Name

Nasm::X86 - Generate X86 assembler code using Perl as a macro pre-processor.

Synopsis

Write and execute x64 instructions using Perl as a macro assembler as shown in the following examples.

Examples

Avx512 instructions

Use avx512 instructions to do 64 comparisons in parallel:

my $P = "2F";                                                                 # Value to test for
my $l = Rb 0;  Rb $_ for 1..RegisterSize zmm0;                                # 0..63
Vmovdqu8 zmm0, "[$l]";                                                        # Load data to test
PrintOutRegisterInHex zmm0;

Mov rax, "0x$P";                                                              # Broadcast the value to be tested
Vpbroadcastb zmm1, rax;
PrintOutRegisterInHex zmm1;

for my $c(0..7)                                                               # Each possible test
 {my $m = "k$c";
  Vpcmpub $m, zmm1, zmm0, $c;
  PrintOutRegisterInHex $m;
 }

Kmovq rax, k0;                                                                # Count the number of trailing zeros in k0
Tzcnt rax, rax;
PrintOutRegisterInHex rax;

is_deeply Assemble, <<END;                                                    # Assemble and test
zmm0: 3F3E 3D3C 3B3A 3938   3736 3534 3332 3130   2F2E 2D2C 2B2A 2928   2726 2524 2322 2120   1F1E 1D1C 1B1A 1918   1716 1514 1312 1110   0F0E 0D0C 0B0A 0908   0706 0504 0302 0100
zmm1: 2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F
  k0: 0000 8000 0000 0000
  k1: FFFF 0000 0000 0000
  k2: FFFF 8000 0000 0000
  k3: 0000 0000 0000 0000
  k4: FFFF 7FFF FFFF FFFF
  k5: 0000 FFFF FFFF FFFF
  k6: 0000 7FFF FFFF FFFF
  k7: FFFF FFFF FFFF FFFF
 rax: 0000 0000 0000 002F
END

Dynamic string held in an arena

Create a dynamic byte string, add some content to it, write the byte string to stdout:

my $a = CreateByteString;                                                     # Create a string
my $b = CreateByteString;                                                     # Create a string
$a->q('aa');
$b->q('bb');
$a->q('AA');
$b->q('BB');
$a->q('aa');
$b->q('bb');
$a->out;
$b->out;
PrintOutNL;
is_deeply Assemble, <<END;                                                    # Assemble and execute
aaAAaabbBBbb
END

Process management

Start a child process and wait for it, printing out the process identifiers of each process involved:

Fork;                                                                         # Fork

Test rax,rax;
If                                                                            # Parent
 {Mov rbx, rax;
  WaitPid;
  PrintOutRegisterInHex rax;
  PrintOutRegisterInHex rbx;
  GetPid;                                                                     # Pid of parent as seen in parent
  Mov rcx,rax;
  PrintOutRegisterInHex rcx;
 }
sub                                                                           # Child
 {Mov r8,rax;
  PrintOutRegisterInHex r8;
  GetPid;                                                                     # Child pid as seen in child
  Mov r9,rax;
  PrintOutRegisterInHex r9;
  GetPPid;                                                                    # Parent pid as seen in child
  Mov r10,rax;
  PrintOutRegisterInHex r10;
 };

my $r = Assemble;

#    r8: 0000 0000 0000 0000   #1 Return from fork as seen by child
#    r9: 0000 0000 0003 0C63   #2 Pid of child
#   r10: 0000 0000 0003 0C60   #3 Pid of parent from child
#   rax: 0000 0000 0003 0C63   #4 Return from fork as seen by parent
#   rbx: 0000 0000 0003 0C63   #5 Wait for child pid result
#   rcx: 0000 0000 0003 0C60   #6 Pid of parent

Read a file

Read this file:

ReadFile(Vq(file, Rs($0)), (my $s = Vq(size)), my $a = Vq(address));          # Read file
$a->setReg(rax);                                                              # Address of file in memory
$s->setReg(rdi);                                                              # Length  of file in memory
PrintOutMemory;                                                               # Print contents of memory to stdout

my $r = Assemble(1 => (my $f = temporaryFile));                               # Assemble and execute
ok fileMd5Sum($f) eq fileMd5Sum($0);                                          # Output contains this file

Call functions in Libc

Call C functions by naming them as external and including their library:

my $format = Rs "Hello %s\n";
my $data   = Rs "World";

Extern qw(printf exit malloc strcpy); Link 'c';

CallC 'malloc', length($format)+1;
Mov r15, rax;
CallC 'strcpy', r15, $format;
CallC 'printf', r15, $data;
CallC 'exit', 0;

ok Assemble(eq => <<END);
Hello World
END

Installation

The Intel Software Development Emulator will be required if you do not have a computer with the avx512 instruction set and wish to execute code containing these instructions. For details see:

https://software.intel.com/content/dam/develop/external/us/en/documents/downloads/sde-external-8.63.0-2021-01-18-lin.tar.bz2

The Networkwide Assembler is required to assemble the code produced For full details see:

https://github.com/philiprbrenan/NasmX86/blob/main/.github/workflows/main.yml

Execution Options

The "Assemble(%)" function takes the keywords described below to control assembly and execution of the assembled code:

"Assemble(%)" runs the generated program after a successful assembly unless the keep option is specified. The output on stdout is captured in file zzzOut.txt and that on stderr is captured in file zzzErr.txt.

The amount of output displayed is controlled by the debug keyword.

The eq keyword can be used to test that the output by the run.

The output produced by the program execution is returned as the result of the "Assemble(%)" function.

Keep

To produce a named executable without running it, specify:

keep=>"executable file name"

Emulator

To run the executable produced by "Assemble(%)" without the Intel emulator, which is used by default if it is present, specify:

emulator=>0

eq

The eq keyword supplies the expected output from the execution of the assembled program. If the expected output is not obtained on stdout then we confess and stop further testing. Output on stderr is ignored for test purposes.

The point at which the wanted output diverges from the output actually got is displayed to assist debugging as in:

Comparing wanted with got failed at line: 4, character: 22
Start:
    k7: 0000 0000 0000 0001
    k6: 0000 0000 0000 0003
    k5: 0000 0000 0000 0007
    k4: 0000 0000 000
Want ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 0002
    k3: 0000 0000 0000 0006
    k2: 0000 0000 0000 000E
    k1: 0000 0000
Got  ________________________________________________________________________________
0 0002
    k3: 0000 0000 0000 0006
    k2: 0000 0000 0000 000E
    k1: 0000 0000

Debug

The debug keyword controls how much output is printed after each assemble and run.

debug => 0

produces no output unless the eq keyword was specified and the actual output fails to match the expected output. If such a test fails we Carp::confess.

debug => 1

shows all the output produces and conducts the test specified by the eq is present. If the test fails we Carp::confess.

debug => 2

shows all the output produces and conducts the test specified by the eq is present. If the test fails we continue rather than calling Carp::confess.

Description

Generate X86 assembler code using Perl as a macro pre-processor.

Version "20210629".

The following sections describe the methods in each functional area of this module. For an alphabetic listing of all methods by name see Index.

Data

Layout data

SetLabel($l)

Set a label in the code section

   Parameter  Description
1  $l         Label

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;

  SetLabel $l;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

Ds(@d)

Layout bytes in memory and return their label

   Parameter  Description
1  @d         Data to be laid out

Example:

  my $q = Rs('a'..'z');

  Mov rax, Ds('0'x64);                                                          # Output area  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Vmovdqu32(xmm0, "[$q]");                                                      # Load
  Vprolq   (xmm0,   xmm0, 32);                                                  # Rotate double words in quad words
  Vmovdqu32("[rax]", xmm0);                                                     # Save
  Mov rdi, 16;
  PrintOutMemory;

  ok Assemble =~ m(efghabcdmnopijkl)s;

Rs(@d)

Layout bytes in read only memory and return their label

   Parameter  Description
1  @d         Data to be laid out

Example:

  Comment "Print a string from memory";
  my $s = "Hello World";

  Mov rax, Rs($s);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov rdi, length $s;
  PrintOutMemory;

  ok Assemble =~ m(Hello World);


  my $q = Rs('abababab');  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov(rax, 1);
  Mov(rbx, 2);
  Mov(rcx, 3);
  Mov(rdx, 4);
  Mov(r8,  5);
  Lea r9,  "[rax+rbx]";
  PrintOutRegistersInHex;

  my $r = Assemble;
  ok $r =~ m( r8: 0000 0000 0000 0005.* r9: 0000 0000 0000 0003.*rax: 0000 0000 0000 0001)s;
  ok $r =~ m(rbx: 0000 0000 0000 0002.*rcx: 0000 0000 0000 0003.*rdx: 0000 0000 0000 0004)s;

Db(@bytes)

Layout bytes in the data segment and return their label

   Parameter  Description
1  @bytes     Bytes to layout

Example:

  my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;

  my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Vmovdqu8 xmm0, "[$s]";
  Vmovdqu8 xmm1, "[$t]";
  PrintOutRegisterInHex xmm0;
  PrintOutRegisterInHex xmm1;
  Sub rsp, 16;

  Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
  Mov rdi, 16;
  Mov rsi, $s;
  CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));
  PrintOutMemoryInHex;

  my $r = Assemble;
  ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

Dw(@words)

Layout words in the data segment and return their label

   Parameter  Description
1  @words     Words to layout

Example:

  my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;

  my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Vmovdqu8 xmm0, "[$s]";
  Vmovdqu8 xmm1, "[$t]";
  PrintOutRegisterInHex xmm0;
  PrintOutRegisterInHex xmm1;
  Sub rsp, 16;

  Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
  Mov rdi, 16;
  Mov rsi, $s;
  CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));
  PrintOutMemoryInHex;

  my $r = Assemble;
  ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

Dd(@dwords)

Layout double words in the data segment and return their label

   Parameter  Description
1  @dwords    Double words to layout

Example:

  my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;

  my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Vmovdqu8 xmm0, "[$s]";
  Vmovdqu8 xmm1, "[$t]";
  PrintOutRegisterInHex xmm0;
  PrintOutRegisterInHex xmm1;
  Sub rsp, 16;

  Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
  Mov rdi, 16;
  Mov rsi, $s;
  CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));
  PrintOutMemoryInHex;

  my $r = Assemble;
  ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

Dq(@qwords)

Layout quad words in the data segment and return their label

   Parameter  Description
1  @qwords    Quad words to layout

Example:

  my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;

  my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Vmovdqu8 xmm0, "[$s]";
  Vmovdqu8 xmm1, "[$t]";
  PrintOutRegisterInHex xmm0;
  PrintOutRegisterInHex xmm1;
  Sub rsp, 16;

  Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
  Mov rdi, 16;
  Mov rsi, $s;
  CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));
  PrintOutMemoryInHex;

  my $r = Assemble;
  ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

Rb(@bytes)

Layout bytes in the data segment and return their label

   Parameter  Description
1  @bytes     Bytes to layout

Example:

  my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;

  Vmovdqu8 xmm0, "[$s]";
  Vmovdqu8 xmm1, "[$t]";
  PrintOutRegisterInHex xmm0;
  PrintOutRegisterInHex xmm1;
  Sub rsp, 16;

  Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
  Mov rdi, 16;
  Mov rsi, $s;
  CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));
  PrintOutMemoryInHex;

  my $r = Assemble;
  ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

Rw(@words)

Layout words in the data segment and return their label

   Parameter  Description
1  @words     Words to layout

Example:

  my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;

  Vmovdqu8 xmm0, "[$s]";
  Vmovdqu8 xmm1, "[$t]";
  PrintOutRegisterInHex xmm0;
  PrintOutRegisterInHex xmm1;
  Sub rsp, 16;

  Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
  Mov rdi, 16;
  Mov rsi, $s;
  CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));
  PrintOutMemoryInHex;

  my $r = Assemble;
  ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

Rd(@dwords)

Layout double words in the data segment and return their label

   Parameter  Description
1  @dwords    Double words to layout

Example:

  my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;

  Vmovdqu8 xmm0, "[$s]";
  Vmovdqu8 xmm1, "[$t]";
  PrintOutRegisterInHex xmm0;
  PrintOutRegisterInHex xmm1;
  Sub rsp, 16;

  Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
  Mov rdi, 16;
  Mov rsi, $s;
  CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));
  PrintOutMemoryInHex;

  my $r = Assemble;
  ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

Rq(@qwords)

Layout quad words in the data segment and return their label

   Parameter  Description
1  @qwords    Quad words to layout

Example:

  my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;

  Vmovdqu8 xmm0, "[$s]";
  Vmovdqu8 xmm1, "[$t]";
  PrintOutRegisterInHex xmm0;
  PrintOutRegisterInHex xmm1;
  Sub rsp, 16;

  Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
  Mov rdi, 16;
  Mov rsi, $s;
  CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));
  PrintOutMemoryInHex;

  my $r = Assemble;
  ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

Float32($float)

32 bit float

   Parameter  Description
1  $float     Float

Float64($float)

64 bit float

   Parameter  Description
1  $float     Float

Registers

Operations on registers

xmm(@r)

Add xmm to the front of a list of register expressions

   Parameter  Description
1  @r         Register numbers

ymm(@r)

Add ymm to the front of a list of register expressions

   Parameter  Description
1  @r         Register numbers

zmm(@r)

Add zmm to the front of a list of register expressions

   Parameter  Description
1  @r         Register numbers

Save and Restore

Saving and restoring registers via the stack

SaveFirstFour(@keep)

Save the first 4 parameter registers making any parameter registers read only

   Parameter  Description
1  @keep      Registers to mark as read only

Example:

  Mov rax, 1;
  Mov rdi, 1;

  SaveFirstFour;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;


  SaveFirstFour;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;


  SaveFirstFour;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

RestoreFirstFour()

Restore the first 4 parameter registers

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;

  RestoreFirstFour;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

RestoreFirstFourExceptRax()

Restore the first 4 parameter registers except rax so it can return its value

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;

  RestoreFirstFourExceptRax;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

RestoreFirstFourExceptRaxAndRdi()

Restore the first 4 parameter registers except rax and rdi so we can return a pair of values

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  RestoreFirstFourExceptRaxAndRdi;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

SaveFirstSeven()

Save the first 7 parameter registers

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;

  SaveFirstSeven;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;

  SaveFirstSeven;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;

  SaveFirstSeven;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

RestoreFirstSeven()

Restore the first 7 parameter registers

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;

  RestoreFirstSeven;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

RestoreFirstSevenExceptRax()

Restore the first 7 parameter registers except rax which is being used to return the result

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;

  RestoreFirstSevenExceptRax;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

RestoreFirstSevenExceptRaxAndRdi()

Restore the first 7 parameter registers except rax and rdi which are being used to return the results

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;

  RestoreFirstSevenExceptRaxAndRdi;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END

  ok 8 == RegisterSize rax;

ReorderSyscallRegisters(@registers)

Map the list of registers provided to the 64 bit system call sequence

   Parameter   Description
1  @registers  Registers

Example:

  Mov rax, 1;  Mov rdi, 2;  Mov rsi,  3;  Mov rdx,  4;
  Mov r8,  8;  Mov r9,  9;  Mov r10, 10;  Mov r11, 11;


  ReorderSyscallRegisters   r8,r9;                                              # Reorder the registers for syscall  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax;
  PrintOutRegisterInHex rdi;

  UnReorderSyscallRegisters r8,r9;                                              # Unreorder the registers to recover their original values
  PrintOutRegisterInHex rax;
  PrintOutRegisterInHex rdi;

  ok Assemble =~ m(rax:.*08.*rdi:.*9.*rax:.*1.*rdi:.*2.*)s;

UnReorderSyscallRegisters(@registers)

Recover the initial values in registers that were reordered

   Parameter   Description
1  @registers  Registers

Example:

  Mov rax, 1;  Mov rdi, 2;  Mov rsi,  3;  Mov rdx,  4;
  Mov r8,  8;  Mov r9,  9;  Mov r10, 10;  Mov r11, 11;

  ReorderSyscallRegisters   r8,r9;                                              # Reorder the registers for syscall
  PrintOutRegisterInHex rax;
  PrintOutRegisterInHex rdi;


  UnReorderSyscallRegisters r8,r9;                                              # Unreorder the registers to recover their original values  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax;
  PrintOutRegisterInHex rdi;

  ok Assemble =~ m(rax:.*08.*rdi:.*9.*rax:.*1.*rdi:.*2.*)s;

RegisterSize($r)

Return the size of a register

   Parameter  Description
1  $r         Register

Example:

  Mov rax, 1;
  Mov rdi, 1;
  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSeven;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFour;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRax;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRax;
  PrintOutRegisterInHex rax, rdi;

  SaveFirstFour;
  Mov rax, 2;
  Mov rdi, 2;
  SaveFirstSeven;
  Mov rax, 3;
  Mov rdi, 4;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstSevenExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;
  RestoreFirstFourExceptRaxAndRdi;
  PrintOutRegisterInHex rax, rdi;

  Bswap rax;
  PrintOutRegisterInHex rax;

  my $l = Label;
  Jmp $l;
  SetLabel $l;

  is_deeply Assemble, <<END;
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0002
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0001
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0002
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0001
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0000 0000 0000 0003
   rdi: 0000 0000 0000 0004
   rax: 0300 0000 0000 0000
END


  ok 8 == RegisterSize rax;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

ClearRegisters(@registers)

Clear registers by setting them to zero

   Parameter   Description
1  @registers  Registers

Example:

  Mov rax,1;
  Kmovq k0,  rax;
  Kaddb k0,  k0, k0;
  Kaddb k0,  k0, k0;
  Kaddb k0,  k0, k0;
  Kmovq rax, k0;
  PushR k0;

  ClearRegisters k0;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Kmovq k1, k0;
  PopR  k0;
  PrintOutRegisterInHex k0;
  PrintOutRegisterInHex k1;

  ok Assemble =~ m(k0: 0000 0000 0000 0008.*k1: 0000 0000 0000 0000)s;

SetMaskRegister($mask, $start, $length)

Set the mask register to ones starting at the specified position for the specified length and zeroes elsewhere

   Parameter  Description
1  $mask      Mask register to set
2  $start     Register containing start position or 0 for position 0
3  $length    Register containing end position

Example:

  Mov rax, 8;
  Mov rsi, -1;

  Inc rsi; SetMaskRegister(k0, rax, rsi); PrintOutRegisterInHex k0;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Inc rsi; SetMaskRegister(k1, rax, rsi); PrintOutRegisterInHex k1;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Inc rsi; SetMaskRegister(k2, rax, rsi); PrintOutRegisterInHex k2;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Inc rsi; SetMaskRegister(k3, rax, rsi); PrintOutRegisterInHex k3;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Inc rsi; SetMaskRegister(k4, rax, rsi); PrintOutRegisterInHex k4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Inc rsi; SetMaskRegister(k5, rax, rsi); PrintOutRegisterInHex k5;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Inc rsi; SetMaskRegister(k6, rax, rsi); PrintOutRegisterInHex k6;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Inc rsi; SetMaskRegister(k7, rax, rsi); PrintOutRegisterInHex k7;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  is_deeply Assemble, <<END;
    k0: 0000 0000 0000 0000
    k1: 0000 0000 0000 0100
    k2: 0000 0000 0000 0300
    k3: 0000 0000 0000 0700
    k4: 0000 0000 0000 0F00
    k5: 0000 0000 0000 1F00
    k6: 0000 0000 0000 3F00
    k7: 0000 0000 0000 7F00
END

SetZF()

Set the zero flag

Example:

  SetZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutZF;
  ClearZF;
  PrintOutZF;

  SetZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutZF;

  SetZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutZF;
  ClearZF;
  PrintOutZF;

  ok Assemble =~ m(ZF=1.*ZF=0.*ZF=1.*ZF=1.*ZF=0)s;

ClearZF()

Clear the zero flag

Example:

  SetZF;
  PrintOutZF;

  ClearZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutZF;
  SetZF;
  PrintOutZF;
  SetZF;
  PrintOutZF;

  ClearZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutZF;

  ok Assemble =~ m(ZF=1.*ZF=0.*ZF=1.*ZF=1.*ZF=0)s;

Tracing

Trace the execution of a program

Trace()

Add tracing code

Tracking

Track the use of registers so that we do not accidently use unset registers or write into registers that are already in use.

Keep(@target)

Mark free registers so that they are not updated until we Free them or complain if the register is already in use.

   Parameter  Description
1  @target    Registers to keep

KeepSet($target)

Confirm that the specified registers are in use

   Parameter  Description
1  $target    Registers to keep

KeepPush(@target)

Push the current status of the specified registers and then mark them as free

   Parameter  Description
1  @target    Registers to keep

KeepPop(@target)

Reset the status of the specified registers to the status quo ante the last push

   Parameter  Description
1  @target    Registers to keep

KeepReturn(@target)

Pop the specified register and mark it as in use to effect a subroutine return with this register.

   Parameter  Description
1  @target    Registers to return

KeepFree(@target)

Free registers so that they can be reused

   Parameter  Description
1  @target    Registers to free

Mask

Operations on mask registers

LoadConstantIntoMaskRegister($reg, $value)

Load a constant into a mask register

   Parameter  Description
1  $reg       Mask register to load
2  $value     Constant to load

Example:

  Mov r14, 0;
  Kmovq k0, r14;
  KeepFree r14;
  Ktestq k0, k0;
  IfZ {PrintOutStringNL "0 & 0 == 0"};
  PrintOutZF;


  LoadConstantIntoMaskRegister k1, 1;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Ktestq k1, k1;
  IfNz {PrintOutStringNL "1 & 1 != 0"};
  PrintOutZF;


  LoadConstantIntoMaskRegister k2, eval "0b".(('1'x4).('0'x4))x2;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  PrintOutRegisterInHex k0, k1, k2;

  Mov  r15, 0x89abcdef;
  Mov  r14, 0x01234567;
  Shl  r14, 32;
  Or r15, r14;
  Push r15;
  Push r15;
  KeepFree r15;
  PopEax;  PrintRaxInHex($stdout, 3); PrintOutNL; KeepFree rax;

  my $a = Vq('aaaa');
  $a->pop;
  $a->push;
  $a->outNL;

  PopEax;  PrintRaxInHex($stdout, 3); PrintOutNL; KeepFree rax;

  ok Assemble(debug => 0, eq => <<END);
0 & 0 == 0
ZF=1
1 & 1 != 0
ZF=0
    k0: 0000 0000 0000 0000
    k1: 0000 0000 0000 0001
    k2: 0000 0000 0000 F0F0
89AB CDEF
aaaa: 89AB CDEF 0123 4567
0123 4567
END

Structured Programming

Structured programming constructs

If($jump, $then, $else)

If

   Parameter  Description
1  $jump      Jump op code of variable
2  $then      Then - required
3  $else      Else - optional

Example:

  Mov rax, 0;
  Test rax,rax;
  IfNz
   {PrintOutRegisterInHex rax;
   } sub
   {PrintOutRegisterInHex rbx;
   };
  KeepFree rax;
  Mov rax, 1;
  Test rax,rax;
  IfNz
   {PrintOutRegisterInHex rcx;
   } sub
   {PrintOutRegisterInHex rdx;
   };

  ok Assemble =~ m(rbx.*rcx)s;

Then($body)

Then body for an If statement

   Parameter  Description
1  $body      Then body

Else($body)

Else body for an If statement

   Parameter  Description
1  $body      Else body

IfEq($then, $else)

If equal execute the then body else the else body

   Parameter  Description
1  $then      Then - required
2  $else      Else - optional

IfNe($then, $else)

If not equal execute the then body else the else body

   Parameter  Description
1  $then      Then - required
2  $else      Else - optional

IfNz($then, $else)

If the zero is not set then execute the then body else the else body

   Parameter  Description
1  $then      Then - required
2  $else      Else - optional

IfZ($then, $else)

If the zero is set then execute the then body else the else body

   Parameter  Description
1  $then      Then - required
2  $else      Else - optional

IfLt($then, $else)

If less than execute the then body else the else body

   Parameter  Description
1  $then      Then - required
2  $else      Else - optional

IfLe($then, $else)

If less than or equal execute the then body else the else body

   Parameter  Description
1  $then      Then - required
2  $else      Else - optional

IfGt($then, $else)

If greater than execute the then body else the else body

   Parameter  Description
1  $then      Then - required
2  $else      Else - optional

IfGe($then, $else)

If greater than or equal execute the then body else the else body

   Parameter  Description
1  $then      Then - required
2  $else      Else - optional

For($body, $register, $limit, $increment)

For - iterate the body as long as register is less than limit incrementing by increment each time

   Parameter   Description
1  $body       Body
2  $register   Register
3  $limit      Limit on loop
4  $increment  Increment on each iteration

Example:

  For  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

   {PrintOutRegisterInHex rax
   } rax, 16, 1;

  my $r = Assemble;
  ok $r =~ m(( 0000){3} 0000)i;
  ok $r =~ m(( 0000){3} 000F)i;

ForIn($full, $last, $register, $limit, $increment)

For - iterate the full body as long as register plus increment is less than than limit incrementing by increment each time then increment the last body for the last non full block.

   Parameter   Description
1  $full       Body for full block
2  $last       Body for last block
3  $register   Register
4  $limit      Limit on loop
5  $increment  Increment on each iteration

ForEver($body)

Iterate for ever

   Parameter  Description
1  $body      Body to iterate

Macro($body, %options)

Create a sub with optional parameters name=> the name of the subroutine so it can be reused rather than regenerated, comment=> a comment describing the sub

   Parameter  Description
1  $body      Body
2  %options   Options.

Subroutine($body, %options)

Create a subroutine that can be called in assembler code

   Parameter  Description
1  $body      Body
2  %options   Options.

Nasm::X86::Sub::call($sub, @parameters)

Call a sub passing it some parameters

   Parameter    Description
1  $sub         Subroutine descriptor
2  @parameters  Parameter variables

cr($body, @registers)

Call a subroutine with a reordering of the registers.

   Parameter   Description
1  $body       Code to execute with reordered registers
2  @registers  Registers to reorder

Comment(@comment)

Insert a comment into the assembly code

   Parameter  Description
1  @comment   Text of comment

Example:

  Comment "Print a string from memory";  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  my $s = "Hello World";
  Mov rax, Rs($s);
  Mov rdi, length $s;
  PrintOutMemory;

  ok Assemble =~ m(Hello World);

DComment(@comment)

Insert a comment into the data segment

   Parameter  Description
1  @comment   Text of comment

RComment(@comment)

Insert a comment into the read only data segment

   Parameter  Description
1  @comment   Text of comment

Print

Print

PrintNL($channel)

Print a new line to stdout or stderr

   Parameter  Description
1  $channel   Channel to write on

PrintErrNL()

Print a new line to stderr

PrintOutNL()

Print a new line to stderr

Example:

  my $q = Rs('abababab');
  Mov(rax, "[$q]");
  PrintOutString "rax: ";
  PrintOutRaxInHex;

  PrintOutNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Xor rax, rax;
  PrintOutString "rax: ";
  PrintOutRaxInHex;

  PrintOutNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  ok Assemble =~ m(rax: 6261 6261 6261 6261.*rax: 0000 0000 0000 0000)s;

PrintString($channel, @string)

Print a constant string to the specified channel

   Parameter  Description
1  $channel   Channel
2  @string    Strings

PrintErrString(@string)

Print a constant string to stderr.

   Parameter  Description
1  @string    String

PrintOutString(@string)

Print a constant string to stdout.

   Parameter  Description
1  @string    String

PrintErrStringNL(@string)

Print a constant string followed by a new line to stderr

   Parameter  Description
1  @string    Strings

Example:

  PrintOutStringNL "Hello World";
  PrintOutStringNL "Hello
World";

  PrintErrStringNL "Hello World";  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  ok Assemble(debug => 0, eq => <<END);
Hello World
Hello
World
END

PrintOutStringNL(@string)

Print a constant string followed by a new line to stdout

   Parameter  Description
1  @string    Strings

Example:

  PrintOutStringNL "Hello World";  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  PrintOutStringNL "Hello
World";  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintErrStringNL "Hello World";

  ok Assemble(debug => 0, eq => <<END);
Hello World
Hello
World
END

PrintRaxInHex($channel, $end)

Write the content of register rax in hexadecimal in big endian notation to the specified channel

   Parameter  Description
1  $channel   Channel
2  $end       Optional end byte

PrintErrRaxInHex()

Write the content of register rax in hexadecimal in big endian notation to stderr

PrintOutRaxInHex()

Write the content of register rax in hexadecimal in big endian notation to stderr

Example:

  my $q = Rs('abababab');
  Mov(rax, "[$q]");
  PrintOutString "rax: ";

  PrintOutRaxInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutNL;
  Xor rax, rax;
  PrintOutString "rax: ";

  PrintOutRaxInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutNL;

  ok Assemble =~ m(rax: 6261 6261 6261 6261.*rax: 0000 0000 0000 0000)s;

PrintOutRaxInReverseInHex()

Write the content of register rax to stderr in hexadecimal in little endian notation

Example:

  Mov rax, 0x07654321;
  Shl rax, 32;
  Or  rax, 0x07654321;
  PushR rax;

  PrintOutRaxInHex;
  PrintOutNL;

  PrintOutRaxInReverseInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutNL;
  KeepFree rax;

  Mov rax, rsp;
  Mov rdi, 8;
  PrintOutMemoryInHex;
  PrintOutNL;
  PopR rax;
  KeepFree rax, rdi;

  Mov rax, 4096;
  PushR rax;
  Mov rax, rsp;
  Mov rdi, 8;
  PrintOutMemoryInHex;
  PrintOutNL;
  PopR rax;

  is_deeply Assemble, <<END;
0765 4321 0765 4321
2143 6507 2143 6507
2143 6507 2143 6507
0010 0000 0000 0000
END

PrintRegisterInHex($channel, @r)

Print the named registers as hex strings

   Parameter  Description
1  $channel   Channel to print on
2  @r         Names of the registers to print

PrintErrRegisterInHex(@r)

Print the named registers as hex strings on stderr

   Parameter  Description
1  @r         Names of the registers to print

PrintOutRegisterInHex(@r)

Print the named registers as hex strings on stdout

   Parameter  Description
1  @r         Names of the registers to print

Example:

  my $q = Rs(('a'..'p')x4);
  Mov r8,"[$q]";

  PrintOutRegisterInHex r8;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  ok Assemble =~ m(r8: 6867 6665 6463 6261)s;

PrintOutRegistersInHex()

Print the general purpose registers in hex

Example:

  my $q = Rs('abababab');
  Mov(rax, 1);
  Mov(rbx, 2);
  Mov(rcx, 3);
  Mov(rdx, 4);
  Mov(r8,  5);
  Lea r9,  "[rax+rbx]";

  PrintOutRegistersInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $r = Assemble;
  ok $r =~ m( r8: 0000 0000 0000 0005.* r9: 0000 0000 0000 0003.*rax: 0000 0000 0000 0001)s;
  ok $r =~ m(rbx: 0000 0000 0000 0002.*rcx: 0000 0000 0000 0003.*rdx: 0000 0000 0000 0004)s;

PrintErrZF()

Print the zero flag without disturbing it on stderr

PrintOutZF()

Print the zero flag without disturbing it on stdout

Example:

  SetZF;

  PrintOutZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  ClearZF;

  PrintOutZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  SetZF;

  PrintOutZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  SetZF;

  PrintOutZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  ClearZF;

  PrintOutZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  ok Assemble =~ m(ZF=1.*ZF=0.*ZF=1.*ZF=1.*ZF=0)s;

Variables

Variable definitions and operations

Scopes

Each variable is contained in a scope in an effort to detect references to out of scope variables

Scope($name)

Create and stack a new scope and continue with it as the current scope

   Parameter  Description
1  $name      Scope name

Example:

if (1)                                                                              

 {my $start = Scope(start);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $s1    = Scope(s1);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $s2    = Scope(s2);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  is_deeply $s2->depth, 2;
  is_deeply $s2->name,  q(s2);
  ScopeEnd;


  my $t1    = Scope(t1);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $t2    = Scope(t2);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  is_deeply $t1->depth, 2;
  is_deeply $t1->name,  q(t1);
  is_deeply $t2->depth, 3;
  is_deeply $t2->name,  q(t2);

  ok  $s1->currentlyVisible;
  ok !$s2->currentlyVisible;

  ok  $s1->contains($t2);
  ok !$s2->contains($t2);

  ScopeEnd;

  is_deeply $s1->depth, 1;
  is_deeply $s1->name,  q(s1);
  ScopeEnd;
 }

ScopeEnd()

End the current scope and continue with the containing parent scope

Example:

if (1)                                                                              
 {my $start = Scope(start);
  my $s1    = Scope(s1);
  my $s2    = Scope(s2);
  is_deeply $s2->depth, 2;
  is_deeply $s2->name,  q(s2);

  ScopeEnd;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $t1    = Scope(t1);
  my $t2    = Scope(t2);
  is_deeply $t1->depth, 2;
  is_deeply $t1->name,  q(t1);
  is_deeply $t2->depth, 3;
  is_deeply $t2->name,  q(t2);

  ok  $s1->currentlyVisible;
  ok !$s2->currentlyVisible;

  ok  $s1->contains($t2);
  ok !$s2->contains($t2);


  ScopeEnd;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  is_deeply $s1->depth, 1;
  is_deeply $s1->name,  q(s1);

  ScopeEnd;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

 }

Nasm::X86::Scope::contains($parent, $child)

Check that the named parent scope contains the specified child scope. If no child scope is supplied we use the current scope to check that the parent scope is currently visible

   Parameter  Description
1  $parent    Parent scope
2  $child     Child scope

Nasm::X86::Scope::currentlyVisible($scope)

Check that the named parent scope is currently visible

   Parameter  Description
1  $scope     Scope to check for visibility

Definitions

Variable definitions

Variable($size, $name, $expr, %options)

Create a new variable with the specified size and name initialized via an expression

   Parameter  Description
1  $size      Size as a power of 2
2  $name      Name of variable
3  $expr      Optional expression initializing variable
4  %options   Options

Vb($name, $expr, %options)

Define a byte variable

   Parameter  Description
1  $name      Name of variable
2  $expr      Initializing expression
3  %options   Options

Vw($name, $expr, %options)

Define a word variable

   Parameter  Description
1  $name      Name of variable
2  $expr      Initializing expression
3  %options   Options

Vd($name, $expr, %options)

Define a double word variable

   Parameter  Description
1  $name      Name of variable
2  $expr      Initializing expression
3  %options   Options

Vq($name, $expr, %options)

Define a quad variable

   Parameter  Description
1  $name      Name of variable
2  $expr      Initializing expression
3  %options   Options

Cq($name, $expr, %options)

Define a quad constant

   Parameter  Description
1  $name      Name of variable
2  $expr      Initializing expression
3  %options   Options

VxyzInit($var, @expr)

Initialize an xyz register from general purpose registers

   Parameter  Description
1  $var       Variable
2  @expr      Initializing general purpose registers or undef

Vx($name, @expr)

Define an xmm variable

   Parameter  Description
1  $name      Name of variable
2  @expr      Initializing expression

Vy($name, @expr)

Define an ymm variable

   Parameter  Description
1  $name      Name of variable
2  @expr      Initializing expression

Vz($name, @expr)

Define an zmm variable

   Parameter  Description
1  $name      Name of variable
2  @expr      Initializing expression

Vr($name, $size)

Define a reference variable

   Parameter  Description
1  $name      Name of variable
2  $size      Variable being referenced

Operations

Variable operations

Nasm::X86::Variable::address($left, $offset)

Get the address of a variable with an optional offset

   Parameter  Description
1  $left      Left variable
2  $offset    Optional offset

Nasm::X86::Variable::copy($left, $right)

Copy one variable into another

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::clone($var)

Clone a variable to create a new variable

   Parameter  Description
1  $var       Variable to clone

Nasm::X86::Variable::copyAddress($left, $right)

Copy a reference to a variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::equals($op, $left, $right)

Equals operator

   Parameter  Description
1  $op        Operator
2  $left      Left variable
3  $right     Right variable

Nasm::X86::Variable::assign($left, $op, $right)

Assign to the left hand side the value of the right hand side

   Parameter  Description
1  $left      Left variable
2  $op        Operator
3  $right     Right variable

Nasm::X86::Variable::plusAssign($left, $right)

Implement plus and assign

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::minusAssign($left, $right)

Implement minus and assign

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::arithmetic($op, $name, $left, $right)

Return a variable containing the result of an arithmetic operation on the left hand and right hand side variables

   Parameter  Description
1  $op        Operator
2  $name      Operator name
3  $left      Left variable
4  $right     Right variable

Nasm::X86::Variable::add($left, $right)

Add the right hand variable to the left hand variable and return the result as a new variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::sub($left, $right)

Subtract the right hand variable from the left hand variable and return the result as a new variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::times($left, $right)

Multiply the left hand variable by the right hand variable and return the result as a new variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::division($op, $left, $right)

Return a variable containing the result or the remainder that occurs when the left hand side is divided by the right hand side

   Parameter  Description
1  $op        Operator
2  $left      Left variable
3  $right     Right variable

Nasm::X86::Variable::divide($left, $right)

Divide the left hand variable by the right hand variable and return the result as a new variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::mod($left, $right)

Divide the left hand variable by the right hand variable and return the remainder as a new variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::boolean($sub, $op, $left, $right)

Combine the left hand variable with the right hand variable via a boolean operator

   Parameter  Description
1  $sub       Operator
2  $op        Operator name
3  $left      Left variable
4  $right     Right variable

Nasm::X86::Variable::eq($left, $right)

Check whether the left hand variable is equal to the right hand variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::ne($left, $right)

Check whether the left hand variable is not equal to the right hand variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::ge($left, $right)

Check whether the left hand variable is greater than or equal to the right hand variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::gt($left, $right)

Check whether the left hand variable is greater than the right hand variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::le($left, $right)

Check whether the left hand variable is less than or equal to the right hand variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::lt($left, $right)

Check whether the left hand variable is less than the right hand variable

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Print the values of variables or the memory addressed by them

Nasm::X86::Variable::dump($left, $channel, $newLine, $title1, $title2)

Dump the value of a variable to the specified channel adding an optional title and new line if requested

   Parameter  Description
1  $left      Left variable
2  $channel   Channel
3  $newLine   New line required
4  $title1    Optional leading title
5  $title2    Optional trailing title

Example:

  my $a = Vq(a, 3); $a->outNL;
  my $b = Vq(b, 2); $b->outNL;
  my $c = $a +  $b; $c->outNL;
  my $d = $c -  $a; $d->outNL;
  my $e = $d == $b; $e->outNL;
  my $f = $d != $b; $f->outNL;
  my $g = $a *  $b; $g->outNL;
  my $h = $g /  $b; $h->outNL;
  my $i = $a %  $b; $i->outNL;

  If ($a == 3, sub{PrintOutStringNL "a == 3"});
  ++$a; $a->outNL;
  --$a; $a->outNL;

  ok Assemble(debug => 0, eq => <<END);
a: 0000 0000 0000 0003
b: 0000 0000 0000 0002
(a add b): 0000 0000 0000 0005
((a add b) sub a): 0000 0000 0000 0002
(((a add b) sub a) eq b): 0000 0000 0000 0001
(((a add b) sub a) ne b): 0000 0000 0000 0000
(a times b): 0000 0000 0000 0006
((a times b) / b): 0000 0000 0000 0003
(a % b): 0000 0000 0000 0001
a == 3
a: 0000 0000 0000 0004
a: 0000 0000 0000 0003
END

Nasm::X86::Variable::err($left, $title1, $title2)

Dump the value of a variable on stderr

   Parameter  Description
1  $left      Left variable
2  $title1    Optional leading title
3  $title2    Optional trailing title

Nasm::X86::Variable::out($left, $title1, $title2)

Dump the value of a variable on stdout

   Parameter  Description
1  $left      Left variable
2  $title1    Optional leading title
3  $title2    Optional trailing title

Nasm::X86::Variable::errNL($left, $title1, $title2)

Dump the value of a variable on stderr and append a new line

   Parameter  Description
1  $left      Left variable
2  $title1    Optional leading title
3  $title2    Optional trailing title

Nasm::X86::Variable::outNL($left, $title1, $title2)

Dump the value of a variable on stdout and append a new line

   Parameter  Description
1  $left      Left variable
2  $title1    Optional leading title
3  $title2    Optional trailing title

Nasm::X86::Variable::debug($left)

Dump the value of a variable on stdout with an indication of where the dump came from

   Parameter  Description
1  $left      Left variable

Nasm::X86::Variable::isRef($variable)

Check whether the specified variable is a reference to another variable

   Parameter  Description
1  $variable  Variable

Nasm::X86::Variable::setReg($variable, $register, @registers)

Set the named registers from the content of the variable

   Parameter   Description
1  $variable   Variable
2  $register   Register to load
3  @registers  Optional further registers to load

Nasm::X86::Variable::getReg($variable, $register, @registers)

Load the variable from the named registers

   Parameter   Description
1  $variable   Variable
2  $register   Register to load
3  @registers  Optional further registers to load from

Nasm::X86::Variable::getConst($variable, $constant)

Load the variable from a constant in effect setting a variable to a specified value

   Parameter  Description
1  $variable  Variable
2  $constant  Constant to load

Nasm::X86::Variable::incDec($left, $op)

Increment or decrement a variable

   Parameter  Description
1  $left      Left variable operator
2  $op        Address of operator to perform inc or dec

Nasm::X86::Variable::inc($left)

Increment a variable

   Parameter  Description
1  $left      Variable

Nasm::X86::Variable::dec($left)

Decrement a variable

   Parameter  Description
1  $left      Variable

Nasm::X86::Variable::str($left)

The name of the variable

   Parameter  Description
1  $left      Variable

Nasm::X86::Variable::min($left, $right)

Minimum of two variables

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Example:

  my $a = Vq("a", 1);
  my $b = Vq("b", 2);
  my $c = $a->min($b);
  my $d = $a->max($b);
  $a->outNL;
  $b->outNL;
  $c->outNL;
  $d->outNL;

  is_deeply Assemble,<<END;
a: 0000 0000 0000 0001
b: 0000 0000 0000 0002
Minimum(a, b): 0000 0000 0000 0001
Maximum(a, b): 0000 0000 0000 0002
END

Nasm::X86::Variable::max($left, $right)

Maximum of two variables

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Example:

  my $a = Vq("a", 1);
  my $b = Vq("b", 2);
  my $c = $a->min($b);
  my $d = $a->max($b);
  $a->outNL;
  $b->outNL;
  $c->outNL;
  $d->outNL;

  is_deeply Assemble,<<END;
a: 0000 0000 0000 0001
b: 0000 0000 0000 0002
Minimum(a, b): 0000 0000 0000 0001
Maximum(a, b): 0000 0000 0000 0002
END

Nasm::X86::Variable::and($left, $right)

And two variables

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::or($left, $right)

Or two variables

   Parameter  Description
1  $left      Left variable
2  $right     Right variable

Nasm::X86::Variable::setMask($start, $length, $mask)

Set the mask register to ones starting at the specified position for the specified length and zeroes elsewhere

   Parameter  Description
1  $start     Variable containing start of mask
2  $length    Variable containing length of mask
3  $mask      Mask register

Example:

  my $start  = Vq("Start",  7);
  my $length = Vq("Length", 3);
  $start->setMask($length, k7);
  PrintOutRegisterInHex k7;

  is_deeply Assemble, <<END;
    k7: 0000 0000 0000 0380
END

  my $z = Vq('zero', 0);
  my $o = Vq('one',  1);
  my $t = Vq('two',  2);
  $z->setMask($o,       k7); PrintOutRegisterInHex k7;
  $z->setMask($t,       k6); PrintOutRegisterInHex k6;
  $z->setMask($o+$t,    k5); PrintOutRegisterInHex k5;
  $o->setMask($o,       k4); PrintOutRegisterInHex k4;
  $o->setMask($t,       k3); PrintOutRegisterInHex k3;
  $o->setMask($o+$t,    k2); PrintOutRegisterInHex k2;

  $t->setMask($o,       k1); PrintOutRegisterInHex k1;
  $t->setMask($t,       k0); PrintOutRegisterInHex k0;


  ok Assemble(debug => 0, eq => <<END);
    k7: 0000 0000 0000 0001
    k6: 0000 0000 0000 0003
    k5: 0000 0000 0000 0007
    k4: 0000 0000 0000 0002
    k3: 0000 0000 0000 0006
    k2: 0000 0000 0000 000E
    k1: 0000 0000 0000 0004
    k0: 0000 0000 0000 000C
END

Nasm::X86::Variable::setMaskFirst($length, $mask)

Set the first bits in the specified mask register

   Parameter  Description
1  $length    Variable containing length to set
2  $mask      Mask register

Nasm::X86::Variable::setMaskBit($length, $mask)

Set a bit in the specified mask register retaining the other bits

   Parameter  Description
1  $length    Variable containing bit position to set
2  $mask      Mask register

Nasm::X86::Variable::clearMaskBit($length, $mask)

Clear a bit in the specified mask register retaining the other bits

   Parameter  Description
1  $length    Variable containing bit position to clear
2  $mask      Mask register

Nasm::X86::Variable::setZmm($source, $zmm, $offset, $length)

Load bytes from the memory addressed by specified source variable into the numbered zmm register at the offset in the specified offset moving the number of bytes in the specified variable

   Parameter  Description
1  $source    Variable containing the address of the source
2  $zmm       Number of zmm to load
3  $offset    Variable containing offset in zmm to move to
4  $length    Variable containing length of move

Example:

  my $s = Rb(0..128);
  my $source = Vq(Source, $s);

  if (1)                                                                        # First block
   {my $offset = Vq(Offset, 7);
    my $length = Vq(Length, 3);
    $source->setZmm(0, $offset, $length);
   }

  if (1)                                                                        # Second block
   {my $offset = Vq(Offset, 33);
    my $length = Vq(Length, 12);
    $source->setZmm(0, $offset, $length);
   }

  PrintOutRegisterInHex zmm0;

  is_deeply Assemble, <<END;
  zmm0: 0000 0000 0000 0000   0000 0000 0000 0000   0000 000B 0A09 0807   0605 0403 0201 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0201   0000 0000 0000 0000
END

  my $a = Vz a, Rb((map {"0x${_}0"} 0..9, 'a'..'f')x4);
  my $b = Vz b, Rb((map {"0x0${_}"} 0..9, 'a'..'f')x4);

   $a      ->loadZmm(0);                                                        # Show variable in zmm0
   $b      ->loadZmm(1);                                                        # Show variable in zmm1

  ($a + $b)->loadZmm(2);                                                        # Add bytes      and show in zmm2
  ($a - $b)->loadZmm(3);                                                        # Subtract bytes and show in zmm3

  PrintOutRegisterInHex "zmm$_" for 0..3;

  is_deeply Assemble, <<END;
  zmm0: F0E0 D0C0 B0A0 9080   7060 5040 3020 1000   F0E0 D0C0 B0A0 9080   7060 5040 3020 1000   F0E0 D0C0 B0A0 9080   7060 5040 3020 1000   F0E0 D0C0 B0A0 9080   7060 5040 3020 1000
  zmm1: 0F0E 0D0C 0B0A 0908   0706 0504 0302 0100   0F0E 0D0C 0B0A 0908   0706 0504 0302 0100   0F0E 0D0C 0B0A 0908   0706 0504 0302 0100   0F0E 0D0C 0B0A 0908   0706 0504 0302 0100
  zmm2: FFEE DDCC BBAA 9988   7766 5544 3322 1100   FFEE DDCC BBAA 9988   7766 5544 3322 1100   FFEE DDCC BBAA 9988   7766 5544 3322 1100   FFEE DDCC BBAA 9988   7766 5544 3322 1100
  zmm3: E1D2 C3B4 A596 8778   695A 4B3C 2D1E 0F00   E1D2 C3B4 A596 8778   695A 4B3C 2D1E 0F00   E1D2 C3B4 A596 8778   695A 4B3C 2D1E 0F00   E1D2 C3B4 A596 8778   695A 4B3C 2D1E 0F00
END

Nasm::X86::Variable::loadZmm($source, $zmm)

Load bytes from the memory addressed by the specified source variable into the numbered zmm register.

   Parameter  Description
1  $source    Variable containing the address of the source
2  $zmm       Number of zmm to get

Nasm::X86::Variable::saveZmm2222($target, $zmm)

Save bytes into the memory addressed by the target variable from the numbered zmm register.

   Parameter  Description
1  $target    Variable containing the address of the source
2  $zmm       Number of zmm to put

getBwdqFromMm($size, $mm, $offset)

Get the numbered byte|word|double word|quad word from the numbered zmm register and return it in a variable

   Parameter  Description
1  $size      Size of get
2  $mm        Register
3  $offset    Offset in bytes either as a constant or as a variable

getBFromXmm($xmm, $offset)

Get the byte from the numbered xmm register and return it in a variable

   Parameter  Description
1  $xmm       Numbered xmm
2  $offset    Offset in bytes

getWFromXmm($xmm, $offset)

Get the word from the numbered xmm register and return it in a variable

   Parameter  Description
1  $xmm       Numbered xmm
2  $offset    Offset in bytes

getDFromXmm($xmm, $offset)

Get the double word from the numbered xmm register and return it in a variable

   Parameter  Description
1  $xmm       Numbered xmm
2  $offset    Offset in bytes

getQFromXmm($xmm, $offset)

Get the quad word from the numbered xmm register and return it in a variable

   Parameter  Description
1  $xmm       Numbered xmm
2  $offset    Offset in bytes

getBFromZmm($zmm, $offset)

Get the byte from the numbered zmm register and return it in a variable

   Parameter  Description
1  $zmm       Numbered zmm
2  $offset    Offset in bytes

getWFromZmm($zmm, $offset)

Get the word from the numbered zmm register and return it in a variable

   Parameter  Description
1  $zmm       Numbered zmm
2  $offset    Offset in bytes

getDFromZmm($zmm, $offset)

Get the double word from the numbered zmm register and return it in a variable

   Parameter  Description
1  $zmm       Numbered zmm
2  $offset    Offset in bytes

Example:

  my $s = Rb(0..8);
  my $c = Vq("Content",   "[$s]");
     $c->putBIntoZmm(0,  4);
     $c->putWIntoZmm(0,  6);
     $c->putDIntoZmm(0, 10);
     $c->putQIntoZmm(0, 16);
  PrintOutRegisterInHex zmm0;
  getBFromZmm(0, 12)->outNL;
  getWFromZmm(0, 12)->outNL;

  getDFromZmm(0, 12)->outNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  getQFromZmm(0, 12)->outNL;

  is_deeply Assemble, <<END;
  zmm0: 0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0706 0504 0302 0100   0000 0302 0100 0000   0100 0000 0000 0000
b at offset 12 in zmm0: 0000 0000 0000 0002
w at offset 12 in zmm0: 0000 0000 0000 0302
d at offset 12 in zmm0: 0000 0000 0000 0302
q at offset 12 in zmm0: 0302 0100 0000 0302
END

getQFromZmm($zmm, $offset)

Get the quad word from the numbered zmm register and return it in a variable

   Parameter  Description
1  $zmm       Numbered zmm
2  $offset    Offset in bytes

Nasm::X86::Variable::getBFromZmm($variable, $zmm, $offset)

Get the byte from the numbered zmm register and put it in a variable

   Parameter  Description
1  $variable  Variable
2  $zmm       Numbered zmm
3  $offset    Offset in bytes

Nasm::X86::Variable::getWFromZmm($variable, $zmm, $offset)

Get the word from the numbered zmm register and put it in a variable

   Parameter  Description
1  $variable  Variable
2  $zmm       Numbered zmm
3  $offset    Offset in bytes

Nasm::X86::Variable::getDFromZmm($variable, $zmm, $offset)

Get the double word from the numbered zmm register and put it in a variable

   Parameter  Description
1  $variable  Variable
2  $zmm       Numbered zmm
3  $offset    Offset in bytes

Nasm::X86::Variable::getQFromZmm($variable, $zmm, $offset)

Get the quad word from the numbered zmm register and put it in a variable

   Parameter  Description
1  $variable  Variable
2  $zmm       Numbered zmm
3  $offset    Offset in bytes

Nasm::X86::Variable::putBwdqIntoMm($content, $size, $mm, $offset)

Place the value of the content variable at the byte|word|double word|quad word in the numbered zmm register

   Parameter  Description
1  $content   Variable with content
2  $size      Size of put
3  $mm        Numbered zmm
4  $offset    Offset in bytes

Nasm::X86::Variable::putBIntoXmm($content, $xmm, $offset)

Place the value of the content variable at the byte in the numbered xmm register

   Parameter  Description
1  $content   Variable with content
2  $xmm       Numbered xmm
3  $offset    Offset in bytes

Nasm::X86::Variable::putWIntoXmm($content, $xmm, $offset)

Place the value of the content variable at the word in the numbered xmm register

   Parameter  Description
1  $content   Variable with content
2  $xmm       Numbered xmm
3  $offset    Offset in bytes

Nasm::X86::Variable::putDIntoXmm($content, $xmm, $offset)

Place the value of the content variable at the double word in the numbered xmm register

   Parameter  Description
1  $content   Variable with content
2  $xmm       Numbered xmm
3  $offset    Offset in bytes

Nasm::X86::Variable::putQIntoXmm($content, $xmm, $offset)

Place the value of the content variable at the quad word in the numbered xmm register

   Parameter  Description
1  $content   Variable with content
2  $xmm       Numbered xmm
3  $offset    Offset in bytes

Nasm::X86::Variable::putBIntoZmm($content, $zmm, $offset)

Place the value of the content variable at the byte in the numbered zmm register

   Parameter  Description
1  $content   Variable with content
2  $zmm       Numbered zmm
3  $offset    Offset in bytes

Nasm::X86::Variable::putWIntoZmm($content, $zmm, $offset)

Place the value of the content variable at the word in the numbered zmm register

   Parameter  Description
1  $content   Variable with content
2  $zmm       Numbered zmm
3  $offset    Offset in bytes

Nasm::X86::Variable::putDIntoZmm($content, $zmm, $offset)

Place the value of the content variable at the double word in the numbered zmm register

   Parameter  Description
1  $content   Variable with content
2  $zmm       Numbered zmm
3  $offset    Offset in bytes

Example:

  my $s = Rb(0..8);
  my $c = Vq("Content",   "[$s]");
     $c->putBIntoZmm(0,  4);
     $c->putWIntoZmm(0,  6);
     $c->putDIntoZmm(0, 10);
     $c->putQIntoZmm(0, 16);
  PrintOutRegisterInHex zmm0;
  getBFromZmm(0, 12)->outNL;
  getWFromZmm(0, 12)->outNL;
  getDFromZmm(0, 12)->outNL;
  getQFromZmm(0, 12)->outNL;

  is_deeply Assemble, <<END;
  zmm0: 0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0706 0504 0302 0100   0000 0302 0100 0000   0100 0000 0000 0000
b at offset 12 in zmm0: 0000 0000 0000 0002
w at offset 12 in zmm0: 0000 0000 0000 0302
d at offset 12 in zmm0: 0000 0000 0000 0302
q at offset 12 in zmm0: 0302 0100 0000 0302
END

Nasm::X86::Variable::putQIntoZmm($content, $zmm, $offset)

Place the value of the content variable at the quad word in the numbered zmm register

   Parameter  Description
1  $content   Variable with content
2  $zmm       Numbered zmm
3  $offset    Offset in bytes

Broadcast

Broadcast from a variable into a zmm

Nasm::X86::Variable::zBroadCastD($variable, $zmm)

Broadcast a double word in a variable into the numbered zmm.

   Parameter  Description
1  $variable  Variable containing value to broadcast
2  $zmm       Numbered zmm to broadcast to

Stack

Push and pop variables to and from the stack

Nasm::X86::Variable::push($variable)

Push a variable onto the stack

   Parameter  Description
1  $variable  Variable

Nasm::X86::Variable::pop($variable)

Pop a variable from the stack

   Parameter  Description
1  $variable  Variable

Memory

Actions on memory described by variables

Nasm::X86::Variable::clearMemory($address, $size)

Clear the memory described in this variable

   Parameter  Description
1  $address   Address of memory to clear
2  $size      Size of the memory to clear

Nasm::X86::Variable::copyMemory($target, $source, $size)

Copy from one block of memory to another

   Parameter  Description
1  $target    Address of target
2  $source    Address of source
3  $size      Length to copy

Nasm::X86::Variable::printMemoryInHexNL($address, $channel, $size)

Write the memory addressed by a variable to stdout or stderr

   Parameter  Description
1  $address   Address of memory
2  $channel   Channel to print on
3  $size      Number of bytes to print

Nasm::X86::Variable::printErrMemoryInHexNL($address, $size)

Write the memory addressed by a variable to stderr

   Parameter  Description
1  $address   Address of memory
2  $size      Number of bytes to print

Nasm::X86::Variable::printOutMemoryInHexNL($address, $size)

Write the memory addressed by a variable to stdout

   Parameter  Description
1  $address   Address of memory
2  $size      Number of bytes to print

Nasm::X86::Variable::freeMemory($address, $size)

Free the memory addressed by this variable for the specified length

   Parameter  Description
1  $address   Address of memory to free
2  $size      Size of the memory to free

Example:

  my $N = Vq(size, 2048);
  my $q = Rs('a'..'p');
  AllocateMemory($N, my $address = Vq(address));

  Vmovdqu8 xmm0, "[$q]";
  $address->setReg(rax);
  Vmovdqu8 "[rax]", xmm0;
  Mov rdi, 16;
  PrintOutMemory;
  PrintOutNL;

  FreeMemory(address => $address, size=> $N);

  ok Assemble(eq => <<END);
abcdefghijklmnop
END

Nasm::X86::Variable::allocateMemory($size)

Allocate the specified amount of memory via mmap and return its address

   Parameter  Description
1  $size      Size

Structured Programming with variables

Structured programming operations driven off variables.

Nasm::X86::Variable::for($limit, $body)

Iterate the body limit times.

   Parameter  Description
1  $limit     Limit
2  $body      Body

Example:

  Vq(limit,10)->for(sub
   {my ($i, $start, $next, $end) = @_;
    $i->outNL;
   });

  is_deeply Assemble, <<END;
index: 0000 0000 0000 0000
index: 0000 0000 0000 0001
index: 0000 0000 0000 0002
index: 0000 0000 0000 0003
index: 0000 0000 0000 0004
index: 0000 0000 0000 0005
index: 0000 0000 0000 0006
index: 0000 0000 0000 0007
index: 0000 0000 0000 0008
index: 0000 0000 0000 0009
END

Stack

Manage data on the stack

Push, Pop, Peek

Generic versions of push, pop, peek

PopR(@r)

Pop registers from the stack

   Parameter  Description
1  @r         Register

Example:

  Mov rax, 0x11111111;
  Mov rbx, 0x22222222;
  PushR my @save = (rax, rbx);
  Mov rax, 0x33333333;

  PopR @save;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax;
  PrintOutRegisterInHex rbx;

  is_deeply Assemble,<<END;
   rax: 0000 0000 1111 1111
   rbx: 0000 0000 2222 2222
END

PopEax()

We cannot pop a double word from the stack in 64 bit long mode using pop so we improvise

Example:

  Mov r14, 0;
  Kmovq k0, r14;
  KeepFree r14;
  Ktestq k0, k0;
  IfZ {PrintOutStringNL "0 & 0 == 0"};
  PrintOutZF;

  LoadConstantIntoMaskRegister k1, 1;
  Ktestq k1, k1;
  IfNz {PrintOutStringNL "1 & 1 != 0"};
  PrintOutZF;

  LoadConstantIntoMaskRegister k2, eval "0b".(('1'x4).('0'x4))x2;

  PrintOutRegisterInHex k0, k1, k2;

  Mov  r15, 0x89abcdef;
  Mov  r14, 0x01234567;
  Shl  r14, 32;
  Or r15, r14;
  Push r15;
  Push r15;
  KeepFree r15;

  PopEax;  PrintRaxInHex($stdout, 3); PrintOutNL; KeepFree rax;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $a = Vq('aaaa');
  $a->pop;
  $a->push;
  $a->outNL;


  PopEax;  PrintRaxInHex($stdout, 3); PrintOutNL; KeepFree rax;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  ok Assemble(debug => 0, eq => <<END);
0 & 0 == 0
ZF=1
1 & 1 != 0
ZF=0
    k0: 0000 0000 0000 0000
    k1: 0000 0000 0000 0001
    k2: 0000 0000 0000 F0F0
89AB CDEF
aaaa: 89AB CDEF 0123 4567
0123 4567
END

PeekR($r)

Peek at register on stack

   Parameter  Description
1  $r         Register

Declarations

Declare variables and structures

Structures

Declare a structure

Structure()

Create a structure addressed by a register

Nasm::X86::Structure::field($structure, $length, $comment)

Add a field of the specified length with an optional comment

   Parameter   Description
1  $structure  Structure data descriptor
2  $length     Length of data
3  $comment    Optional comment

Nasm::X86::StructureField::addr($field, $register)

Address a field in a structure by either the default register or the named register

   Parameter  Description
1  $field     Field
2  $register  Optional address register else rax

All8Structure($N)

Create a structure consisting of 8 byte fields

   Parameter  Description
1  $N         Number of variables required

Stack Frame

Declare local variables in a frame on the stack

LocalData()

Map local data

Nasm::X86::LocalData::start($local)

Start a local data area on the stack

   Parameter  Description
1  $local     Local data descriptor

Nasm::X86::LocalData::free($local)

Free a local data area on the stack

   Parameter  Description
1  $local     Local data descriptor

Nasm::X86::LocalData::variable($local, $length, $comment)

Add a local variable

   Parameter  Description
1  $local     Local data descriptor
2  $length    Length of data
3  $comment   Optional comment

Nasm::X86::LocalVariable::stack($variable)

Address a local variable on the stack

   Parameter  Description
1  $variable  Variable

Nasm::X86::LocalData::allocate8($local, @comments)

Add some 8 byte local variables and return an array of variable definitions

   Parameter  Description
1  $local     Local data descriptor
2  @comments  Optional comment

AllocateAll8OnStack($N)

Create a local data descriptor consisting of the specified number of 8 byte local variables and return an array: (local data descriptor, variable definitions...)

   Parameter  Description
1  $N         Number of variables required

Operating system

Interacting with the operating system.

Processes

Create and manage processes

Fork()

Fork

Example:

  Fork;                                                                         # Fork  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Test rax,rax;
  IfNz                                                                          # Parent
   {Mov rbx, rax;
    WaitPid;
    PrintOutRegisterInHex rax;
    PrintOutRegisterInHex rbx;
    KeepFree rax;
    GetPid;                                                                     # Pid of parent as seen in parent
    Mov rcx,rax;
    PrintOutRegisterInHex rcx;
   }
  sub                                                                           # Child
   {Mov r8,rax;
    PrintOutRegisterInHex r8;
    KeepFree rax;
    GetPid;                                                                     # Child pid as seen in child
    Mov r9,rax;
    PrintOutRegisterInHex r9;
    KeepFree rax;
    GetPPid;                                                                    # Parent pid as seen in child
    Mov r10,rax;
    PrintOutRegisterInHex r10;
   };

  my $r = Assemble;

#    r8: 0000 0000 0000 0000   #1 Return from fork as seen by child
#    r9: 0000 0000 0003 0C63   #2 Pid of child
#   r10: 0000 0000 0003 0C60   #3 Pid of parent from child
#   rax: 0000 0000 0003 0C63   #4 Return from fork as seen by parent
#   rbx: 0000 0000 0003 0C63   #5 Wait for child pid result
#   rcx: 0000 0000 0003 0C60   #6 Pid of parent

  if ($r =~ m(r8:( 0000){4}.*r9:(.*)\s{5,}r10:(.*)\s{5,}rax:(.*)\s{5,}rbx:(.*)\s{5,}rcx:(.*)\s{2,})s)
   {ok $2 eq $4;
    ok $2 eq $5;
    ok $3 eq $6;
    ok $2 gt $6;
   }

GetPid()

Get process identifier

Example:

  Fork;                                                                         # Fork

  Test rax,rax;
  IfNz                                                                          # Parent
   {Mov rbx, rax;
    WaitPid;
    PrintOutRegisterInHex rax;
    PrintOutRegisterInHex rbx;
    KeepFree rax;

    GetPid;                                                                     # Pid of parent as seen in parent  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Mov rcx,rax;
    PrintOutRegisterInHex rcx;
   }
  sub                                                                           # Child
   {Mov r8,rax;
    PrintOutRegisterInHex r8;
    KeepFree rax;

    GetPid;                                                                     # Child pid as seen in child  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Mov r9,rax;
    PrintOutRegisterInHex r9;
    KeepFree rax;
    GetPPid;                                                                    # Parent pid as seen in child
    Mov r10,rax;
    PrintOutRegisterInHex r10;
   };

  my $r = Assemble;

#    r8: 0000 0000 0000 0000   #1 Return from fork as seen by child
#    r9: 0000 0000 0003 0C63   #2 Pid of child
#   r10: 0000 0000 0003 0C60   #3 Pid of parent from child
#   rax: 0000 0000 0003 0C63   #4 Return from fork as seen by parent
#   rbx: 0000 0000 0003 0C63   #5 Wait for child pid result
#   rcx: 0000 0000 0003 0C60   #6 Pid of parent

  if ($r =~ m(r8:( 0000){4}.*r9:(.*)\s{5,}r10:(.*)\s{5,}rax:(.*)\s{5,}rbx:(.*)\s{5,}rcx:(.*)\s{2,})s)
   {ok $2 eq $4;
    ok $2 eq $5;
    ok $3 eq $6;
    ok $2 gt $6;
   }

GetPidInHex()

Get process identifier in hex as 8 zero terminated bytes in rax

Example:

  GetPidInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax;

  ok Assemble =~ m(rax: 00);

GetPPid()

Get parent process identifier

Example:

  Fork;                                                                         # Fork

  Test rax,rax;
  IfNz                                                                          # Parent
   {Mov rbx, rax;
    WaitPid;
    PrintOutRegisterInHex rax;
    PrintOutRegisterInHex rbx;
    KeepFree rax;
    GetPid;                                                                     # Pid of parent as seen in parent
    Mov rcx,rax;
    PrintOutRegisterInHex rcx;
   }
  sub                                                                           # Child
   {Mov r8,rax;
    PrintOutRegisterInHex r8;
    KeepFree rax;
    GetPid;                                                                     # Child pid as seen in child
    Mov r9,rax;
    PrintOutRegisterInHex r9;
    KeepFree rax;

    GetPPid;                                                                    # Parent pid as seen in child  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Mov r10,rax;
    PrintOutRegisterInHex r10;
   };

  my $r = Assemble;

#    r8: 0000 0000 0000 0000   #1 Return from fork as seen by child
#    r9: 0000 0000 0003 0C63   #2 Pid of child
#   r10: 0000 0000 0003 0C60   #3 Pid of parent from child
#   rax: 0000 0000 0003 0C63   #4 Return from fork as seen by parent
#   rbx: 0000 0000 0003 0C63   #5 Wait for child pid result
#   rcx: 0000 0000 0003 0C60   #6 Pid of parent

  if ($r =~ m(r8:( 0000){4}.*r9:(.*)\s{5,}r10:(.*)\s{5,}rax:(.*)\s{5,}rbx:(.*)\s{5,}rcx:(.*)\s{2,})s)
   {ok $2 eq $4;
    ok $2 eq $5;
    ok $3 eq $6;
    ok $2 gt $6;
   }

GetUid()

Get userid of current process

Example:

  GetUid;                                                                       # Userid  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax;

  my $r = Assemble;
  ok $r =~ m(rax:( 0000){3});

WaitPid()

Wait for the pid in rax to complete

Example:

  Fork;                                                                         # Fork

  Test rax,rax;
  IfNz                                                                          # Parent
   {Mov rbx, rax;

    WaitPid;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex rax;
    PrintOutRegisterInHex rbx;
    KeepFree rax;
    GetPid;                                                                     # Pid of parent as seen in parent
    Mov rcx,rax;
    PrintOutRegisterInHex rcx;
   }
  sub                                                                           # Child
   {Mov r8,rax;
    PrintOutRegisterInHex r8;
    KeepFree rax;
    GetPid;                                                                     # Child pid as seen in child
    Mov r9,rax;
    PrintOutRegisterInHex r9;
    KeepFree rax;
    GetPPid;                                                                    # Parent pid as seen in child
    Mov r10,rax;
    PrintOutRegisterInHex r10;
   };

  my $r = Assemble;

#    r8: 0000 0000 0000 0000   #1 Return from fork as seen by child
#    r9: 0000 0000 0003 0C63   #2 Pid of child
#   r10: 0000 0000 0003 0C60   #3 Pid of parent from child
#   rax: 0000 0000 0003 0C63   #4 Return from fork as seen by parent
#   rbx: 0000 0000 0003 0C63   #5 Wait for child pid result
#   rcx: 0000 0000 0003 0C60   #6 Pid of parent

  if ($r =~ m(r8:( 0000){4}.*r9:(.*)\s{5,}r10:(.*)\s{5,}rax:(.*)\s{5,}rbx:(.*)\s{5,}rcx:(.*)\s{2,})s)
   {ok $2 eq $4;
    ok $2 eq $5;
    ok $3 eq $6;
    ok $2 gt $6;
   }

ReadTimeStampCounter()

Read the time stamp counter and return the time in nanoseconds in rax

Example:

  for(1..10)

   {ReadTimeStampCounter;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex rax;
   }

  my @s = split /
/, Assemble;
  my @S = sort @s;
  is_deeply \@s, \@S;

Memory

Allocate and print memory

PrintMemoryInHex($channel)

Dump memory from the address in rax for the length in rdi on the specified channel. As this method prints in blocks of 8 up to 7 bytes will be missing from the end unless the length is a multiple of 8 .

   Parameter  Description
1  $channel   Channel

PrintErrMemoryInHex()

Dump memory from the address in rax for the length in rdi on stderr

PrintOutMemoryInHex()

Dump memory from the address in rax for the length in rdi on stdout

Example:

  Mov rax, 0x07654321;
  Shl rax, 32;
  Or  rax, 0x07654321;
  PushR rax;

  PrintOutRaxInHex;
  PrintOutNL;
  PrintOutRaxInReverseInHex;
  PrintOutNL;
  KeepFree rax;

  Mov rax, rsp;
  Mov rdi, 8;

  PrintOutMemoryInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutNL;
  PopR rax;
  KeepFree rax, rdi;

  Mov rax, 4096;
  PushR rax;
  Mov rax, rsp;
  Mov rdi, 8;

  PrintOutMemoryInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutNL;
  PopR rax;

  is_deeply Assemble, <<END;
0765 4321 0765 4321
2143 6507 2143 6507
2143 6507 2143 6507
0010 0000 0000 0000
END

PrintErrMemoryInHexNL()

Dump memory from the address in rax for the length in rdi and then print a new line

PrintOutMemoryInHexNL()

Dump memory from the address in rax for the length in rdi and then print a new line

Example:

  my $N = 256;
  my $s = Rb 0..$N-1;
  AllocateMemory(Cq(size, $N), my $a = Vq(address));
  CopyMemory(Vq(source, $s), Vq(size, $N), target => $a);

  AllocateMemory(Cq(size, $N), my $b = Vq(address));
  CopyMemory(source => $a, target => $b, Cq(size, $N));

  $b->setReg(rax);
  Mov rdi, $N;

  PrintOutMemoryInHexNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  ok Assemble(debug=>0, eq => <<END);
0001 0203 0405 06070809 0A0B 0C0D 0E0F1011 1213 1415 16171819 1A1B 1C1D 1E1F2021 2223 2425 26272829 2A2B 2C2D 2E2F3031 3233 3435 36373839 3A3B 3C3D 3E3F4041 4243 4445 46474849 4A4B 4C4D 4E4F5051 5253 5455 56575859 5A5B 5C5D 5E5F6061 6263 6465 66676869 6A6B 6C6D 6E6F7071 7273 7475 76777879 7A7B 7C7D 7E7F8081 8283 8485 86878889 8A8B 8C8D 8E8F9091 9293 9495 96979899 9A9B 9C9D 9E9FA0A1 A2A3 A4A5 A6A7A8A9 AAAB ACAD AEAFB0B1 B2B3 B4B5 B6B7B8B9 BABB BCBD BEBFC0C1 C2C3 C4C5 C6C7C8C9 CACB CCCD CECFD0D1 D2D3 D4D5 D6D7D8D9 DADB DCDD DEDFE0E1 E2E3 E4E5 E6E7E8E9 EAEB ECED EEEFF0F1 F2F3 F4F5 F6F7F8F9 FAFB FCFD FEFF
END

PrintMemory()

Print the memory addressed by rax for a length of rdi on the specified channel

Example:

  ReadFile(Vq(file, Rs($0)), (my $s = Vq(size)), my $a = Vq(address));          # Read file
  $a->setReg(rax);                                                              # Address of file in memory
  $s->setReg(rdi);                                                              # Length  of file in memory
  PrintOutMemory;                                                               # Print contents of memory to stdout

  my $r = Assemble;                                                             # Assemble and execute
  ok stringMd5Sum($r) eq fileMd5Sum($0);                                          # Output contains this file

PrintErrMemory()

Print the memory addressed by rax for a length of rdi on stderr

PrintOutMemory()

Print the memory addressed by rax for a length of rdi on stdout

Example:

  Comment "Print a string from memory";
  my $s = "Hello World";
  Mov rax, Rs($s);
  Mov rdi, length $s;

  PrintOutMemory;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  ok Assemble =~ m(Hello World);

PrintErrMemoryNL()

Print the memory addressed by rax for a length of rdi followed by a new line on stderr

PrintOutMemoryNL()

Print the memory addressed by rax for a length of rdi followed by a new line on stdout

AllocateMemory(@variables)

Allocate the specified amount of memory via mmap and return its address

   Parameter   Description
1  @variables  Parameters

Example:

  my $N = Vq(size, 2048);
  my $q = Rs('a'..'p');

  AllocateMemory($N, my $address = Vq(address));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  Vmovdqu8 xmm0, "[$q]";
  $address->setReg(rax);
  Vmovdqu8 "[rax]", xmm0;
  Mov rdi, 16;
  PrintOutMemory;
  PrintOutNL;

  FreeMemory(address => $address, size=> $N);

  ok Assemble(eq => <<END);
abcdefghijklmnop
END

  my $N = Vq(size, 4096);                                                       # Size of the initial allocation which should be one or more pages


  AllocateMemory($N, my $A = Vq(address));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  ClearMemory($N, $A);

  $A->setReg(rax);
  $N->setReg(rdi);
  PrintOutMemoryInHexNL;

  FreeMemory($N, $A);

  ok Assemble(eq => <<END);
0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
END

  my $N = 256;
  my $s = Rb 0..$N-1;

  AllocateMemory(Cq(size, $N), my $a = Vq(address));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  CopyMemory(Vq(source, $s), Vq(size, $N), target => $a);


  AllocateMemory(Cq(size, $N), my $b = Vq(address));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  CopyMemory(source => $a, target => $b, Cq(size, $N));

  $b->setReg(rax);
  Mov rdi, $N;
  PrintOutMemoryInHexNL;

  ok Assemble(debug=>0, eq => <<END);
0001 0203 0405 06070809 0A0B 0C0D 0E0F1011 1213 1415 16171819 1A1B 1C1D 1E1F2021 2223 2425 26272829 2A2B 2C2D 2E2F3031 3233 3435 36373839 3A3B 3C3D 3E3F4041 4243 4445 46474849 4A4B 4C4D 4E4F5051 5253 5455 56575859 5A5B 5C5D 5E5F6061 6263 6465 66676869 6A6B 6C6D 6E6F7071 7273 7475 76777879 7A7B 7C7D 7E7F8081 8283 8485 86878889 8A8B 8C8D 8E8F9091 9293 9495 96979899 9A9B 9C9D 9E9FA0A1 A2A3 A4A5 A6A7A8A9 AAAB ACAD AEAFB0B1 B2B3 B4B5 B6B7B8B9 BABB BCBD BEBFC0C1 C2C3 C4C5 C6C7C8C9 CACB CCCD CECFD0D1 D2D3 D4D5 D6D7D8D9 DADB DCDD DEDFE0E1 E2E3 E4E5 E6E7E8E9 EAEB ECED EEEFF0F1 F2F3 F4F5 F6F7F8F9 FAFB FCFD FEFF
END

FreeMemory(@variables)

Free memory

   Parameter   Description
1  @variables  Variables

Example:

  my $N = Vq(size, 4096);                                                       # Size of the initial allocation which should be one or more pages

  AllocateMemory($N, my $A = Vq(address));

  ClearMemory($N, $A);

  $A->setReg(rax);
  $N->setReg(rdi);
  PrintOutMemoryInHexNL;


  FreeMemory($N, $A);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  ok Assemble(eq => <<END);
0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
END

ClearMemory(@variables)

Clear memory - the address of the memory is in rax, the length in rdi

   Parameter   Description
1  @variables  Variables

Example:

  my $N = Vq(size, 4096);                                                       # Size of the initial allocation which should be one or more pages

  AllocateMemory($N, my $A = Vq(address));


  ClearMemory($N, $A);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  $A->setReg(rax);
  $N->setReg(rdi);
  PrintOutMemoryInHexNL;

  FreeMemory($N, $A);

  ok Assemble(eq => <<END);
0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
END

MaskMemory(@variables)

Write the specified byte into locations in the target mask that correspond to the locations in the source that contain the specified byte.

   Parameter   Description
1  @variables  Variables

MaskMemoryInRange4(@variables)

Write the specified byte into locations in the target mask that correspond to the locations in the source that contain 4 bytes in the specified range.

   Parameter   Description
1  @variables  Variables

CopyMemory(@variables)

Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi

   Parameter   Description
1  @variables  Variables

Example:

  my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;
  my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;

  Vmovdqu8 xmm0, "[$s]";
  Vmovdqu8 xmm1, "[$t]";
  PrintOutRegisterInHex xmm0;
  PrintOutRegisterInHex xmm1;
  Sub rsp, 16;

  Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
  Mov rdi, 16;
  Mov rsi, $s;

  CopyMemory(Vq(source, rsi), Vq(target, rax), Vq(size, rdi));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutMemoryInHex;

  my $r = Assemble;
  ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
  ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);

  my $N = 256;
  my $s = Rb 0..$N-1;
  AllocateMemory(Cq(size, $N), my $a = Vq(address));

  CopyMemory(Vq(source, $s), Vq(size, $N), target => $a);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  AllocateMemory(Cq(size, $N), my $b = Vq(address));

  CopyMemory(source => $a, target => $b, Cq(size, $N));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  $b->setReg(rax);
  Mov rdi, $N;
  PrintOutMemoryInHexNL;

  ok Assemble(debug=>0, eq => <<END);
0001 0203 0405 06070809 0A0B 0C0D 0E0F1011 1213 1415 16171819 1A1B 1C1D 1E1F2021 2223 2425 26272829 2A2B 2C2D 2E2F3031 3233 3435 36373839 3A3B 3C3D 3E3F4041 4243 4445 46474849 4A4B 4C4D 4E4F5051 5253 5455 56575859 5A5B 5C5D 5E5F6061 6263 6465 66676869 6A6B 6C6D 6E6F7071 7273 7475 76777879 7A7B 7C7D 7E7F8081 8283 8485 86878889 8A8B 8C8D 8E8F9091 9293 9495 96979899 9A9B 9C9D 9E9FA0A1 A2A3 A4A5 A6A7A8A9 AAAB ACAD AEAFB0B1 B2B3 B4B5 B6B7B8B9 BABB BCBD BEBFC0C1 C2C3 C4C5 C6C7C8C9 CACB CCCD CECFD0D1 D2D3 D4D5 D6D7D8D9 DADB DCDD DEDFE0E1 E2E3 E4E5 E6E7E8E9 EAEB ECED EEEFF0F1 F2F3 F4F5 F6F7F8F9 FAFB FCFD FEFF
END

Files

Interact with the operating system via files.

OpenRead()

Open a file, whose name is addressed by rax, for read and return the file descriptor in rax

Example:

  Mov rax, Rs($0);                                                              # File to read

  OpenRead;                                                                     # Open file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax;
  CloseFile;                                                                    # Close file
  PrintOutRegisterInHex rax;
  KeepFree rax, rdi;

  Mov rax, Rs(my $f = "zzzTemporaryFile.txt");                                  # File to write
  OpenWrite;                                                                    # Open file
  CloseFile;                                                                    # Close file

  is_deeply Assemble, <<END;                                                    # Channel  is now used for tracing
   rax: 0000 0000 0000 0004
   rax: 0000 0000 0000 0000
END
  ok -e $f;                                                                     # Created file
  unlink $f;

OpenWrite()

Create the file named by the terminated string addressed by rax for write

Example:

  Mov rax, Rs($0);                                                              # File to read
  OpenRead;                                                                     # Open file
  PrintOutRegisterInHex rax;
  CloseFile;                                                                    # Close file
  PrintOutRegisterInHex rax;
  KeepFree rax, rdi;

  Mov rax, Rs(my $f = "zzzTemporaryFile.txt");                                  # File to write

  OpenWrite;                                                                    # Open file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  CloseFile;                                                                    # Close file

  is_deeply Assemble, <<END;                                                    # Channel  is now used for tracing
   rax: 0000 0000 0000 0004
   rax: 0000 0000 0000 0000
END
  ok -e $f;                                                                     # Created file
  unlink $f;

CloseFile()

Close the file whose descriptor is in rax

Example:

  Mov rax, Rs($0);                                                              # File to read
  OpenRead;                                                                     # Open file
  PrintOutRegisterInHex rax;

  CloseFile;                                                                    # Close file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax;
  KeepFree rax, rdi;

  Mov rax, Rs(my $f = "zzzTemporaryFile.txt");                                  # File to write
  OpenWrite;                                                                    # Open file

  CloseFile;                                                                    # Close file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  is_deeply Assemble, <<END;                                                    # Channel  is now used for tracing
   rax: 0000 0000 0000 0004
   rax: 0000 0000 0000 0000
END
  ok -e $f;                                                                     # Created file
  unlink $f;

StatSize()

Stat a file whose name is addressed by rax to get its size in rax

Example:

  Mov rax, Rs($0);                                                              # File to stat

  StatSize;                                                                     # Stat the file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex rax;

  my $r = Assemble =~ s( ) ()gsr;
  if ($r =~ m(rax:([0-9a-f]{16}))is)                                            # Compare file size obtained with that from fileSize()
   {is_deeply $1, sprintf("%016X", fileSize($0));
   }

ReadFile(@variables)

Read a file whose name is addressed by rax into memory. The address of the mapped memory and its length are returned in registers rax,rdi

   Parameter   Description
1  @variables  Variables

Example:

  ReadFile(Vq(file, Rs($0)), (my $s = Vq(size)), my $a = Vq(address));          # Read file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  $a->setReg(rax);                                                              # Address of file in memory
  $s->setReg(rdi);                                                              # Length  of file in memory
  PrintOutMemory;                                                               # Print contents of memory to stdout

  my $r = Assemble;                                                             # Assemble and execute
  ok stringMd5Sum($r) eq fileMd5Sum($0);                                          # Output contains this file

executeFileViaBash(@variables)

Execute the file named in the byte string addressed by rax with bash

   Parameter   Description
1  @variables  Variables

Example:

  my $s = CreateByteString;                                                     # Create a string
  $s->ql(<<END);                                                                # Write code to execute
#!/usr/bin/bash
whoami
ls -la
pwd
END
  $s->write         (my $f = Vq('file', Rs("zzz.sh")));                         # Write code to a file

  executeFileViaBash($f);                                                       # Execute the file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  unlinkFile        ($f);                                                       # Delete the file

  my $u = qx(whoami); chomp($u);
  ok Assemble(emulator=>0) =~ m($u);                                            # The Intel Software Development Emulator is way too slow on these operations.

unlinkFile(@variables)

Unlink the named file

   Parameter   Description
1  @variables  Variables

Example:

  my $s = CreateByteString;                                                     # Create a string
  $s->ql(<<END);                                                                # Write code to execute
#!/usr/bin/bash
whoami
ls -la
pwd
END
  $s->write         (my $f = Vq('file', Rs("zzz.sh")));                         # Write code to a file
  executeFileViaBash($f);                                                       # Execute the file

  unlinkFile        ($f);                                                       # Delete the file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $u = qx(whoami); chomp($u);
  ok Assemble(emulator=>0) =~ m($u);                                            # The Intel Software Development Emulator is way too slow on these operations.

Hash functions

Hash functions

Hash()

Hash a string addressed by rax with length held in rdi and return the hash code in r15

Example:

  Mov rax, "[rbp+24]";
  Cstrlen;                                                                      # Length of string to hash
  Mov rdi, r15;

  Hash();                                                                       # Hash string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  PrintOutRegisterInHex r15;

  my $e = Assemble keep=>'hash';                                                # Assemble to the specified file name
  ok qx($e "")  =~ m(r15: 0000 3F80 0000 3F80);                                 # Test well known hashes
  ok qx($e "a") =~ m(r15: 0000 3F80 C000 45B2);


  if (0 and $develop)                                                           # Hash various strings  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

   {my %r; my %f; my $count = 0;
    my $N = RegisterSize zmm0;

    if (1)                                                                      # Fixed blocks
     {for my $l(qw(a ab abc abcd), 'a a', 'a  a')
       {for my $i(1..$N)
         {my $t = $l x $i;
          last if $N < length $t;
          my $s = substr($t.(' ' x $N), 0, $N);
          next if $f{$s}++;
          my $r = qx($e "$s");
          say STDERR "$count  $r";
          if ($r =~ m(^.*r15:\s*(.*)$)m)
           {push $r{$1}->@*, $s;
            ++$count;
           }
         }
       }
     }

    if (1)                                                                      # Variable blocks
     {for my $l(qw(a ab abc abcd), '', 'a a', 'a  a')
       {for my $i(1..$N)
         {my $t = $l x $i;
          next if $f{$t}++;
          my $r = qx($e "$t");
          say STDERR "$count  $r";
          if ($r =~ m(^.*r15:\s*(.*)$)m)
           {push $r{$1}->@*, $t;
            ++$count;
           }
         }
       }
     }
    for my $r(keys %r)
     {delete $r{$r} if $r{$r}->@* < 2;
     }

    say STDERR dump(\%r);
    say STDERR "Keys hashed: ", $count;
    confess "Duplicates : ",  scalar keys(%r);
   }

Unicode

Convert utf8 to utf32

GetNextUtf8CharAsUtf32(@parameters)

Get the next utf8 encoded character from the addressed memory and return it as a utf32 char

   Parameter    Description
1  @parameters  Parameters

ConvertUtf8ToUtf32(@parameters)

Convert a string of utf8 to an allocated block of utf32 and return its address and length.

   Parameter    Description
1  @parameters  Parameters

Example:

   my @p = my ($out, $size, $fail) = (Vq(out), Vq(size), Vq('fail'));
   my $opens = Vq(opens);
   my $class = Vq(class);
 
   my $Chars = Rb(0x24, 0xc2, 0xa2, 0xc9, 0x91, 0xE2, 0x82, 0xAC, 0xF0, 0x90, 0x8D, 0x88);
   my $chars = Vq(chars, $Chars);
 
   GetNextUtf8CharAsUtf32 in=>$chars, @p;                                        # Dollar               UTF-8 Encoding: 0x24                UTF-32 Encoding: 0x00000024
   $out->out('out1 : ');     $size->outNL(' size : ');
 
   GetNextUtf8CharAsUtf32 in=>$chars+1, @p;                                      # Cents                UTF-8 Encoding: 0xC2 0xA2           UTF-32 Encoding: 0x000000a2
   $out->out('out2 : ');     $size->outNL(' size : ');
 
   GetNextUtf8CharAsUtf32 in=>$chars+3, @p;                                      # Alpha                UTF-8 Encoding: 0xC9 0x91           UTF-32 Encoding: 0x00000251
   $out->out('out3 : ');     $size->outNL(' size : ');
 
   GetNextUtf8CharAsUtf32 in=>$chars+5, @p;                                      # Euro                 UTF-8 Encoding: 0xE2 0x82 0xAC      UTF-32 Encoding: 0x000020AC
   $out->out('out4 : ');     $size->outNL(' size : ');
 
   GetNextUtf8CharAsUtf32 in=>$chars+8, @p;                                      # Gothic Letter Hwair  UTF-8 Encoding  0xF0 0x90 0x8D 0x88 UTF-32 Encoding: 0x00010348
   $out->out('out5 : ');     $size->outNL(' size : ');
 
   my $statement = qq(𝖺
𝑎𝑠𝑠𝑖𝑔𝑛 【【𝖻 𝐩𝐥𝐮𝐬 𝖼】】
AAAAAAAA);                                # A sample sentence to parse
 
   my $s = Cq(statement, Rs($statement));
   my $l = Cq(size,  length($statement));
 
   AllocateMemory($l, my $address = Vq(address));                                # Allocate enough memory for a copy of the string
   CopyMemory(source => $s, target => $address, $l);
 
   GetNextUtf8CharAsUtf32 in=>$address, @p;
   $out->out('outA : ');     $size->outNL(' size : ');
 
   GetNextUtf8CharAsUtf32 in=>$address+4, @p;
   $out->out('outB : ');     $size->outNL(' size : ');
 
   GetNextUtf8CharAsUtf32 in=>$address+5, @p;
   $out->out('outC : ');     $size->outNL(' size : ');
 
   GetNextUtf8CharAsUtf32 in=>$address+30, @p;
   $out->out('outD : ');     $size->outNL(' size : ');
 
   GetNextUtf8CharAsUtf32 in=>$address+35, @p;
   $out->out('outE : ');     $size->outNL(' size : ');
 
   $address->printOutMemoryInHexNL($l);
 
   Cq('newLine', 0x0A)->putBIntoZmm(0, 0);                                       # Single character classifications
   Cq('newLine', 0x01)->putBIntoZmm(0, 3);
   Cq('space',   0x20)->putBIntoZmm(0, 4);
   Cq('space',   0x02)->putBIntoZmm(0, 7);
 
   if (1)                                                                        # Classify a utf32 string
    {my $a = Dd(0x0001d5ba, 0x00000020, 0x0001d44e, 0x0000000a, 0x0001d5bb, 0x0001d429);
     my $t = Cq('test', $a);
     my $s = Cq('size', 6);
 
     ClassifyCharacters4 address=>$t, size=>$s;
     PrintOutStringNL "Convert some utf8 to utf32";
     $s->for(sub
      {my ($index, $start, $next, $end) = @_;
       my $a = $t+$index * 4;
       $a->setReg(r15);
       KeepFree r15;
       Mov r15d, "[r15]";
       KeepFree r15;
       PrintOutRegisterInHex r15;
      });
    }
 
   if (1)                                                                        # Convert utf8 test string to utf32
    {my @p = my ($u32, $size32, $count) = (Vq(u32), Vq(size32), Vq(count));
 
 
     ConvertUtf8ToUtf32 u8 => $s, size8 => $l,  @p;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

     ClassifyCharacters4 address=>$u32, size=>$count;
 
     PrintOutStringNL "Convert test statement - special characters";
     $count->for(sub
      {my ($index, $start, $next, $end) = @_;
       my $a = $u32 + $index * 4;
       $a->setReg(r15);
       KeepFree r15;
       Mov r15d, "[r15]";
       KeepFree r15;
       PrintOutRegisterInHex r15;
      });
 
     Cq('variable', 0x0)     ->putDIntoZmm(0,  0);                               # Range classifications
     Cq('variable', 0x03)    ->putBIntoZmm(0,  3);
     Cq('variable', 0x01D5A0)->putDIntoZmm(0,  4);
     Cq('variable', 0x04)    ->putBIntoZmm(0,  7);
     Cq('variable', 0x01D434)->putDIntoZmm(0,  8);
     Cq('variable', 0x05)    ->putBIntoZmm(0, 11);
     Cq('variable', 0x01D400)->putDIntoZmm(0, 12);
     Cq('variable', 0x06)    ->putBIntoZmm(0, 15);
 
     Cq('variable', 0x7f)    ->putDIntoZmm(1,  0);
     Cq('variable', 0x03)    ->putBIntoZmm(1,  3);
     Cq('variable', 0x01D5D3)->putDIntoZmm(1,  4);
     Cq('variable', 0x04)    ->putBIntoZmm(1,  7);
     Cq('variable', 0x01D467)->putDIntoZmm(1,  8);
     Cq('variable', 0x05)    ->putBIntoZmm(1, 11);
     Cq('variable', 0x01D433)->putDIntoZmm(1, 12);
     Cq('variable', 0x06)    ->putBIntoZmm(1, 15);
     ClassifyInRange address=>$u32, size=>$count;
 
     PrintOutStringNL "Convert test statement - ranges";
     $count->for(sub
      {my ($index, $start, $next, $end) = @_;
       my $a = $u32 + $index * 4;
       $a->setReg(r15);
       KeepFree r15;
       Mov r15d, "[r15]";
       KeepFree r15;
       PrintOutRegisterInHex r15;
      });
 
     my $bl = Rd(0x10002045, 0x12002329, 0x1400276c, 0x16002770, 0x1c0027e6, 0x24002983, 0x26002987, 0x380029fc, 0x3a003008, 0x3e003010, 0x40003014, 0x4800ff3b, 0x4900ff3d, 0x4a00ff5b, 0x4b00ff5d, 0);
     my $bh = Rd(0x11002046, 0x1300232a, 0x1500276d, 0x1b002775, 0x230027ed, 0x25002984, 0x37002998, 0x390029fd, 0x3d00300b, 0x3f003011, 0x4700301b, 0x4800ff3b, 0x4900ff3d, 0x4a00ff5b, 0x4b00ff5d, 0);
 
     Vmovdqu8 zmm0, "[$bl]";
     Vmovdqu8 zmm1, "[$bh]";
     ClassifyWithInRange address=>$u32, size=>$count;
 
     PrintOutStringNL "Convert test statement - brackets";
     $count->for(sub
      {my ($index, $start, $next, $end) = @_;
       my $a = $u32 + $index * 4;
       $a->setReg(r15);
       KeepFree r15;
       Mov r15d, "[r15]";
       KeepFree r15;
       PrintOutRegisterInHex r15;
      });
 
     MatchBrackets address=>$u32, size=>$count, $opens, $fail;
 
     PrintOutStringNL "Convert test statement - bracket matching";
     $count->for(sub
      {my ($index, $start, $next, $end) = @_;
       my $a = $u32 + $index * 4;
       $a->setReg(r15);
       KeepFree r15;
       Mov r15d, "[r15]";
       KeepFree r15;
       PrintOutRegisterInHex r15;
      });
    }
 
   $address->clearMemory($l);
   $address->printOutMemoryInHexNL($l);
 
   ok Assemble(debug => 0, eq => <<END);
 out1 : 0000 0000 0000 0024 size : 0000 0000 0000 0001
 out2 : 0000 0000 0000 00A2 size : 0000 0000 0000 0002
 out3 : 0000 0000 0000 0251 size : 0000 0000 0000 0002
 out4 : 0000 0000 0000 20AC size : 0000 0000 0000 0003
 out5 : 0000 0000 0001 0348 size : 0000 0000 0000 0004
 outA : 0000 0000 0001 D5BA size : 0000 0000 0000 0004
 outB : 0000 0000 0000 000A size : 0000 0000 0000 0001
 outC : 0000 0000 0000 0020 size : 0000 0000 0000 0001
 outD : 0000 0000 0000 0020 size : 0000 0000 0000 0001
 outE : 0000 0000 0000 0010 size : 0000 0000 0000 0002
 F09D 96BA 0A20 F09D918E F09D 91A0 F09D91A0 F09D 9196 F09D9194 F09D 919B 20E38090 E380 90F0 9D96BB20 F09D 90A9 F09D90A5 F09D 90AE F09D90AC 20F0 9D96 BCE38091 E380 910A 4141
 Convert some utf8 to utf32
    r15: 0000 0000 0001 D5BA
    r15: 0000 0000 0200 0020
    r15: 0000 0000 0001 D44E
    r15: 0000 0000 0100 000A
    r15: 0000 0000 0001 D5BB
    r15: 0000 0000 0001 D429
 Convert test statement - special characters
    r15: 0000 0000 0001 D5BA
    r15: 0000 0000 0100 000A
    r15: 0000 0000 0200 0020
    r15: 0000 0000 0001 D44E
    r15: 0000 0000 0001 D460
    r15: 0000 0000 0001 D460
    r15: 0000 0000 0001 D456
    r15: 0000 0000 0001 D454
    r15: 0000 0000 0001 D45B
    r15: 0000 0000 0200 0020
    r15: 0000 0000 0000 3010
    r15: 0000 0000 0000 3010
    r15: 0000 0000 0001 D5BB
    r15: 0000 0000 0200 0020
    r15: 0000 0000 0001 D429
    r15: 0000 0000 0001 D425
    r15: 0000 0000 0001 D42E
    r15: 0000 0000 0001 D42C
    r15: 0000 0000 0200 0020
    r15: 0000 0000 0001 D5BC
    r15: 0000 0000 0000 3011
    r15: 0000 0000 0000 3011
    r15: 0000 0000 0100 000A
    r15: 0000 0000 0000 0041
    r15: 0000 0000 0000 0041
    r15: 0000 0000 0000 0041
    r15: 0000 0000 0000 0041
    r15: 0000 0000 0000 0041
    r15: 0000 0000 0000 0041
    r15: 0000 0000 0000 0041
    r15: 0000 0000 0000 0041
 Convert test statement - ranges
    r15: 0000 0000 0401 D5BA
    r15: 0000 0000 0100 000A
    r15: 0000 0000 0200 0020
    r15: 0000 0000 0501 D44E
    r15: 0000 0000 0501 D460
    r15: 0000 0000 0501 D460
    r15: 0000 0000 0501 D456
    r15: 0000 0000 0501 D454
    r15: 0000 0000 0501 D45B
    r15: 0000 0000 0200 0020
    r15: 0000 0000 0000 3010
    r15: 0000 0000 0000 3010
    r15: 0000 0000 0401 D5BB
    r15: 0000 0000 0200 0020
    r15: 0000 0000 0601 D429
    r15: 0000 0000 0601 D425
    r15: 0000 0000 0601 D42E
    r15: 0000 0000 0601 D42C
    r15: 0000 0000 0200 0020
    r15: 0000 0000 0401 D5BC
    r15: 0000 0000 0000 3011
    r15: 0000 0000 0000 3011
    r15: 0000 0000 0100 000A
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
 Convert test statement - brackets
    r15: 0000 0000 0401 D5BA
    r15: 0000 0000 0100 000A
    r15: 0000 0000 0200 0020
    r15: 0000 0000 0501 D44E
    r15: 0000 0000 0501 D460
    r15: 0000 0000 0501 D460
    r15: 0000 0000 0501 D456
    r15: 0000 0000 0501 D454
    r15: 0000 0000 0501 D45B
    r15: 0000 0000 0200 0020
    r15: 0000 0000 3E00 3010
    r15: 0000 0000 3E00 3010
    r15: 0000 0000 0401 D5BB
    r15: 0000 0000 0200 0020
    r15: 0000 0000 0601 D429
    r15: 0000 0000 0601 D425
    r15: 0000 0000 0601 D42E
    r15: 0000 0000 0601 D42C
    r15: 0000 0000 0200 0020
    r15: 0000 0000 0401 D5BC
    r15: 0000 0000 3F00 3011
    r15: 0000 0000 3F00 3011
    r15: 0000 0000 0100 000A
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
 Convert test statement - bracket matching
    r15: 0000 0000 0401 D5BA
    r15: 0000 0000 0100 000A
    r15: 0000 0000 0200 0020
    r15: 0000 0000 0501 D44E
    r15: 0000 0000 0501 D460
    r15: 0000 0000 0501 D460
    r15: 0000 0000 0501 D456
    r15: 0000 0000 0501 D454
    r15: 0000 0000 0501 D45B
    r15: 0000 0000 0200 0020
    r15: 0000 0000 3E00 0015
    r15: 0000 0000 3E00 0014
    r15: 0000 0000 0401 D5BB
    r15: 0000 0000 0200 0020
    r15: 0000 0000 0601 D429
    r15: 0000 0000 0601 D425
    r15: 0000 0000 0601 D42E
    r15: 0000 0000 0601 D42C
    r15: 0000 0000 0200 0020
    r15: 0000 0000 0401 D5BC
    r15: 0000 0000 3F00 000B
    r15: 0000 0000 3F00 000A
    r15: 0000 0000 0100 000A
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
    r15: 0000 0000 0300 0041
 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
 END
 

ClassifyCharacters4(@parameters)

Classify the utf32 characters in a block of memory of specified length using zmm0 formatted in double words with each word having the classification in the highest 8 bits and the utf32 character in the lower 21 bits. The classification bits are copied into each utf32 character in the block of memory.

   Parameter    Description
1  @parameters  Parameters

ClassifyInRange(@parameters)

Classify the utf32 characters in a block of memory of specified length using zmm0, zmm1 formatted in double words with each word in zmm1 having the classification in the highest 8 bits and with zmm0 and zmm1 having the utf32 character at the start (zmm0) and end (zmm1) of each range in the lower 21 bits. The classification bits from the first matching range are copied into each utf32 character in the block of memory.

   Parameter    Description
1  @parameters  Parameters

ClassifyWithInRange(@parameters)

Classify the utf32 characters in a block of memory of specified length using zmm0, zmm1 formatted in double words with the classification range in the highest 8 bits of zmm0 and zmm1 and the utf32 character at the start (zmm0) and end (zmm1) of each range in the lower 21 bits. The classification bits from the position within the first matching range are copied into each utf32 character in the block of memory.

   Parameter    Description
1  @parameters  Parameters

MatchBrackets(@parameters)

Replace a utf32 character with 24 bits of offset to the matching opening or closing bracket. Opening brackets have even codes from 0x10 to 0x4e while the corresponding closing bracket has a code one higher.

   Parameter    Description
1  @parameters  Parameters

Short Strings

Operations on Short Strings

LoadShortStringFromMemoryToZmm2($zmm)

Load the short string addressed by rax into the zmm register with the specified number

   Parameter  Description
1  $zmm       Zmm register to load

LoadShortStringFromMemoryToZmm($zmm, $address)

Load the short string addressed by rax into the zmm register with the specified number

   Parameter  Description
1  $zmm       Zmm register to load
2  $address   Address of string in memory

Example:

  my $s = Rb(3, 0x01, 0x02, 0x03);
  my $t = Rb(7, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a);


  LoadShortStringFromMemoryToZmm 0, $s;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  LoadShortStringFromMemoryToZmm 1, $t;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  ConcatenateShortStrings(0, 1);
  PrintOutRegisterInHex xmm0;
  PrintOutRegisterInHex xmm1;

  my $r = Assemble;
  ok $r =~ m(xmm0: 0000 0000 000A 0908   0706 0504 0302 010A);
  ok $r =~ m(xmm1: 0000 0000 0000 0000   0A09 0807 0605 0407);

GetLengthOfShortString($reg, $zmm)

Get the length of the short string held in the numbered zmm register into the specified register

   Parameter  Description
1  $reg       Register to hold length
2  $zmm       Number of zmm register containing string

SetLengthOfShortString($zmm, $reg)

Set the length of the short string held in the numbered zmm register into the specified register

   Parameter  Description
1  $zmm       Number of zmm register containing string
2  $reg       Register to hold length

ConcatenateShortStrings($left, $right)

Concatenate the numbered source zmm containing a short string with the short string in the numbered target zmm.

   Parameter  Description
1  $left      Target zmm
2  $right     Source zmm

Byte Strings

Operations on Byte Strings

Cstrlen()

Length of the C style string addressed by rax returning the length in r15

Example:

  my $s = Rs("abcd");
  Mov rax, $s;

  Cstrlen;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  PrintOutRegisterInHex r15;
  ok Assemble =~ m(r15: 0000 0000 0000 0004);

CreateByteString(%options)

Create an relocatable string of bytes in an arena and returns its address in rax. Optionally add a chain header so that 64 byte blocks of memory can be freed and reused within the byte string.

   Parameter  Description
1  %options   Free=>1 adds a free chain.

Example:

  my $a = CreateByteString;                                                     # Create a string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  $a->q('aa');
  $a->out;
  PrintOutNL;
  is_deeply Assemble, <<END;                                                    # Assemble and execute
aa
END


  my $a = CreateByteString;                                                     # Create a string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $b = CreateByteString;                                                     # Create a string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  $a->q('aa');
  $b->q('bb');
  $a->out;
  PrintOutNL;
  $b->out;
  PrintOutNL;
  is_deeply Assemble, <<END;                                                    # Assemble and execute
aa
bb
END


  my $a = CreateByteString;                                                     # Create a string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $b = CreateByteString;                                                     # Create a string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  $a->q('aa');
  $a->q('AA');
  $a->out;
  PrintOutNL;
  is_deeply Assemble, <<END;                                                    # Assemble and execute
aaAA
END


  my $a = CreateByteString;                                                     # Create a string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  my $b = CreateByteString;                                                     # Create a string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  $a->q('aa');
  $b->q('bb');
  $a->q('AA');
  $b->q('BB');
  $a->q('aa');
  $b->q('bb');
  $a->out;
  $b->out;
  PrintOutNL;
  is_deeply Assemble, <<END;                                                    # Assemble and execute
aaAAaabbBBbb
END


  my $a = CreateByteString;                                                     # Create a string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  $a->q('ab');

  my $b = CreateByteString;                                                     # Create target byte string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  $b->append(source=>$a->bs);
  $b->append(source=>$a->bs);
  $a->append(source=>$b->bs);
  $b->append(source=>$a->bs);
  $a->append(source=>$b->bs);
  $b->append(source=>$a->bs);
  $b->append(source=>$a->bs);
  $b->append(source=>$a->bs);
  $b->append(source=>$a->bs);


  $a->out;   PrintOutNL;                                                        # Print byte string
  $b->out;   PrintOutNL;                                                        # Print byte string
  $a->length(my $sa = Vq(size)); $sa->outNL;
  $b->length(my $sb = Vq(size)); $sb->outNL;
  $a->clear;
  $a->length(my $sA = Vq(size)); $sA->outNL;
  $b->length(my $sB = Vq(size)); $sB->outNL;

  is_deeply Assemble, <<END;                                                    # Assemble and execute
abababababababab
ababababababababababababababababababababababababababababababababababababab
size: 0000 0000 0000 0010
size: 0000 0000 0000 004A
size: 0000 0000 0000 0000
size: 0000 0000 0000 004A
END

Nasm::X86::ByteString::chain($byteString, $bs, $variable, @offsets)

Return a variable with the end point of a chain of double words in the byte string starting at the specified variable.

   Parameter    Description
1  $byteString  Byte string descriptor
2  $bs          Byte string locator
3  $variable    Start variable
4  @offsets     Offsets chain

Example:

  my $format = Rd(map{4*$_+24} 0..64);

  my $b = CreateByteString;
  my $a = $b->allocBlock;
  Vmovdqu8 zmm31, "[$format]";
  $b->putBlock($b->bs, $a, 31);
  my $r = $b->chain($b->bs, Vq(start, 0x18), 4);       $r->outNL("chain1: ");
  my $s = $b->chain($b->bs, $r, 4);                    $s->outNL("chain2: ");
  my $t = $b->chain($b->bs, $s, 4);                    $t->outNL("chain3: ");
  my $A = $b->chain($b->bs, Vq(start, 0x18), 4, 4, 4); $A->outNL("chain4: ");           # Get a long chain

  $b->putChain($b->bs, Vq(start, 0x18), Vq(end, 0xff), 4, 4, 4);                # Put at the end of a long chain

  $b->dump;

  my $sub = Subroutine
   {my ($p) = @_;                                                               # Parameters
    If ($$p{c} == -1,
      sub {PrintOutStringNL "C is minus one"},
      sub {PrintOutStringNL "C is NOT minus one"},
     );
    If ($$p{d} == -1,
      sub {PrintOutStringNL "D is minus one"},
      sub {PrintOutStringNL "D is NOT minus one"},
     );

    my $C = $$p{c}->clone;
    $C->outNL;

    $$p{e} += 1;
    $$p{e}->outNL('E: ');

    $$p{f}->outNL('F1: ');
    $$p{f}++;
    $$p{f}->outNL('F2: ');
   } name=> 'aaa', in => {c => 3}, io => {d => 3, e => 3, f => 3};

  my $c = Cq(c, -1);
  my $d = Cq(d, -1);
  my $e = Vq(e,  1);
  my $f = Vq(f,  2);

  $sub->call($c, $d, $e, $f);
  $f->outNL('F3: ');

  ok Assemble(debug => 0, eq => <<END);
chain1: 0000 0000 0000 001C
chain2: 0000 0000 0000 0020
chain3: 0000 0000 0000 0024
chain4: 0000 0000 0000 0024
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0058
0000: 0010 0000 0000 00005800 0000 0000 00000000 0000 0000 00001800 0000 1C00 00002000 0000 FF00 00002800 0000 2C00 00003000 0000 3400 00003800 0000 3C00 0000
0040: 4000 0000 4400 00004800 0000 4C00 00005000 0000 5400 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
C is minus one
D is minus one
Clone of c: FFFF FFFF FFFF FFFF
E: 0000 0000 0000 0002
F1: 0000 0000 0000 0002
F2: 0000 0000 0000 0003
F3: 0000 0000 0000 0003
END

Nasm::X86::ByteString::putChain($byteString, $bs, $start, $value, @offsets)

Write the double word in the specified variable to the double word location at the the specified offset in the specified byte string.

   Parameter    Description
1  $byteString  Byte string descriptor
2  $bs          Byte string locator variable
3  $start       Start variable
4  $value       Value to put as a variable
5  @offsets     Offsets chain

Nasm::X86::ByteString::length($byteString, @variables)

Get the length of a byte string

   Parameter    Description
1  $byteString  Byte string descriptor
2  @variables   Variables

Nasm::X86::ByteString::makeReadOnly($byteString)

Make a byte string read only

   Parameter    Description
1  $byteString  Byte string descriptor

Nasm::X86::ByteString::makeWriteable($byteString)

Make a byte string writable

   Parameter    Description
1  $byteString  Byte string descriptor

Nasm::X86::ByteString::allocate($byteString, @variables)

Allocate the amount of space indicated in rdi in the byte string addressed by rax and return the offset of the allocation in the arena in rdi

   Parameter    Description
1  $byteString  Byte string descriptor
2  @variables   Variables

Nasm::X86::ByteString::blockSize($byteString)

Size of a block

   Parameter    Description
1  $byteString  Byte string

Nasm::X86::ByteString::allocZmmBlock($byteString, @variables)

Allocate a block to hold a zmm register in the specified byte string and return the offset of the block in a variable

   Parameter    Description
1  $byteString  Byte string
2  @variables   Variables

Nasm::X86::ByteString::allocBlock($byteString)

Allocate a block to hold a zmm register in the specified byte string and return the offset of the block in a variable

   Parameter    Description
1  $byteString  Byte string

Example:

  my $a = CreateByteString; $a->dump;
  my $b1 = $a->allocBlock;  $a->dump;
  my $b2 = $a->allocBlock;  $a->dump;
  $a->freeBlock($b2);       $a->dump;
  $a->freeBlock($b1);       $a->dump;

  ok Assemble(debug => 0, eq => <<END);
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0018
0000: 0010 0000 0000 00001800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0058
0000: 0010 0000 0000 00005800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0098
0000: 0010 0000 0000 00009800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0098
0000: 0010 0000 0000 00009800 0000 0000 00005800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0098
0000: 0010 0000 0000 00009800 0000 0000 00001800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 5800 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
END

Nasm::X86::ByteString::freeBlock($byteString, @variables)

Free a block in a byte string by placing it on the free chain

   Parameter    Description
1  $byteString  Byte string descriptor
2  @variables   Variables

Example:

  my $a = CreateByteString; $a->dump;
  my $b1 = $a->allocBlock;  $a->dump;
  my $b2 = $a->allocBlock;  $a->dump;
  $a->freeBlock($b2);       $a->dump;
  $a->freeBlock($b1);       $a->dump;

  ok Assemble(debug => 0, eq => <<END);
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0018
0000: 0010 0000 0000 00001800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0058
0000: 0010 0000 0000 00005800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0098
0000: 0010 0000 0000 00009800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0098
0000: 0010 0000 0000 00009800 0000 0000 00005800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
Byte String
  Size: 0000 0000 0000 1000
  Used: 0000 0000 0000 0098
0000: 0010 0000 0000 00009800 0000 0000 00001800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 5800 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
END

Nasm::X86::ByteString::getBlock($byteString, $bsa, $block, $zmm)

Get the block with the specified offset in the specified block string and return it in the numbered zmm

   Parameter    Description
1  $byteString  Byte string descriptor
2  $bsa         Byte string variable
3  $block       Offset of the block as a variable
4  $zmm         Number of zmm register to contain block

Nasm::X86::ByteString::putBlock($byteString, $bsa, $block, $zmm)

Write the numbered zmm to the block at the specified offset in the specified byte string

   Parameter    Description
1  $byteString  Byte string descriptor
2  $bsa         Byte string variable
3  $block       Block in byte string
4  $zmm         Content variable

Nasm::X86::ByteString::m($byteString, @variables)

Append the content with length rdi addressed by rsi to the byte string addressed by rax

   Parameter    Description
1  $byteString  Byte string descriptor
2  @variables   Variables

Nasm::X86::ByteString::q($byteString, $string)

Append a constant string to the byte string

   Parameter    Description
1  $byteString  Byte string descriptor
2  $string      String

Nasm::X86::ByteString::ql($byteString, $const)

Append a quoted string containing new line characters to the byte string addressed by rax

   Parameter    Description
1  $byteString  Byte string
2  $const       Constant

Nasm::X86::ByteString::char($byteString, $char)

Append a character expressed as a decimal number to the byte string addressed by rax

   Parameter    Description
1  $byteString  Byte string descriptor
2  $char        Number of character to be appended

Nasm::X86::ByteString::nl($byteString)

Append a new line to the byte string addressed by rax

   Parameter    Description
1  $byteString  Byte string descriptor

Nasm::X86::ByteString::z($byteString)

Append a trailing zero to the byte string addressed by rax

   Parameter    Description
1  $byteString  Byte string descriptor

Nasm::X86::ByteString::append($byteString, @variables)

Append one byte string to another

   Parameter    Description
1  $byteString  Byte string descriptor
2  @variables   Variables

Nasm::X86::ByteString::clear($byteString)

Clear the byte string addressed by rax

   Parameter    Description
1  $byteString  Byte string descriptor

Nasm::X86::ByteString::write($byteString, @variables)

Write the content in a byte string addressed by rax to a temporary file and replace the byte string content with the name of the temporary file

   Parameter    Description
1  $byteString  Byte string descriptor
2  @variables   Variables

Nasm::X86::ByteString::read($byteString, @variables)

Read the named file (terminated with a zero byte) and place it into the named byte string.

   Parameter    Description
1  $byteString  Byte string descriptor
2  @variables   Variables

Nasm::X86::ByteString::out($byteString)

Print the specified byte string addressed by rax on sysout

   Parameter    Description
1  $byteString  Byte string descriptor

Nasm::X86::ByteString::dump($byteString, $depth)

Dump details of a byte string

   Parameter    Description
1  $byteString  Byte string descriptor
2  $depth       Optional amount of memory to dump

Block Strings

Strings made from zmm sized blocks of text

Nasm::X86::ByteString::CreateBlockString($byteString)

Create a string from a doubly link linked list of 64 byte blocks linked via 4 byte offsets in the byte string addressed by rax and return its descriptor

   Parameter    Description
1  $byteString  Byte string description

Nasm::X86::BlockString::address($blockString)

Address of a block string

   Parameter     Description
1  $blockString  Block string descriptor

Nasm::X86::BlockString::allocBlock($blockString)

Allocate a block to hold a zmm register in the specified byte string and return the offset of the block in a variable

   Parameter     Description
1  $blockString  Block string descriptor

Nasm::X86::BlockString::getBlockLength($blockString, $zmm)

Get the block length of the numbered zmm and return it in a variable

   Parameter     Description
1  $blockString  Block string descriptor
2  $zmm          Number of zmm register

Nasm::X86::BlockString::setBlockLengthInZmm($blockString, $length, $zmm)

Set the block length of the numbered zmm to the specified length

   Parameter     Description
1  $blockString  Block string descriptor
2  $length       Length as a variable
3  $zmm          Number of zmm register

Nasm::X86::BlockString::getBlock($blockString, $bsa, $block, $zmm)

Get the block with the specified offset in the specified block string and return it in the numbered zmm

   Parameter     Description
1  $blockString  Block string descriptor
2  $bsa          Byte string variable
3  $block        Offset of the block as a variable
4  $zmm          Number of zmm register to contain block

Nasm::X86::BlockString::putBlock($blockString, $bsa, $block, $zmm)

Write the numbered zmm to the block at the specified offset in the specified byte string

   Parameter     Description
1  $blockString  Block string descriptor
2  $bsa          Byte string variable
3  $block        Block in byte string
4  $zmm          Content variable

Nasm::X86::BlockString::getNextAndPrevBlockOffsetFromZmm($blockString, $zmm)

Get the offsets of the next and previous blocks as variables from the specified zmm

   Parameter     Description
1  $blockString  Block string descriptor
2  $zmm          Zmm containing block

Nasm::X86::BlockString::putNextandPrevBlockOffsetIntoZmm($blockString, $zmm, $next, $prev)

Save next and prev offsets into a zmm representing a block

   Parameter     Description
1  $blockString  Block string descriptor
2  $zmm          Zmm containing block
3  $next         Next offset as a variable
4  $prev         Prev offset as a variable

Nasm::X86::BlockString::dump($blockString)

Dump a block string to sysout

   Parameter     Description
1  $blockString  Block string descriptor

Nasm::X86::BlockString::len($blockString, $size)

Find the length of a block string

   Parameter     Description
1  $blockString  Block string descriptor
2  $size         Size variable

Nasm::X86::BlockString::concatenate($target, $source)

Concatenate two block strings by appending a copy of the source to the target block string.

   Parameter  Description
1  $target    Target block string
2  $source    Source block string

Nasm::X86::BlockString::insertChar($blockString, @variables)

Insert a character into a block string

   Parameter     Description
1  $blockString  Block string
2  @variables    Variables

Nasm::X86::BlockString::deleteChar($blockString, @variables)

Delete a character in a block string

   Parameter     Description
1  $blockString  Block string
2  @variables    Variables

Nasm::X86::BlockString::getCharacter($blockString, @variables)

Get a character from a block string

   Parameter     Description
1  $blockString  Block string
2  @variables    Variables

Nasm::X86::BlockString::append($blockString, @variables)

Append the specified content in memory to the specified block string

   Parameter     Description
1  $blockString  Block string descriptor
2  @variables    Variables

Nasm::X86::BlockString::clear($blockString)

Clear the block by freeing all but the first block

   Parameter     Description
1  $blockString  Block string descriptor

Block Array

Array constructed as a tree of blocks in a byte string

Nasm::X86::ByteString::CreateBlockArray($byteString)

Create a block array in a byte string

   Parameter    Description
1  $byteString  Byte string description

Nasm::X86::BlockArray::address($blockArray)

Address of a block string

   Parameter    Description
1  $blockArray  Block array descriptor

Nasm::X86::BlockArray::allocBlock($blockArray)

Allocate a block to hold a zmm register in the specified byte string and return the offset of the block in a variable

   Parameter    Description
1  $blockArray  Block array descriptor

Nasm::X86::BlockArray::dump($blockArray, @variables)

Dump a block array

   Parameter    Description
1  $blockArray  Block array descriptor
2  @variables   Variables

Nasm::X86::BlockArray::push($blockArray, @variables)

Push an element onto the array

   Parameter    Description
1  $blockArray  Block array descriptor
2  @variables   Variables

Nasm::X86::BlockArray::pop($blockArray, @variables)

Pop an element from an array

   Parameter    Description
1  $blockArray  Block array descriptor
2  @variables   Variables

Nasm::X86::BlockArray::get($blockArray, @variables)

Get an element from the array

   Parameter    Description
1  $blockArray  Block array descriptor
2  @variables   Variables

Nasm::X86::BlockArray::put($blockArray, @variables)

Put an element into an array as long as it is with in its limits established by pushing.

   Parameter    Description
1  $blockArray  Block array descriptor
2  @variables   Variables

Block Multi Way Tree

Multi Way Tree constructed as a tree of blocks in a byte string

Nasm::X86::ByteString::CreateBlockMultiWayTree($byteString)

Create a block multi way tree in a byte string

   Parameter    Description
1  $byteString  Byte string description

Example:

  Mov r14, 0;
  Kmovq k0, r14;
  KeepFree r14;
  Ktestq k0, k0;
  IfZ {PrintOutStringNL "0 & 0 == 0"};
  PrintOutZF;

  LoadConstantIntoMaskRegister k1, 1;
  Ktestq k1, k1;
  IfNz {PrintOutStringNL "1 & 1 != 0"};
  PrintOutZF;

  LoadConstantIntoMaskRegister k2, eval "0b".(('1'x4).('0'x4))x2;

  PrintOutRegisterInHex k0, k1, k2;

  Mov  r15, 0x89abcdef;
  Mov  r14, 0x01234567;
  Shl  r14, 32;
  Or r15, r14;
  Push r15;
  Push r15;
  KeepFree r15;
  PopEax;  PrintRaxInHex($stdout, 3); PrintOutNL; KeepFree rax;

  my $a = Vq('aaaa');
  $a->pop;
  $a->push;
  $a->outNL;

  PopEax;  PrintRaxInHex($stdout, 3); PrintOutNL; KeepFree rax;

  ok Assemble(debug => 0, eq => <<END);
0 & 0 == 0
ZF=1
1 & 1 != 0
ZF=0
    k0: 0000 0000 0000 0000
    k1: 0000 0000 0000 0001
    k2: 0000 0000 0000 F0F0
89AB CDEF
aaaa: 89AB CDEF 0123 4567
0123 4567
END

Nasm::X86::BlockMultiWayTree::find($bmt, @variables)

Find a key in a tree and return its associated data

   Parameter   Description
1  $bmt        Block multi way tree descriptor
2  @variables  Variables

Nasm::X86::BlockMultiWayTree::insert($bmt, @variables)

Insert a (key, data) pair into the tree

   Parameter   Description
1  $bmt        Block multi way tree descriptor
2  @variables  Variables

Nasm::X86::BlockMultiWayTree::getKeysData($bmt, $offset, $zmmKeys, $zmmData)

Load the keys and data blocks for a node

   Parameter  Description
1  $bmt       Block multi way tree descriptor
2  $offset    Offset as a variable
3  $zmmKeys   Numbered zmm for keys
4  $zmmData   Numbered data for keys

Nasm::X86::BlockMultiWayTree::putKeysData($bmt, $offset, $zmmKeys, $zmmData)

Save the key and data blocks for a node

   Parameter  Description
1  $bmt       Block multi way tree descriptor
2  $offset    Offset as a variable
3  $zmmKeys   Numbered zmm for keys
4  $zmmData   Numbered data for keys

Nasm::X86::BlockMultiWayTree::getNode($bmt, $offset, $zmmNode)

Load the child nodes for a node

   Parameter  Description
1  $bmt       Block multi way tree descriptor
2  $offset    Offset of nodes
3  $zmmNode   Numbered zmm for keys

Nasm::X86::BlockMultiWayTree::getKeysDataNode($bmt, $offset, $zmmKeys, $zmmData, $zmmNode)

Load the keys, data and child nodes for a node

   Parameter  Description
1  $bmt       Block multi way tree descriptor
2  $offset    Offset as a variable
3  $zmmKeys   Numbered zmm for keys
4  $zmmData   Numbered data for keys
5  $zmmNode   Numbered numbered for keys

Nasm::X86::BlockMultiWayTree::putKeysDataNode($bmt, $offset, $zmmKeys, $zmmData, $zmmNode)

Save the keys, data and child nodes for a node

   Parameter  Description
1  $bmt       Block multi way tree descriptor
2  $offset    Offset as a variable
3  $zmmKeys   Numbered zmm for keys
4  $zmmData   Numbered data for keys
5  $zmmNode   Numbered numbered for keys

Nasm::X86::BlockMultiWayTree::getLengthInKeys($bmt, $zmm)

Get the length of the keys block in the numbered zmm and return it as a variable

   Parameter  Description
1  $bmt       Block multi way tree descriptor
2  $zmm       Zmm number

Nasm::X86::BlockMultiWayTree::putLengthInKeys($bmt, $zmm, $length)

Get the length of the block in the numbered zmm from the specified variable

   Parameter  Description
1  $bmt       Block multi way tree
2  $zmm       Zmm number
3  $length    Length variable

Nasm::X86::BlockMultiWayTree::getUpFromData($bmt, $zmm)

Get the up offset from the data block in the numbered zmm and return it as a variable

   Parameter  Description
1  $bmt       Block multi way tree descriptor
2  $zmm       Zmm number

Nasm::X86::BlockMultiWayTree::putUpIntoData($bmt, $offset, $zmm)

Put the offset of the parent keys block expressed as a variable into the numbered zmm

   Parameter  Description
1  $bmt       Block multi way tree descriptor
2  $offset    Variable containing up offset
3  $zmm       Zmm number

Nasm::X86::BlockMultiWayTree::getLoop($bmt, $zmm)

Return the value of the loop field as a variable

   Parameter  Description
1  $bmt       Block multi way tree descriptor
2  $zmm       Numbered zmm

Nasm::X86::BlockMultiWayTree::putLoop($bmt, $value, $zmm)

Set the value of the loop field from a variable

   Parameter  Description
1  $bmt       Block multi way tree descriptor
2  $value     Variable containing offset of next loop entry
3  $zmm       Numbered zmm

Nasm::X86::BlockMultiWayTree::leftOrRightMost($bmt, $dir, @variables)

Return the left most or right most node

   Parameter   Description
1  $bmt        Block multi way tree descriptor
2  $dir        Direction: left = 0 or right = 1
3  @variables  Variables

Nasm::X86::BlockMultiWayTree::leftMost($bmt, @variables)

Return the left most node

   Parameter   Description
1  $bmt        Block multi way tree descriptor
2  @variables  Variables

Nasm::X86::BlockMultiWayTree::rightMost($bmt, @variables)

Return the right most node

   Parameter   Description
1  $bmt        Block multi way tree descriptor
2  @variables  Variables

Nasm::X86::BlockMultiWayTree::nodeFromData($bmt, $data, $node)

Load the the node block into the numbered zmm corresponding to the data block held in the numbered zmm.

   Parameter  Description
1  $bmt       Block multi way tree descriptor
2  $data      Numbered zmm containing data
3  $node      Numbered zmm to hold node block

Nasm::X86::BlockMultiWayTree::address($bmt)

Address of the byte string containing a block multi way tree

   Parameter  Description
1  $bmt       Block multi way tree descriptor

Nasm::X86::BlockMultiWayTree::allocBlock($bmt, @variables)

Allocate a block to hold a zmm register in the specified byte string and return the offset of the block in a variable

   Parameter   Description
1  $bmt        Block multi way tree descriptor
2  @variables  Variables

Nasm::X86::BlockMultiWayTree::depth($bmt, @variables)

Return the depth of a node within a tree.

   Parameter   Description
1  $bmt        Block multi way tree descriptor
2  @variables  Variables

Nasm::X86::BlockMultiWayTree::iterator($b)

Iterate through a multi way tree

   Parameter  Description
1  $b         Block multi way tree

Nasm::X86::BlockMultiWayTree::Iterator::next($iter)

Next element in the tree

   Parameter  Description
1  $iter      Iterator

Nasm::X86::BlockMultiWayTree::by($b, $body)

Call the specified body with each (key, data) from the specified tree in order

   Parameter  Description
1  $b         Block Multi Way Tree descriptor
2  $body      Body

Assemble

Assemble generated code

CallC($sub, @parameters)

Call a C subroutine

   Parameter    Description
1  $sub         Name of the sub to call
2  @parameters  Parameters

Example:

  my $format = Rs "Hello %s
";
  my $data   = Rs "World";

  Extern qw(printf exit malloc strcpy); Link 'c';


  CallC 'malloc', length($format)+1;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov r15, rax;

  CallC 'strcpy', r15, $format;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  CallC 'printf', r15, $data;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  CallC 'exit', 0;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  ok Assemble(eq => <<END);
Hello World
END

Extern(@externalReferences)

Name external references

   Parameter            Description
1  @externalReferences  External references

Example:

  my $format = Rs "Hello %s
";
  my $data   = Rs "World";


  Extern qw(printf exit malloc strcpy); Link 'c';  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  CallC 'malloc', length($format)+1;
  Mov r15, rax;
  CallC 'strcpy', r15, $format;
  CallC 'printf', r15, $data;
  CallC 'exit', 0;

  ok Assemble(eq => <<END);
Hello World
END

Link(@libraries)

Libraries to link with

   Parameter   Description
1  @libraries  External references

Example:

  my $format = Rs "Hello %s
";
  my $data   = Rs "World";


  Extern qw(printf exit malloc strcpy); Link 'c';  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲


  CallC 'malloc', length($format)+1;
  Mov r15, rax;
  CallC 'strcpy', r15, $format;
  CallC 'printf', r15, $data;
  CallC 'exit', 0;

  ok Assemble(eq => <<END);
Hello World
END

Start()

Initialize the assembler

Exit($c)

Exit with the specified return code or zero if no return code supplied. Assemble() automatically adds a call to Exit(0) if the last operation in the program is not a call to Exit.

   Parameter  Description
1  $c         Return code

Assemble(%options)

Assemble the generated code

   Parameter  Description
1  %options   Options

Example:

  PrintOutStringNL "Hello World";
  PrintOutStringNL "Hello
World";
  PrintErrStringNL "Hello World";


  ok Assemble(debug => 0, eq => <<END);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

Hello World
Hello
World
END

Hash Definitions

Nasm::X86 Definition

Iterator

Output fields

bs

Byte string definition

constant

Constant if true

count

Counter - number of node

data

Data at this position

depth

Lexical depth of scope

expr

Expression that initializes the variable

first

Variable addressing offset to first block of keys

free

Free chain offset

Offset of header block

key

Key at this position

keys

Offset of keys in header

label

Address in memory

laneSize

Size of the lanes in this variable

length

Offset of length in keys block

Location of links in bytes in zmm

loop

Offset of keys, data, node loop

maxKeys

Maximum number of keys

maxNodes

Maximum number of children per parent.

minKeys

Minimum number of keys

more

Iteration not yet finished

name

Name of the variable

next

Location of next offset in block in bytes

node

Current node within tree

number

Number of this scope

parent

Parent scope

pos

Current position within node

prev

Location of prev offset in block in bytes

purpose

Purpose of this variable

reference

Reference to another variable

saturate

Computations should saturate rather then wrap if true

signed

Elements of x|y|zmm registers are signed if true

size

Size field details

slots1

Number of slots in first block

slots2

Number of slots in second and subsequent blocks

structure

Structure details

tree

Tree we are iterating over

up

Offset of up in data block

used

Used field details

width

Width of a key or data slot

Attributes

The following is a list of all the attributes in this package. A method coded with the same name in your package will over ride the method of the same name in this package and thus provide your value for the attribute in place of the default value supplied for this attribute by this package.

Replaceable Attribute List

Pi32 Pi64

Pi32

Pi as a 32 bit float

Pi64

Pi as a 64 bit float

Private Methods

Label()

Create a unique label

Dbwdq($s, @d)

Layout data

   Parameter  Description
1  $s         Element size
2  @d         Data to be laid out

Rbwdq($s, @d)

Layout data

   Parameter  Description
1  $s         Element size
2  @d         Data to be laid out

hexTranslateTable()

Create/address a hex translate table and return its label

PrintOutRipInHex()

Print the instruction pointer in hex

PrintOutRflagsInHex()

Print the flags register in hex

PushRR(@r)

Push registers onto the stack without tracking

   Parameter  Description
1  @r         Register

PushR(@r)

Push registers onto the stack

   Parameter  Description
1  @r         Register

Example:

  Mov rax, 0x11111111;
  Mov rbx, 0x22222222;

  PushR my @save = (rax, rbx);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Mov rax, 0x33333333;
  PopR @save;
  PrintOutRegisterInHex rax;
  PrintOutRegisterInHex rbx;

  is_deeply Assemble,<<END;
   rax: 0000 0000 1111 1111
   rbx: 0000 0000 2222 2222
END

PopRR(@r)

Pop registers from the stack without tracking

   Parameter  Description
1  @r         Register

ClassifyRange($recordOffsetInRange, @parameters)

Implementation of ClassifyInRange and ClassifyWithinRange

   Parameter             Description
1  $recordOffsetInRange  Record offset in range if true
2  @parameters           Parameters

Nasm::X86::ByteString::updateSpace($byteString, @variables)

Make sure that the byte string addressed by rax has enough space to accommodate content of length rdi

   Parameter    Description
1  $byteString  Byte string descriptor
2  @variables   Variables

Nasm::X86::ByteString::firstFreeBlock($byteString)

Create and load a variable with the first free block on the free block chain or zero if no such block in the given byte string

   Parameter    Description
1  $byteString  Byte string address as a variable

Nasm::X86::ByteString::setFirstFreeBlock($byteString, $offset)

Set the first free block field from a variable

   Parameter    Description
1  $byteString  Byte string descriptor
2  $offset      First free block offset as a variable

Nasm::X86::BlockMultiWayTree::allocKeysDataNode($bmt, $K, $D, $N, @variables)

Allocate a keys/data/node block and place it in the numbered zmm registers

   Parameter   Description
1  $bmt        Block multi way tree descriptor
2  $K          Numbered zmm for keys
3  $D          Numbered zmm for data
4  $N          Numbered zmm for children
5  @variables  Variables

Nasm::X86::BlockMultiWayTree::splitNode($bmt, $bs, $node, $key, @variables)

Split a node given its offset in a byte string retaining the key being inserted in the node split while putting the remainder to the left or right.

   Parameter   Description
1  $bmt        Block multi way tree descriptor
2  $bs         Backing byte string
3  $node       Offset of node
4  $key        Key
5  @variables  Variables

Nasm::X86::BlockMultiWayTree::reParent($bmt, $bs, $PK, $PD, $PN, @variables)

Reparent the children of a node held in registers. The children are in the backing byte string not registers.

   Parameter   Description
1  $bmt        Block multi way tree descriptor
2  $bs         Backing byte string
3  $PK         Numbered zmm key node
4  $PD         Numbered zmm data node
5  $PN         Numbered zmm child node
6  @variables  Variables

Nasm::X86::BlockMultiWayTree::splitFullRoot($bmt, $bs)

Split a full root block held in 31..29 and place the left block in 28..26 and the right block in 25..23. The left and right blocks should have their loop offsets set so they can be inserted into the root.

   Parameter  Description
1  $bmt       Block multi way tree descriptor
2  $bs        Byte string locator

Nasm::X86::BlockMultiWayTree::splitFullLeftNode($bmt, $bs)

Split a full left node block held in 28..26 whose parent is in 31..29 and place the new right block in 25..23. The parent is assumed to be not full. The loop and length fields are assumed to be authoritative and hence are preserved.

   Parameter  Description
1  $bmt       Block multi way tree descriptor
2  $bs        Byte string locator

Example:

  my $Sk = Rd(17..28, 0, 0, 12,   0xFF);
  my $Sd = Rd(17..28, 0, 0, 0xDD, 0xEE);
  my $Sn = Rd(1..13,     0, 0,    0xCC);

  my $sk = Rd(1..14, 14,   0xA1);
  my $sd = Rd(1..14, 0xCC, 0xA2);
  my $sn = Rd(1..15,       0xA3);

  my $rk = Rd((0)x14, 14,   0xB1);
  my $rd = Rd((0)x14, 0xCC, 0xB2);
  my $rn = Rd((0)x15,       0xB3);

  my $b = CreateByteString;
  my $t = $b->CreateBlockMultiWayTree;

  Vmovdqu8 zmm31, "[$Sk]";
  Vmovdqu8 zmm30, "[$Sd]";
  Vmovdqu8 zmm29, "[$Sn]";

  Vmovdqu8 zmm28, "[$sk]";
  Vmovdqu8 zmm27, "[$sd]";
  Vmovdqu8 zmm26, "[$sn]";

  Vmovdqu8 zmm25, "[$rk]";
  Vmovdqu8 zmm24, "[$rd]";
  Vmovdqu8 zmm23, "[$rn]";

   $t->splitFullLeftNode($b->bs);

  PrintOutRegisterInHex reverse zmm(23..31);

  ok Assemble(debug => 0, eq => <<END);
 zmm31: 0000 00FF 0000 000D   0000 0000 0000 0000   0000 001C 0000 001B   0000 001A 0000 0019   0000 0018 0000 0017   0000 0016 0000 0015   0000 0014 0000 0013   0000 0012 0000 0011
 zmm30: 0000 00EE 0000 00DD   0000 0000 0000 0000   0000 001C 0000 001B   0000 001A 0000 0019   0000 0018 0000 0017   0000 0016 0000 0015   0000 0014 0000 0013   0000 0012 0000 0011
 zmm29: 0000 00CC 0000 0000   0000 0000 0000 000D   0000 000C 0000 000B   0000 000A 0000 0009   0000 0008 0000 0007   0000 0006 0000 0005   0000 0004 0000 0003   0000 0002 0000 0001
 zmm28: 0000 00A1 0000 0007   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0007   0000 0006 0000 0005   0000 0004 0000 0003   0000 0002 0000 0001
 zmm27: 0000 00A2 0000 00CC   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0007   0000 0006 0000 0005   0000 0004 0000 0003   0000 0002 0000 0001
 zmm26: 0000 00A3 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0007   0000 0006 0000 0005   0000 0004 0000 0003   0000 0002 0000 0001
 zmm25: 0000 00B1 0000 0006   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 000E 0000 000D   0000 000C 0000 000B   0000 000A 0000 0009
 zmm24: 0000 00B2 0000 00CC   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 000E 0000 000D   0000 000C 0000 000B   0000 000A 0000 0009
 zmm23: 0000 00B3 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 000E 0000 000D   0000 000C 0000 000B   0000 000A 0000 0009
END

Nasm::X86::BlockMultiWayTree::splitFullRightNode($bmt, $bs)

Split a full right node block held in 25..23 whose parent is in 31..29 and place the new left block in 25..23. The loop and length fields are assumed to be authoritative and hence are preserved.

   Parameter  Description
1  $bmt       Block multi way tree descriptor
2  $bs        Byte string locator

Example:

  my $tk = Rd(1..12, 0, 0, 12,      0xC1);
  my $td = Rd(1..12, 0, 0,  0,      0xC2);
  my $tn = Rd(1, 0xBB, 3..13, 0, 0, 0xCC);

  my $lk = Rd(17..30, 14,   0xA1);
  my $ld = Rd(17..30, 0xCC, 0xA2);
  my $ln = Rd(17..31,       0xAA);

  my $rk = Rd(17..30, 14,   0xB1);
  my $rd = Rd(17..30, 0xCC, 0xB2);
  my $rn = Rd(17..31,       0xBB);

  my $b = CreateByteString;
  my $t = $b->CreateBlockMultiWayTree;

  Vmovdqu8 zmm31, "[$tk]";
  Vmovdqu8 zmm30, "[$td]";
  Vmovdqu8 zmm29, "[$tn]";

  Vmovdqu8 zmm28, "[$lk]";
  Vmovdqu8 zmm27, "[$ld]";
  Vmovdqu8 zmm26, "[$ln]";

  Vmovdqu8 zmm25, "[$rk]";
  Vmovdqu8 zmm24, "[$rd]";
  Vmovdqu8 zmm23, "[$rn]";

  $t->splitFullRightNode($b->bs);

  PrintOutRegisterInHex reverse zmm(23..31);

  ok Assemble(debug => 0, eq => <<END);
 zmm31: 0000 00C1 0000 000D   0000 0000 0000 000C   0000 000B 0000 000A   0000 0009 0000 0008   0000 0007 0000 0006   0000 0005 0000 0004   0000 0003 0000 0002   0000 0018 0000 0001
 zmm30: 0000 00C2 0000 0000   0000 0000 0000 000C   0000 000B 0000 000A   0000 0009 0000 0008   0000 0007 0000 0006   0000 0005 0000 0004   0000 0003 0000 0002   0000 0018 0000 0001
 zmm29: 0000 00CC 0000 0000   0000 000D 0000 000C   0000 000B 0000 000A   0000 0009 0000 0008   0000 0007 0000 0006   0000 0005 0000 0004   0000 0003 0000 00BB   0000 00AA 0000 0001
 zmm28: 0000 00A1 0000 0007   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0017   0000 0016 0000 0015   0000 0014 0000 0013   0000 0012 0000 0011
 zmm27: 0000 00A2 0000 00CC   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0017   0000 0016 0000 0015   0000 0014 0000 0013   0000 0012 0000 0011
 zmm26: 0000 00AA 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0017   0000 0016 0000 0015   0000 0014 0000 0013   0000 0012 0000 0011
 zmm25: 0000 00B1 0000 0006   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 001E 0000 001D   0000 001C 0000 001B   0000 001A 0000 0019
 zmm24: 0000 00B2 0000 00CC   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 001E 0000 001D   0000 001C 0000 001B   0000 001A 0000 0019
 zmm23: 0000 00BB 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 001E 0000 001D   0000 001C 0000 001B   0000 001A 0000 0019
END

Nasm::X86::BlockMultiWayTree::findAndSplit($bmt, @variables)

Find a key in a tree which is known to contain at least one key splitting full nodes along the path to the key.

   Parameter   Description
1  $bmt        Block multi way tree descriptor
2  @variables  Variables

LocateIntelEmulator()

Locate the Intel Software Development Emulator

removeNonAsciiChars($string)

Return a copy of the specified string with all the non ascii characters removed

   Parameter  Description
1  $string    String

totalBytesAssembled()

Total size in bytes of all files assembled during testing

Index

1 All8Structure - Create a structure consisting of 8 byte fields

2 AllocateAll8OnStack - Create a local data descriptor consisting of the specified number of 8 byte local variables and return an array: (local data descriptor, variable definitions.

3 AllocateMemory - Allocate the specified amount of memory via mmap and return its address

4 Assemble - Assemble the generated code

5 CallC - Call a C subroutine

6 ClassifyCharacters4 - Classify the utf32 characters in a block of memory of specified length using zmm0 formatted in double words with each word having the classification in the highest 8 bits and the utf32 character in the lower 21 bits.

7 ClassifyInRange - Classify the utf32 characters in a block of memory of specified length using zmm0, zmm1 formatted in double words with each word in zmm1 having the classification in the highest 8 bits and with zmm0 and zmm1 having the utf32 character at the start (zmm0) and end (zmm1) of each range in the lower 21 bits.

8 ClassifyRange - Implementation of ClassifyInRange and ClassifyWithinRange

9 ClassifyWithInRange - Classify the utf32 characters in a block of memory of specified length using zmm0, zmm1 formatted in double words with the classification range in the highest 8 bits of zmm0 and zmm1 and the utf32 character at the start (zmm0) and end (zmm1) of each range in the lower 21 bits.

10 ClearMemory - Clear memory - the address of the memory is in rax, the length in rdi

11 ClearRegisters - Clear registers by setting them to zero

12 ClearZF - Clear the zero flag

13 CloseFile - Close the file whose descriptor is in rax

14 Comment - Insert a comment into the assembly code

15 ConcatenateShortStrings - Concatenate the numbered source zmm containing a short string with the short string in the numbered target zmm.

16 ConvertUtf8ToUtf32 - Convert a string of utf8 to an allocated block of utf32 and return its address and length.

17 CopyMemory - Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi

18 Cq - Define a quad constant

19 cr - Call a subroutine with a reordering of the registers.

20 CreateByteString - Create an relocatable string of bytes in an arena and returns its address in rax.

21 Cstrlen - Length of the C style string addressed by rax returning the length in r15

22 Db - Layout bytes in the data segment and return their label

23 Dbwdq - Layout data

24 DComment - Insert a comment into the data segment

25 Dd - Layout double words in the data segment and return their label

26 Dq - Layout quad words in the data segment and return their label

27 Ds - Layout bytes in memory and return their label

28 Dw - Layout words in the data segment and return their label

29 Else - Else body for an If statement

30 executeFileViaBash - Execute the file named in the byte string addressed by rax with bash

31 Exit - Exit with the specified return code or zero if no return code supplied.

32 Extern - Name external references

33 Float32 - 32 bit float

34 Float64 - 64 bit float

35 For - For - iterate the body as long as register is less than limit incrementing by increment each time

36 ForEver - Iterate for ever

37 ForIn - For - iterate the full body as long as register plus increment is less than than limit incrementing by increment each time then increment the last body for the last non full block.

38 Fork - Fork

39 FreeMemory - Free memory

40 getBFromXmm - Get the byte from the numbered xmm register and return it in a variable

41 getBFromZmm - Get the byte from the numbered zmm register and return it in a variable

42 getBwdqFromMm - Get the numbered byte|word|double word|quad word from the numbered zmm register and return it in a variable

43 getDFromXmm - Get the double word from the numbered xmm register and return it in a variable

44 getDFromZmm - Get the double word from the numbered zmm register and return it in a variable

45 GetLengthOfShortString - Get the length of the short string held in the numbered zmm register into the specified register

46 GetNextUtf8CharAsUtf32 - Get the next utf8 encoded character from the addressed memory and return it as a utf32 char

47 GetPid - Get process identifier

48 GetPidInHex - Get process identifier in hex as 8 zero terminated bytes in rax

49 GetPPid - Get parent process identifier

50 getQFromXmm - Get the quad word from the numbered xmm register and return it in a variable

51 getQFromZmm - Get the quad word from the numbered zmm register and return it in a variable

52 GetUid - Get userid of current process

53 getWFromXmm - Get the word from the numbered xmm register and return it in a variable

54 getWFromZmm - Get the word from the numbered zmm register and return it in a variable

55 Hash - Hash a string addressed by rax with length held in rdi and return the hash code in r15

56 hexTranslateTable - Create/address a hex translate table and return its label

57 If - If

58 IfEq - If equal execute the then body else the else body

59 IfGe - If greater than or equal execute the then body else the else body

60 IfGt - If greater than execute the then body else the else body

61 IfLe - If less than or equal execute the then body else the else body

62 IfLt - If less than execute the then body else the else body

63 IfNe - If not equal execute the then body else the else body

64 IfNz - If the zero is not set then execute the then body else the else body

65 IfZ - If the zero is set then execute the then body else the else body

66 Keep - Mark free registers so that they are not updated until we Free them or complain if the register is already in use.

67 KeepFree - Free registers so that they can be reused

68 KeepPop - Reset the status of the specified registers to the status quo ante the last push

69 KeepPush - Push the current status of the specified registers and then mark them as free

70 KeepReturn - Pop the specified register and mark it as in use to effect a subroutine return with this register.

71 KeepSet - Confirm that the specified registers are in use

72 Label - Create a unique label

73 Link - Libraries to link with

74 LoadConstantIntoMaskRegister - Load a constant into a mask register

75 LoadShortStringFromMemoryToZmm - Load the short string addressed by rax into the zmm register with the specified number

76 LoadShortStringFromMemoryToZmm2 - Load the short string addressed by rax into the zmm register with the specified number

77 LocalData - Map local data

78 LocateIntelEmulator - Locate the Intel Software Development Emulator

79 Macro - Create a sub with optional parameters name=> the name of the subroutine so it can be reused rather than regenerated, comment=> a comment describing the sub

80 MaskMemory - Write the specified byte into locations in the target mask that correspond to the locations in the source that contain the specified byte.

81 MaskMemoryInRange4 - Write the specified byte into locations in the target mask that correspond to the locations in the source that contain 4 bytes in the specified range.

82 MatchBrackets - Replace a utf32 character with 24 bits of offset to the matching opening or closing bracket.

83 Nasm::X86::BlockArray::address - Address of a block string

84 Nasm::X86::BlockArray::allocBlock - Allocate a block to hold a zmm register in the specified byte string and return the offset of the block in a variable

85 Nasm::X86::BlockArray::dump - Dump a block array

86 Nasm::X86::BlockArray::get - Get an element from the array

87 Nasm::X86::BlockArray::pop - Pop an element from an array

88 Nasm::X86::BlockArray::push - Push an element onto the array

89 Nasm::X86::BlockArray::put - Put an element into an array as long as it is with in its limits established by pushing.

90 Nasm::X86::BlockMultiWayTree::address - Address of the byte string containing a block multi way tree

91 Nasm::X86::BlockMultiWayTree::allocBlock - Allocate a block to hold a zmm register in the specified byte string and return the offset of the block in a variable

92 Nasm::X86::BlockMultiWayTree::allocKeysDataNode - Allocate a keys/data/node block and place it in the numbered zmm registers

93 Nasm::X86::BlockMultiWayTree::by - Call the specified body with each (key, data) from the specified tree in order

94 Nasm::X86::BlockMultiWayTree::depth - Return the depth of a node within a tree.

95 Nasm::X86::BlockMultiWayTree::find - Find a key in a tree and return its associated data

96 Nasm::X86::BlockMultiWayTree::findAndSplit - Find a key in a tree which is known to contain at least one key splitting full nodes along the path to the key.

97 Nasm::X86::BlockMultiWayTree::getKeysData - Load the keys and data blocks for a node

98 Nasm::X86::BlockMultiWayTree::getKeysDataNode - Load the keys, data and child nodes for a node

99 Nasm::X86::BlockMultiWayTree::getLengthInKeys - Get the length of the keys block in the numbered zmm and return it as a variable

100 Nasm::X86::BlockMultiWayTree::getLoop - Return the value of the loop field as a variable

101 Nasm::X86::BlockMultiWayTree::getNode - Load the child nodes for a node

102 Nasm::X86::BlockMultiWayTree::getUpFromData - Get the up offset from the data block in the numbered zmm and return it as a variable

103 Nasm::X86::BlockMultiWayTree::insert - Insert a (key, data) pair into the tree

104 Nasm::X86::BlockMultiWayTree::iterator - Iterate through a multi way tree

105 Nasm::X86::BlockMultiWayTree::Iterator::next - Next element in the tree

106 Nasm::X86::BlockMultiWayTree::leftMost - Return the left most node

107 Nasm::X86::BlockMultiWayTree::leftOrRightMost - Return the left most or right most node

108 Nasm::X86::BlockMultiWayTree::nodeFromData - Load the the node block into the numbered zmm corresponding to the data block held in the numbered zmm.

109 Nasm::X86::BlockMultiWayTree::putKeysData - Save the key and data blocks for a node

110 Nasm::X86::BlockMultiWayTree::putKeysDataNode - Save the keys, data and child nodes for a node

111 Nasm::X86::BlockMultiWayTree::putLengthInKeys - Get the length of the block in the numbered zmm from the specified variable

112 Nasm::X86::BlockMultiWayTree::putLoop - Set the value of the loop field from a variable

113 Nasm::X86::BlockMultiWayTree::putUpIntoData - Put the offset of the parent keys block expressed as a variable into the numbered zmm

114 Nasm::X86::BlockMultiWayTree::reParent - Reparent the children of a node held in registers.

115 Nasm::X86::BlockMultiWayTree::rightMost - Return the right most node

116 Nasm::X86::BlockMultiWayTree::splitFullLeftNode - Split a full left node block held in 28.

117 Nasm::X86::BlockMultiWayTree::splitFullRightNode - Split a full right node block held in 25.

118 Nasm::X86::BlockMultiWayTree::splitFullRoot - Split a full root block held in 31.

119 Nasm::X86::BlockMultiWayTree::splitNode - Split a node given its offset in a byte string retaining the key being inserted in the node split while putting the remainder to the left or right.

120 Nasm::X86::BlockString::address - Address of a block string

121 Nasm::X86::BlockString::allocBlock - Allocate a block to hold a zmm register in the specified byte string and return the offset of the block in a variable

122 Nasm::X86::BlockString::append - Append the specified content in memory to the specified block string

123 Nasm::X86::BlockString::clear - Clear the block by freeing all but the first block

124 Nasm::X86::BlockString::concatenate - Concatenate two block strings by appending a copy of the source to the target block string.

125 Nasm::X86::BlockString::deleteChar - Delete a character in a block string

126 Nasm::X86::BlockString::dump - Dump a block string to sysout

127 Nasm::X86::BlockString::getBlock - Get the block with the specified offset in the specified block string and return it in the numbered zmm

128 Nasm::X86::BlockString::getBlockLength - Get the block length of the numbered zmm and return it in a variable

129 Nasm::X86::BlockString::getCharacter - Get a character from a block string

130 Nasm::X86::BlockString::getNextAndPrevBlockOffsetFromZmm - Get the offsets of the next and previous blocks as variables from the specified zmm

131 Nasm::X86::BlockString::insertChar - Insert a character into a block string

132 Nasm::X86::BlockString::len - Find the length of a block string

133 Nasm::X86::BlockString::putBlock - Write the numbered zmm to the block at the specified offset in the specified byte string

134 Nasm::X86::BlockString::putNextandPrevBlockOffsetIntoZmm - Save next and prev offsets into a zmm representing a block

135 Nasm::X86::BlockString::setBlockLengthInZmm - Set the block length of the numbered zmm to the specified length

136 Nasm::X86::ByteString::allocate - Allocate the amount of space indicated in rdi in the byte string addressed by rax and return the offset of the allocation in the arena in rdi

137 Nasm::X86::ByteString::allocBlock - Allocate a block to hold a zmm register in the specified byte string and return the offset of the block in a variable

138 Nasm::X86::ByteString::allocZmmBlock - Allocate a block to hold a zmm register in the specified byte string and return the offset of the block in a variable

139 Nasm::X86::ByteString::append - Append one byte string to another

140 Nasm::X86::ByteString::blockSize - Size of a block

141 Nasm::X86::ByteString::chain - Return a variable with the end point of a chain of double words in the byte string starting at the specified variable.

142 Nasm::X86::ByteString::char - Append a character expressed as a decimal number to the byte string addressed by rax

143 Nasm::X86::ByteString::clear - Clear the byte string addressed by rax

144 Nasm::X86::ByteString::CreateBlockArray - Create a block array in a byte string

145 Nasm::X86::ByteString::CreateBlockMultiWayTree - Create a block multi way tree in a byte string

146 Nasm::X86::ByteString::CreateBlockString - Create a string from a doubly link linked list of 64 byte blocks linked via 4 byte offsets in the byte string addressed by rax and return its descriptor

147 Nasm::X86::ByteString::dump - Dump details of a byte string

148 Nasm::X86::ByteString::firstFreeBlock - Create and load a variable with the first free block on the free block chain or zero if no such block in the given byte string

149 Nasm::X86::ByteString::freeBlock - Free a block in a byte string by placing it on the free chain

150 Nasm::X86::ByteString::getBlock - Get the block with the specified offset in the specified block string and return it in the numbered zmm

151 Nasm::X86::ByteString::length - Get the length of a byte string

152 Nasm::X86::ByteString::m - Append the content with length rdi addressed by rsi to the byte string addressed by rax

153 Nasm::X86::ByteString::makeReadOnly - Make a byte string read only

154 Nasm::X86::ByteString::makeWriteable - Make a byte string writable

155 Nasm::X86::ByteString::nl - Append a new line to the byte string addressed by rax

156 Nasm::X86::ByteString::out - Print the specified byte string addressed by rax on sysout

157 Nasm::X86::ByteString::putBlock - Write the numbered zmm to the block at the specified offset in the specified byte string

158 Nasm::X86::ByteString::putChain - Write the double word in the specified variable to the double word location at the the specified offset in the specified byte string.

159 Nasm::X86::ByteString::q - Append a constant string to the byte string

160 Nasm::X86::ByteString::ql - Append a quoted string containing new line characters to the byte string addressed by rax

161 Nasm::X86::ByteString::read - Read the named file (terminated with a zero byte) and place it into the named byte string.

162 Nasm::X86::ByteString::setFirstFreeBlock - Set the first free block field from a variable

163 Nasm::X86::ByteString::updateSpace - Make sure that the byte string addressed by rax has enough space to accommodate content of length rdi

164 Nasm::X86::ByteString::write - Write the content in a byte string addressed by rax to a temporary file and replace the byte string content with the name of the temporary file

165 Nasm::X86::ByteString::z - Append a trailing zero to the byte string addressed by rax

166 Nasm::X86::LocalData::allocate8 - Add some 8 byte local variables and return an array of variable definitions

167 Nasm::X86::LocalData::free - Free a local data area on the stack

168 Nasm::X86::LocalData::start - Start a local data area on the stack

169 Nasm::X86::LocalData::variable - Add a local variable

170 Nasm::X86::LocalVariable::stack - Address a local variable on the stack

171 Nasm::X86::Scope::contains - Check that the named parent scope contains the specified child scope.

172 Nasm::X86::Scope::currentlyVisible - Check that the named parent scope is currently visible

173 Nasm::X86::Structure::field - Add a field of the specified length with an optional comment

174 Nasm::X86::StructureField::addr - Address a field in a structure by either the default register or the named register

175 Nasm::X86::Sub::call - Call a sub passing it some parameters

176 Nasm::X86::Variable::add - Add the right hand variable to the left hand variable and return the result as a new variable

177 Nasm::X86::Variable::address - Get the address of a variable with an optional offset

178 Nasm::X86::Variable::allocateMemory - Allocate the specified amount of memory via mmap and return its address

179 Nasm::X86::Variable::and - And two variables

180 Nasm::X86::Variable::arithmetic - Return a variable containing the result of an arithmetic operation on the left hand and right hand side variables

181 Nasm::X86::Variable::assign - Assign to the left hand side the value of the right hand side

182 Nasm::X86::Variable::boolean - Combine the left hand variable with the right hand variable via a boolean operator

183 Nasm::X86::Variable::clearMaskBit - Clear a bit in the specified mask register retaining the other bits

184 Nasm::X86::Variable::clearMemory - Clear the memory described in this variable

185 Nasm::X86::Variable::clone - Clone a variable to create a new variable

186 Nasm::X86::Variable::copy - Copy one variable into another

187 Nasm::X86::Variable::copyAddress - Copy a reference to a variable

188 Nasm::X86::Variable::copyMemory - Copy from one block of memory to another

189 Nasm::X86::Variable::debug - Dump the value of a variable on stdout with an indication of where the dump came from

190 Nasm::X86::Variable::dec - Decrement a variable

191 Nasm::X86::Variable::divide - Divide the left hand variable by the right hand variable and return the result as a new variable

192 Nasm::X86::Variable::division - Return a variable containing the result or the remainder that occurs when the left hand side is divided by the right hand side

193 Nasm::X86::Variable::dump - Dump the value of a variable to the specified channel adding an optional title and new line if requested

194 Nasm::X86::Variable::eq - Check whether the left hand variable is equal to the right hand variable

195 Nasm::X86::Variable::equals - Equals operator

196 Nasm::X86::Variable::err - Dump the value of a variable on stderr

197 Nasm::X86::Variable::errNL - Dump the value of a variable on stderr and append a new line

198 Nasm::X86::Variable::for - Iterate the body limit times.

199 Nasm::X86::Variable::freeMemory - Free the memory addressed by this variable for the specified length

200 Nasm::X86::Variable::ge - Check whether the left hand variable is greater than or equal to the right hand variable

201 Nasm::X86::Variable::getBFromZmm - Get the byte from the numbered zmm register and put it in a variable

202 Nasm::X86::Variable::getConst - Load the variable from a constant in effect setting a variable to a specified value

203 Nasm::X86::Variable::getDFromZmm - Get the double word from the numbered zmm register and put it in a variable

204 Nasm::X86::Variable::getQFromZmm - Get the quad word from the numbered zmm register and put it in a variable

205 Nasm::X86::Variable::getReg - Load the variable from the named registers

206 Nasm::X86::Variable::getWFromZmm - Get the word from the numbered zmm register and put it in a variable

207 Nasm::X86::Variable::gt - Check whether the left hand variable is greater than the right hand variable

208 Nasm::X86::Variable::inc - Increment a variable

209 Nasm::X86::Variable::incDec - Increment or decrement a variable

210 Nasm::X86::Variable::isRef - Check whether the specified variable is a reference to another variable

211 Nasm::X86::Variable::le - Check whether the left hand variable is less than or equal to the right hand variable

212 Nasm::X86::Variable::loadZmm - Load bytes from the memory addressed by the specified source variable into the numbered zmm register.

213 Nasm::X86::Variable::lt - Check whether the left hand variable is less than the right hand variable

214 Nasm::X86::Variable::max - Maximum of two variables

215 Nasm::X86::Variable::min - Minimum of two variables

216 Nasm::X86::Variable::minusAssign - Implement minus and assign

217 Nasm::X86::Variable::mod - Divide the left hand variable by the right hand variable and return the remainder as a new variable

218 Nasm::X86::Variable::ne - Check whether the left hand variable is not equal to the right hand variable

219 Nasm::X86::Variable::or - Or two variables

220 Nasm::X86::Variable::out - Dump the value of a variable on stdout

221 Nasm::X86::Variable::outNL - Dump the value of a variable on stdout and append a new line

222 Nasm::X86::Variable::plusAssign - Implement plus and assign

223 Nasm::X86::Variable::pop - Pop a variable from the stack

224 Nasm::X86::Variable::printErrMemoryInHexNL - Write the memory addressed by a variable to stderr

225 Nasm::X86::Variable::printMemoryInHexNL - Write the memory addressed by a variable to stdout or stderr

226 Nasm::X86::Variable::printOutMemoryInHexNL - Write the memory addressed by a variable to stdout

227 Nasm::X86::Variable::push - Push a variable onto the stack

228 Nasm::X86::Variable::putBIntoXmm - Place the value of the content variable at the byte in the numbered xmm register

229 Nasm::X86::Variable::putBIntoZmm - Place the value of the content variable at the byte in the numbered zmm register

230 Nasm::X86::Variable::putBwdqIntoMm - Place the value of the content variable at the byte|word|double word|quad word in the numbered zmm register

231 Nasm::X86::Variable::putDIntoXmm - Place the value of the content variable at the double word in the numbered xmm register

232 Nasm::X86::Variable::putDIntoZmm - Place the value of the content variable at the double word in the numbered zmm register

233 Nasm::X86::Variable::putQIntoXmm - Place the value of the content variable at the quad word in the numbered xmm register

234 Nasm::X86::Variable::putQIntoZmm - Place the value of the content variable at the quad word in the numbered zmm register

235 Nasm::X86::Variable::putWIntoXmm - Place the value of the content variable at the word in the numbered xmm register

236 Nasm::X86::Variable::putWIntoZmm - Place the value of the content variable at the word in the numbered zmm register

237 Nasm::X86::Variable::saveZmm2222 - Save bytes into the memory addressed by the target variable from the numbered zmm register.

238 Nasm::X86::Variable::setMask - Set the mask register to ones starting at the specified position for the specified length and zeroes elsewhere

239 Nasm::X86::Variable::setMaskBit - Set a bit in the specified mask register retaining the other bits

240 Nasm::X86::Variable::setMaskFirst - Set the first bits in the specified mask register

241 Nasm::X86::Variable::setReg - Set the named registers from the content of the variable

242 Nasm::X86::Variable::setZmm - Load bytes from the memory addressed by specified source variable into the numbered zmm register at the offset in the specified offset moving the number of bytes in the specified variable

243 Nasm::X86::Variable::str - The name of the variable

244 Nasm::X86::Variable::sub - Subtract the right hand variable from the left hand variable and return the result as a new variable

245 Nasm::X86::Variable::times - Multiply the left hand variable by the right hand variable and return the result as a new variable

246 Nasm::X86::Variable::zBroadCastD - Broadcast a double word in a variable into the numbered zmm.

247 OpenRead - Open a file, whose name is addressed by rax, for read and return the file descriptor in rax

248 OpenWrite - Create the file named by the terminated string addressed by rax for write

249 PeekR - Peek at register on stack

250 PopEax - We cannot pop a double word from the stack in 64 bit long mode using pop so we improvise

251 PopR - Pop registers from the stack

252 PopRR - Pop registers from the stack without tracking

253 PrintErrMemory - Print the memory addressed by rax for a length of rdi on stderr

254 PrintErrMemoryInHex - Dump memory from the address in rax for the length in rdi on stderr

255 PrintErrMemoryInHexNL - Dump memory from the address in rax for the length in rdi and then print a new line

256 PrintErrMemoryNL - Print the memory addressed by rax for a length of rdi followed by a new line on stderr

257 PrintErrNL - Print a new line to stderr

258 PrintErrRaxInHex - Write the content of register rax in hexadecimal in big endian notation to stderr

259 PrintErrRegisterInHex - Print the named registers as hex strings on stderr

260 PrintErrString - Print a constant string to stderr.

261 PrintErrStringNL - Print a constant string followed by a new line to stderr

262 PrintErrZF - Print the zero flag without disturbing it on stderr

263 PrintMemory - Print the memory addressed by rax for a length of rdi on the specified channel

264 PrintMemoryInHex - Dump memory from the address in rax for the length in rdi on the specified channel.

265 PrintNL - Print a new line to stdout or stderr

266 PrintOutMemory - Print the memory addressed by rax for a length of rdi on stdout

267 PrintOutMemoryInHex - Dump memory from the address in rax for the length in rdi on stdout

268 PrintOutMemoryInHexNL - Dump memory from the address in rax for the length in rdi and then print a new line

269 PrintOutMemoryNL - Print the memory addressed by rax for a length of rdi followed by a new line on stdout

270 PrintOutNL - Print a new line to stderr

271 PrintOutRaxInHex - Write the content of register rax in hexadecimal in big endian notation to stderr

272 PrintOutRaxInReverseInHex - Write the content of register rax to stderr in hexadecimal in little endian notation

273 PrintOutRegisterInHex - Print the named registers as hex strings on stdout

274 PrintOutRegistersInHex - Print the general purpose registers in hex

275 PrintOutRflagsInHex - Print the flags register in hex

276 PrintOutRipInHex - Print the instruction pointer in hex

277 PrintOutString - Print a constant string to stdout.

278 PrintOutStringNL - Print a constant string followed by a new line to stdout

279 PrintOutZF - Print the zero flag without disturbing it on stdout

280 PrintRaxInHex - Write the content of register rax in hexadecimal in big endian notation to the specified channel

281 PrintRegisterInHex - Print the named registers as hex strings

282 PrintString - Print a constant string to the specified channel

283 PushR - Push registers onto the stack

284 PushRR - Push registers onto the stack without tracking

285 Rb - Layout bytes in the data segment and return their label

286 Rbwdq - Layout data

287 RComment - Insert a comment into the read only data segment

288 Rd - Layout double words in the data segment and return their label

289 ReadFile - Read a file whose name is addressed by rax into memory.

290 ReadTimeStampCounter - Read the time stamp counter and return the time in nanoseconds in rax

291 RegisterSize - Return the size of a register

292 removeNonAsciiChars - Return a copy of the specified string with all the non ascii characters removed

293 ReorderSyscallRegisters - Map the list of registers provided to the 64 bit system call sequence

294 RestoreFirstFour - Restore the first 4 parameter registers

295 RestoreFirstFourExceptRax - Restore the first 4 parameter registers except rax so it can return its value

296 RestoreFirstFourExceptRaxAndRdi - Restore the first 4 parameter registers except rax and rdi so we can return a pair of values

297 RestoreFirstSeven - Restore the first 7 parameter registers

298 RestoreFirstSevenExceptRax - Restore the first 7 parameter registers except rax which is being used to return the result

299 RestoreFirstSevenExceptRaxAndRdi - Restore the first 7 parameter registers except rax and rdi which are being used to return the results

300 Rq - Layout quad words in the data segment and return their label

301 Rs - Layout bytes in read only memory and return their label

302 Rw - Layout words in the data segment and return their label

303 SaveFirstFour - Save the first 4 parameter registers making any parameter registers read only

304 SaveFirstSeven - Save the first 7 parameter registers

305 Scope - Create and stack a new scope and continue with it as the current scope

306 ScopeEnd - End the current scope and continue with the containing parent scope

307 SetLabel - Set a label in the code section

308 SetLengthOfShortString - Set the length of the short string held in the numbered zmm register into the specified register

309 SetMaskRegister - Set the mask register to ones starting at the specified position for the specified length and zeroes elsewhere

310 SetZF - Set the zero flag

311 Start - Initialize the assembler

312 StatSize - Stat a file whose name is addressed by rax to get its size in rax

313 Structure - Create a structure addressed by a register

314 Subroutine - Create a subroutine that can be called in assembler code

315 Then - Then body for an If statement

316 totalBytesAssembled - Total size in bytes of all files assembled during testing

317 Trace - Add tracing code

318 unlinkFile - Unlink the named file

319 UnReorderSyscallRegisters - Recover the initial values in registers that were reordered

320 Variable - Create a new variable with the specified size and name initialized via an expression

321 Vb - Define a byte variable

322 Vd - Define a double word variable

323 Vq - Define a quad variable

324 Vr - Define a reference variable

325 Vw - Define a word variable

326 Vx - Define an xmm variable

327 VxyzInit - Initialize an xyz register from general purpose registers

328 Vy - Define an ymm variable

329 Vz - Define an zmm variable

330 WaitPid - Wait for the pid in rax to complete

331 xmm - Add xmm to the front of a list of register expressions

332 ymm - Add ymm to the front of a list of register expressions

333 zmm - Add zmm to the front of a list of register expressions

Installation

This module is written in 100% Pure Perl and, thus, it is easy to read, comprehend, use, modify and install via cpan:

sudo cpan install Nasm::X86

Author

philiprbrenan@gmail.com

http://www.appaapps.com

Copyright

Copyright (c) 2016-2021 Philip R Brenan.

This module is free software. It may be used, redistributed and/or modified under the same terms as Perl itself.