR(@r)

Push registers onto the stack without tracking

   Parameter  Description
1  @r         Register

PushR(@r)

Push registers onto the stack

   Parameter  Description
1  @r         Register

Example:

  Mov rax, 0x11111111;
  Mov rbx, 0x22222222;

  PushR my @save = (rax, rbx);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov rax, 0x33333333;
  PopR @save;
  PrintOutRegisterInHex rax;
  PrintOutRegisterInHex rbx;

  is_deeply Assemble,<<END;
   rax: 0000 0000 1111 1111
   rbx: 0000 0000 2222 2222
END

PopRR(@r)

Pop registers from the stack without tracking

   Parameter  Description
1  @r         Register

Nasm::X86::ByteString::updateSpace($byteString, @variables)

Make sure that the byte string addressed by rax has enough space to accommodate content of length rdi

   Parameter    Description
1  $byteString  Byte string descriptor
2  @variables   Variables

Nasm::X86::ByteString::firstFreeBlock($byteString)

Create and load a variable with the first free block on the free block chain or zero if no such block in the given byte string

   Parameter    Description
1  $byteString  Byte string address as a variable

Nasm::X86::ByteString::setFirstFreeBlock($byteString, $offset)

Set the first free block field from a variable

   Parameter    Description
1  $byteString  Byte string descriptor
2  $offset      First free block offset as a variable

LocateIntelEmulator()

Locate the Intel Software Development Emulator

removeNonAsciiChars($string)

Return a copy of the specified string with all the non ascii characters removed

   Parameter  Description
1  $string    String

totalBytesAssembled()

Total size in bytes of all files assembled during testing

Index

1 All8Structure - Create a structure consisting of 8 byte fields

2 AllocateAll8OnStack - Create a local data descriptor consisting of the specified number of 8 byte local variables and return an array: (local data descriptor, variable definitions.

3 AllocateMemory - Allocate the specified amount of memory via mmap and return its address

4 Assemble - Assemble the generated code

5 CallC - Call a C subroutine

6 ClearMemory - Clear memory - the address of the memory is in rax, the length in rdi

7 ClearRegisters - Clear registers by setting them to zero

8 ClearZF - Clear the zero flag

9 CloseFile - Close the file whose descriptor is in rax

10 Comment - Insert a comment into the assembly code

11 ConcatenateShortStrings - Concatenate the numbered source zmm containing a short string with the short string in the numbered target zmm.

12 Copy - Copy the source to the target register

13 CopyMemory - Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi

14 cr - Call a subroutine with a reordering of the registers.

15 CreateByteString - Create an relocatable string of bytes in an arena and returns its address in rax.

16 Cstrlen - Length of the C style string addressed by rax returning the length in r15

17 cxr - Call a subroutine with a reordering of the xmm registers.

18 Db - Layout bytes in the data segment and return their label

19 Dbwdq - Layout data

20 DComment - Insert a comment into the data segment

21 Dd - Layout double words in the data segment and return their label

22 Decrement - Decrement the specified register

23 Dq - Layout quad words in the data segment and return their label

24 Ds - Layout bytes in memory and return their label

25 Dw - Layout words in the data segment and return their label

26 executeFileViaBash - Execute the file named in the byte string addressed by rax with bash

27 Exit - Exit with the specified return code or zero if no return code supplied.

28 Extern - Name external references

29 Float32 - 32 bit float

30 Float64 - 64 bit float

31 For - For - iterate the body as long as register is less than limit incrementing by increment each time

32 ForEver - Iterate for ever

33 ForIn - For - iterate the full body as long as register plus increment is less than than limit incrementing by increment each time then increment the last body for the last non full block.

34 Fork - Fork

35 FreeMemory - Free memory

36 getBFromXmmAsVariable - Get the byte from the numbered xmm register and return it in a variable

37 getBFromZmmAsVariable - Get the byte from the numbered zmm register and return it in a variable

38 getBwdqFromMmAsVariable - Get the numbered byte|word|double word|quad word from the numbered zmm register and return it in a variable

39 getDFromXmmAsVariable - Get the double word from the numbered xmm register and return it in a variable

40 getDFromZmmAsVariable - Get the double word from the numbered zmm register and return it in a variable

41 GetLengthOfShortString - Get the length of the short string held in the numbered zmm register into the specified register

42 GetPid - Get process identifier

43 GetPidInHex - Get process identifier in hex as 8 zero terminated bytes in rax

44 GetPPid - Get parent process identifier

45 getQFromXmmAsVariable - Get the quad word from the numbered xmm register and return it in a variable

46 getQFromZmmAsVariable - Get the quad word from the numbered zmm register and return it in a variable

47 GetUid - Get userid of current process

48 getWFromXmmAsVariable - Get the word from the numbered xmm register and return it in a variable

49 getWFromZmmAsVariable - Get the word from the numbered zmm register and return it in a variable

50 Hash - Hash a string addressed by rax with length held in rdi and return the hash code in r15

51 hexTranslateTable - Create/address a hex translate table and return its label

52 If - If

53 IfEq - If equal execute the then body else the else body

54 IfGe - If greater than or equal execute the then body else the else body

55 IfGt - If greater than execute the then body else the else body

56 IfLe - If less than or equal execute the then body else the else body

57 IfLt - If less than execute the then body else the else body

58 IfNe - If not equal execute the then body else the else body

59 IfNz - If not zero execute the then body else the else body

60 Increment - Increment the specified register

61 InsertIntoXyz - Shift and insert the specified word, double, quad from rax or the contents of xmm0 into the specified xyz register at the specified position shifting data above it to the left towards higher order bytes.

62 Keep - Mark free registers so that they are not updated until we Free them or complain if the register is already in use.

63 KeepFree - Free registers so that they can be reused

64 KeepPop - Reset the status of the specified registers to the status quo ante the last push

65 KeepPush - Push the current status of the specified registers and then mark them as free

66 KeepReturn - Pop the specified register and mark it as in use to effect a subroutine return with this register.

67 KeepSet - Confirm that the specified registers are in use

68 Label - Create a unique label

69 Link - Libraries to link with

70 LoadShortStringFromMemoryToZmm - Load the short string addressed by rax into the zmm register with the specified number

71 LoadShortStringFromMemoryToZmm2 - Load the short string addressed by rax into the zmm register with the specified number

72 LoadTargetZmmFromSourceZmm - Load bytes into the numbered target zmm register at a register specified offset with source bytes from a numbered source zmm register at a specified register offset for a specified register length.

73 LoadZmmFromMemory - Load bytes into the numbered target zmm register at a register specified offset with source bytes from memory addressed by a specified register for a specified register length from memory addressed by a specified register.

74 LocalData - Map local data

75 LocateIntelEmulator - Locate the Intel Software Development Emulator

76 Macro - Create a sub with optional parameters name=> the name of the subroutine so it can be reused rather than regenerated, comment=> a comment describing the sub

77 MaximumOfTwoRegisters - Return in the specified register the value in the second register if it is greater than the value in the first register

78 MinimumOfTwoRegisters - Return in the specified register the value in the second register if it is less than the value in the first register

79 Minus - Subtract the third operand from the second operand and place the result in the first operand

80 Nasm::X86::BlockArray::address - Address of a block string

81 Nasm::X86::BlockArray::allocBlock - Allocate a block to hold a zmm register in the specified byte string and return the offset of the block in a variable

82 Nasm::X86::BlockArray::dump - Dump a block array

83 Nasm::X86::BlockArray::get - Get an element from the array

84 Nasm::X86::BlockArray::pop - Pop an element from an array

85 Nasm::X86::BlockArray::push - Push an element onto the array

86 Nasm::X86::BlockArray::put - Put an element into an array as long as it is with in its limits established by pushing.

87 Nasm::X86::BlockString::address - Address of a block string

88 Nasm::X86::BlockString::allocBlock - Allocate a block to hold a zmm register in the specified byte string and return the offset of the block in a variable

89 Nasm::X86::BlockString::append - Append the specified content in memory to the specified block string

90 Nasm::X86::BlockString::clear - Clear the block by freeing all but the first block

91 Nasm::X86::BlockString::concatenate - Concatenate two block strings by appending a copy of the source to the target block string.

92 Nasm::X86::BlockString::deleteChar - Delete a character in a block string

93 Nasm::X86::BlockString::dump - Dump a block string to sysout

94 Nasm::X86::BlockString::getBlock - Get the block with the specified offset in the specified block string and return it in the numbered zmm

95 Nasm::X86::BlockString::getBlockLengthInZmm - Get the block length of the numbered zmm and return it in a variable

96 Nasm::X86::BlockString::getCharacter - Get a character from a block string

97 Nasm::X86::BlockString::getNextAndPrevBlockOffsetFromZmm - Get the offsets of the next and previous blocks as variables from the specified zmm

98 Nasm::X86::BlockString::insertChar - Insert a character into a block string

99 Nasm::X86::BlockString::len - Find the length of a block string

100 Nasm::X86::BlockString::putBlock - Write the numbered zmm to the block at the specified offset in the specified byte string

101 Nasm::X86::BlockString::putNextandPrevBlockOffsetIntoZmm - Save next and prev offsets into a zmm representing a block

102 Nasm::X86::BlockString::setBlockLengthInZmm - Set the block length of the numbered zmm to the specified length

103 Nasm::X86::ByteString::allocate - Allocate the amount of space indicated in rdi in the byte string addressed by rax and return the offset of the allocation in the arena in rdi

104 Nasm::X86::ByteString::allocBlock - Allocate a block to hold a zmm register in the specified byte string and return the offset of the block in a variable

105 Nasm::X86::ByteString::append - Append one byte string to another

106 Nasm::X86::ByteString::blockSize - Size of a block

107 Nasm::X86::ByteString::char - Append a character expressed as a decimal number to the byte string addressed by rax

108 Nasm::X86::ByteString::clear - Clear the byte string addressed by rax

109 Nasm::X86::ByteString::CreateBlockArray - Create a block array in a byte string

110 Nasm::X86::ByteString::CreateBlockString - Create a string from a doubly link linked list of 64 byte blocks linked via 4 byte offsets in the byte string addressed by rax and return its descriptor

111 Nasm::X86::ByteString::dump - Dump details of a byte string

112 Nasm::X86::ByteString::firstFreeBlock - Create and load a variable with the first free block on the free block chain or zero if no such block in the given byte string

113 Nasm::X86::ByteString::freeBlock - Free a block in a byte string by placing it on the free chain

114 Nasm::X86::ByteString::getBlock - Get the block with the specified offset in the specified block string and return it in the numbered zmm

115 Nasm::X86::ByteString::length - Get the length of a byte string

116 Nasm::X86::ByteString::m - Append the content with length rdi addressed by rsi to the byte string addressed by rax

117 Nasm::X86::ByteString::makeReadOnly - Make a byte string read only

118 Nasm::X86::ByteString::makeWriteable - Make a byte string writable

119 Nasm::X86::ByteString::nl - Append a new line to the byte string addressed by rax

120 Nasm::X86::ByteString::out - Print the specified byte string addressed by rax on sysout

121 Nasm::X86::ByteString::putBlock - Write the numbered zmm to the block at the specified offset in the specified byte string

122 Nasm::X86::ByteString::q - Append a constant string to the byte string

123 Nasm::X86::ByteString::ql - Append a quoted string containing new line characters to the byte string addressed by rax

124 Nasm::X86::ByteString::rdiInHex - Add the content of register rdi in hexadecimal in big endian notation to a byte string

125 Nasm::X86::ByteString::read - Read the named file (terminated with a zero byte) and place it into the named byte string.

126 Nasm::X86::ByteString::setFirstFreeBlock - Set the first free block field from a variable

127 Nasm::X86::ByteString::updateSpace - Make sure that the byte string addressed by rax has enough space to accommodate content of length rdi

128 Nasm::X86::ByteString::write - Write the content in a byte string addressed by rax to a temporary file and replace the byte string content with the name of the temporary file

129 Nasm::X86::ByteString::z - Append a trailing zero to the byte string addressed by rax

130 Nasm::X86::LocalData::allocate8 - Add some 8 byte local variables and return an array of variable definitions

131 Nasm::X86::LocalData::free - Free a local data area on the stack

132 Nasm::X86::LocalData::start - Start a local data area on the stack

133 Nasm::X86::LocalData::variable - Add a local variable

134 Nasm::X86::LocalVariable::stack - Address a local variable on the stack

135 Nasm::X86::Scope::contains - Check that the named parent scope contains the specified child scope.

136 Nasm::X86::Scope::currentlyVisible - Check that the named parent scope is currently visible

137 Nasm::X86::Structure::field - Add a field of the specified length with an optional comment

138 Nasm::X86::StructureField::addr - Address a field in a structure by either the default register or the named register

139 Nasm::X86::Sub::call - Call a sub passing it some parameters

140 Nasm::X86::Variable::add - Add the right hand variable to the left hand variable and return the result as a new variable

141 Nasm::X86::Variable::address - Get the address of a variable with an optional offset

142 Nasm::X86::Variable::and - And two variables

143 Nasm::X86::Variable::arithmetic - Return a variable containing the result of an arithmetic operation on the left hand and right hand side variables

144 Nasm::X86::Variable::assign - Assign to the left hand side the value of the right hand side

145 Nasm::X86::Variable::boolean - Combine the left hand variable with the right hand variable via a boolean operator

146 Nasm::X86::Variable::clearMemory - Clear the memory described in this variable

147 Nasm::X86::Variable::confirmIsMemory - Check that variable describes allocated memory and optionally load registers with its length and size

148 Nasm::X86::Variable::copy - Copy one variable into another

149 Nasm::X86::Variable::copyAddress - Copy a reference to a variable

150 Nasm::X86::Variable::copyMemoryFrom - Copy from one block of memory to another

151 Nasm::X86::Variable::copyRef - Copy one variable into an referenced variable

152 Nasm::X86::Variable::debug - Dump the value of a variable on stdout with an indication of where the dump came from

153 Nasm::X86::Variable::dec - Decrement a variable

154 Nasm::X86::Variable::divide - Divide the left hand variable by the right hand variable and return the result as a new variable

155 Nasm::X86::Variable::division - Return a variable containing the result or the remainder that occurs when the left hand side is divided by the right hand side

156 Nasm::X86::Variable::dump - Dump the value of a variable to the specified channel adding an optional title and new line if requested

157 Nasm::X86::Variable::eq - Check whether the left hand variable is equal to the right hand variable

158 Nasm::X86::Variable::equals - Equals operator

159 Nasm::X86::Variable::err - Dump the value of a variable on stderr

160 Nasm::X86::Variable::errNL - Dump the value of a variable on stderr and append a new line

161 Nasm::X86::Variable::for - Iterate the body limit times.

162 Nasm::X86::Variable::freeMemory - Free the memory described in this variable

163 Nasm::X86::Variable::ge - Check whether the left hand variable is greater than or equal to the right hand variable

164 Nasm::X86::Variable::getBFromZmm - Get the byte from the numbered zmm register and put it in a variable

165 Nasm::X86::Variable::getDFromZmm - Get the double word from the numbered zmm register and put it in a variable

166 Nasm::X86::Variable::getQFromZmm - Get the quad word from the numbered zmm register and put it in a variable

167 Nasm::X86::Variable::getReg - Load the variable from the named registers

168 Nasm::X86::Variable::getWFromZmm - Get the word from the numbered zmm register and put it in a variable

169 Nasm::X86::Variable::gt - Check whether the left hand variable is greater than the right hand variable

170 Nasm::X86::Variable::inc - Increment a variable

171 Nasm::X86::Variable::incDec - Increment or decrement a variable

172 Nasm::X86::Variable::isRef - Check whether the specified variable is a reference to another variable

173 Nasm::X86::Variable::le - Check whether the left hand variable is less than or equal to the right hand variable

174 Nasm::X86::Variable::loadZmm - Load bytes from the memory addressed by the specified source variable into the numbered zmm register.

175 Nasm::X86::Variable::lt - Check whether the left hand variable is less than the right hand variable

176 Nasm::X86::Variable::max - Maximum of two variables

177 Nasm::X86::Variable::min - Minimum of two variables

178 Nasm::X86::Variable::minusAssign - Implement minus and assign

179 Nasm::X86::Variable::mod - Divide the left hand variable by the right hand variable and return the remainder as a new variable

180 Nasm::X86::Variable::ne - Check whether the left hand variable is not equal to the right hand variable

181 Nasm::X86::Variable::or - Or two variables

182 Nasm::X86::Variable::out - Dump the value of a variable on stdout

183 Nasm::X86::Variable::outNL - Dump the value of a variable on stdout and append a new line

184 Nasm::X86::Variable::plusAssign - Implement plus and assign

185 Nasm::X86::Variable::print - Write the value of a variable on stdout

186 Nasm::X86::Variable::printOutMemoryInHex - Print allocated memory in hex

187 Nasm::X86::Variable::putBIntoXmm - Place the value of the content variable at the byte in the numbered xmm register

188 Nasm::X86::Variable::putBIntoZmm - Place the value of the content variable at the byte in the numbered zmm register

189 Nasm::X86::Variable::putBwdqIntoMm - Place the value of the content variable at the byte|word|double word|quad word in the numbered zmm register

190 Nasm::X86::Variable::putDIntoXmm - Place the value of the content variable at the double word in the numbered xmm register

191 Nasm::X86::Variable::putDIntoZmm - Place the value of the content variable at the double word in the numbered zmm register

192 Nasm::X86::Variable::putQIntoXmm - Place the value of the content variable at the quad word in the numbered xmm register

193 Nasm::X86::Variable::putQIntoZmm - Place the value of the content variable at the quad word in the numbered zmm register

194 Nasm::X86::Variable::putWIntoXmm - Place the value of the content variable at the word in the numbered xmm register

195 Nasm::X86::Variable::putWIntoZmm - Place the value of the content variable at the word in the numbered zmm register

196 Nasm::X86::Variable::saveZmm - Save bytes into the memory addressed by the target variable from the numbered zmm register.

197 Nasm::X86::Variable::setMask - Set the mask register to ones starting at the specified position for the specified length and zeroes elsewhere

198 Nasm::X86::Variable::setReg - Set the named registers from the content of the variable

199 Nasm::X86::Variable::setZmm - Load bytes from the memory addressed by specified source variable into the numbered zmm register at the offset in the specified offset moving the number of bytes in the specified variable

200 Nasm::X86::Variable::str - The name of the variable

201 Nasm::X86::Variable::sub - Subtract the right hand variable from the left hand variable and return the result as a new variable

202 Nasm::X86::Variable::times - Multiply the left hand variable by the right hand variable and return the result as a new variable

203 OpenRead - Open a file, whose name is addressed by rax, for read and return the file descriptor in rax

204 OpenWrite - Create the file named by the terminated string addressed by rax for write

205 PeekR - Peek at register on stack

206 Plus - Add the last operands and place the result in the first operand

207 PopR - Pop registers from the stack

208 PopRR - Pop registers from the stack without tracking

209 PrintErrMemory - Print the memory addressed by rax for a length of rdi on stderr

210 PrintErrMemoryInHex - Dump memory from the address in rax for the length in rdi on stderr

211 PrintErrMemoryInHexNL - Dump memory from the address in rax for the length in rdi and then print a new line

212 PrintErrMemoryNL - Print the memory addressed by rax for a length of rdi followed by a new line on stderr

213 PrintErrNL - Print a new line to stderr

214 PrintErrRaxInHex - Write the content of register rax in hexadecimal in big endian notation to stderr

215 PrintErrRegisterInHex - Print the named registers as hex strings on stderr

216 PrintErrString - Print a constant string to stderr.

217 PrintErrStringNL - Print a constant string followed by a new line to stderr

218 PrintMemory - Print the memory addressed by rax for a length of rdi on the specified channel

219 PrintMemoryInHex - Dump memory from the address in rax for the length in rdi on the specified channel

220 PrintNL - Print a new line to stdout or stderr

221 PrintOutMemory - Print the memory addressed by rax for a length of rdi on stdout

222 PrintOutMemoryInHex - Dump memory from the address in rax for the length in rdi on stdout

223 PrintOutMemoryInHexNL - Dump memory from the address in rax for the length in rdi and then print a new line

224 PrintOutMemoryNL - Print the memory addressed by rax for a length of rdi followed by a new line on stdout

225 PrintOutNL - Print a new line to stderr

226 PrintOutRaxInHex - Write the content of register rax in hexadecimal in big endian notation to stderr

227 PrintOutRaxInReverseInHex - Write the content of register rax to stderr in hexadecimal in little endian notation

228 PrintOutRegisterInHex - Print the named registers as hex strings on stdout

229 PrintOutRegistersInHex - Print the general purpose registers in hex

230 PrintOutRflagsInHex - Print the flags register in hex

231 PrintOutRipInHex - Print the instruction pointer in hex

232 PrintOutString - Print a constant string to stdout.

233 PrintOutStringNL - Print a constant string followed by a new line to stdout

234 PrintOutZF - Print the zero flag without disturbing it

235 PrintRaxInHex - Write the content of register rax in hexadecimal in big endian notation to the specified channel

236 PrintRegisterInHex - Print the named registers as hex strings

237 PrintString - Print a constant string to the specified channel

238 PushR - Push registers onto the stack

239 PushRR - Push registers onto the stack without tracking

240 Rb - Layout bytes in the data segment and return their label

241 Rbwdq - Layout data

242 RComment - Insert a comment into the read only data segment

243 Rd - Layout double words in the data segment and return their label

244 ReadFile - Read a file whose name is addressed by rax into memory.

245 ReadTimeStampCounter - Read the time stamp counter and return the time in nanoseconds in rax

246 RegisterSize - Return the size of a register

247 removeNonAsciiChars - Return a copy of the specified string with all the non ascii characters removed

248 ReorderSyscallRegisters - Map the list of registers provided to the 64 bit system call sequence

249 ReorderXmmRegisters - Map the list of xmm registers provided to 0-31

250 RestoreFirstFour - Restore the first 4 parameter registers

251 RestoreFirstFourExceptRax - Restore the first 4 parameter registers except rax so it can return its value

252 RestoreFirstFourExceptRaxAndRdi - Restore the first 4 parameter registers except rax and rdi so we can return a pair of values

253 RestoreFirstSeven - Restore the first 7 parameter registers

254 RestoreFirstSevenExceptRax - Restore the first 7 parameter registers except rax which is being used to return the result

255 RestoreFirstSevenExceptRaxAndRdi - Restore the first 7 parameter registers except rax and rdi which are being used to return the results

256 Rq - Layout quad words in the data segment and return their label

257 Rs - Layout bytes in read only memory and return their label

258 Rw - Layout words in the data segment and return their label

259 SaveFirstFour - Save the first 4 parameter registers making any parameter registers read only

260 SaveFirstSeven - Save the first 7 parameter registers

261 Scope - Create and stack a new scope and continue with it as the current scope

262 ScopeEnd - End the current scope and continue with the containing parent scope

263 SetLabel - Set a label in the code section

264 SetLengthOfShortString - Set the length of the short string held in the numbered zmm register into the specified register

265 SetMaskRegister - Set the mask register to ones starting at the specified position for the specified length and zeroes elsewhere

266 SetRegisterToMinusOne - Set the specified register to -1

267 SetZF - Set the zero flag

268 Start - Initialize the assembler

269 StatSize - Stat a file whose name is addressed by rax to get its size in rax

270 Structure - Create a structure addressed by a register

271 Subroutine - Create a subroutine that can be called in assembler code

272 totalBytesAssembled - Total size in bytes of all files assembled during testing

273 unlinkFile - Unlink the named file

274 UnReorderSyscallRegisters - Recover the initial values in registers that were reordered

275 UnReorderXmmRegisters - Recover the initial values in the xmm registers that were reordered

276 Variable - Create a new variable with the specified size and name initialized via an expression

277 Vb - Define a byte variable

278 Vd - Define a double word variable

279 Vq - Define a quad variable

280 Vr - Define a reference variable

281 Vw - Define a word variable

282 Vx - Define an xmm variable

283 VxyzInit - Initialize an xyz register from general purpose registers

284 Vy - Define an ymm variable

285 Vz - Define an zmm variable

286 WaitPid - Wait for the pid in rax to complete

Installation

This module is written in 100% Pure Perl and, thus, it is easy to read, comprehend, use, modify and install via cpan:

sudo cpan install Nasm::X86

Author

philiprbrenan@gmail.com

http://www.appaapps.com

Copyright

Copyright (c) 2016-2021 Philip R Brenan.

This module is free software. It may be used, redistributed and/or modified under the same terms as Perl itself.