NAME
Math::MPFR - perl interface to the MPFR (floating point) library.
DESCRIPTION
A bigfloat module utilising the MPFR library. Basically
this module simply wraps the 'mpfr' floating point functions
provided by that library. See:
http://www.loria.fr/projets/mpfr/mpfr-current/mpfr.html
Operator overloading is also available.
The following documentation heavily plagiarises the mpfr
documentation.
See also the Math::MPFR test suite for some examples of
usage.
SYNOPSIS
use Math::MPFR qw(:mpfr);
my $str = '123542@2'; # mantissa = 123452
# exponent = 2
my $base = 10;
my $rnd = GMP_RNDZ; # Rounding mode - can be set to
# one of GMP_RNDN, GMP_RNDZ, GMP_RNDU,
# GMP_RNDD or to the corresponding numeric
# value 0, 1, 2, or 3. See 'ROUNDING MODE'
# Create a Math::MPFR object with precision
# of 100 bits and an initial value of NaN.
my $bn1 = Rmpfr_init2(100);
# Create another Math::MPFR object that holds
# an initial value of NaN and has the default precision.
my $bn2 = Rmpfr_init();
# Create another Math::MPFR object that holds an initial
# value of $str (in base $base) and has the default
# precision. $bn3 is the the number. The value of $cmp
# tells us whether $bn3 is an exact representation of the
# string value, or whether it is less than (or greater
# than) the string value. See 'COMBINED INITIALISATION AND
# ASSIGNMENT', below.
my ($bn3, $cmp) = Rmpfr_init_set_str($str, $base, $rnd);
# Perform some operations ... see 'FUNCTIONS' below.
# see 'OPERATOR OVERLOADING' below for docs re
# operator overloading
.
.
# print out the value held by $bn1 (in octal):
print Rmpfr_get_str($bn1, 8, 0, $rnd), "\n";
# print out the value held by $bn1 (in decimal):
print Rmpfr_get_str($bn1, 10, 0, $rnd), "\n";
# or just use the overloaded "" :
print "$bn1\n";
# print out the value held by $bn1 (in base 16) using the
# 'Rmpfr_out_str' function. (No newline is printed.)
Rmpfr_out_str($bn1, 16, 0, $rnd);
ROUNDING MODE
One of 4 values:
GMP_RNDN (numeric value = 0): Round to nearest.
GMP_RNDZ (numeric value = 1): Round towards zero.
GMP_RNDU (numeric value = 2): Round up.
GMP_RNDD (numeric value = 3): Round down.
The `round to nearest' mode works as in the IEEE
P754 standard: in case the number to be rounded
lies exactly in the middle of two representable
numbers, it is rounded to the one with the least
significant bit set to zero. For example, the
number 5, which is represented by (101) in binary,
is rounded to (100)=4 with a precision of two bits,
and not to (110)=6. This rule avoids the "drift"
phenomenon mentioned by Knuth in volume 2 of
The Art of Computer Programming (section 4.2.2,
pages 221-222).
Most Math::MPFR functions take as first argument the
destination variable, as second and following arguments
the input variables, as last argument a rounding mode,
and have a return value of type `int'. If this value
is zero, it means that the value stored in the
destination variable is the exact result of the
corresponding mathematical function. If the
returned value is positive (resp. negative), it means
the value stored in the destination variable is greater
(resp. lower) than the exact result. For example with
the `GMP_RNDU' rounding mode, the returned value is
usually positive, except when the result is exact, in
which case it is zero. In the case of an infinite
result, it is considered as inexact when it was
obtained by overflow, and exact otherwise. A
NaN result (Not-a-Number) always corresponds to an
inexact return value.
MEMORY MANAGEMENT
Objects are created with Rmpfr_init* functions, which
return an object that has been blessed into the
package Math::MPFR. They will therefore be
automatically cleaned up by the DESTROY()
function whenever they go out of scope.
For each Rmpfr_init* function there is a corresponding function
called Rmpfr_init*_nobless which returns an unblessed object.
If you create Math::MPFR objects using the '_nobless'
versions, it will then be up to you to clean up the memory
associated with these objects by calling Rmpfr_clear($op)
for each object. Alternatively such objects will be
cleaned up when the script ends. I don't know why you
would want to create unblessed objects. The point is that
you can if you want to.
MIXING GMP OBJECTS WITH MPFR OBJECTS
Some of the Math::MPFR functions below take as arguments
one or more of the GMP types mpz (integer), mpq
(rational) and mpf (floating point). (Such functions are
marked as taking mpz/mpq/mpf arguments.)
For these functions to work you need to have loaded either:
1) Math::GMP from CPAN. (This module provides access to mpz
objects only - NOT mpf and mpq objects.)
AND/OR
2) The GMP module. This module ships with the GMP source
distribution. It provides access to all 3 types.
Win32 binaries of it are available from
http://www.kalinabears.com.au/w32perl/math_gmp.html
AND/OR
3) Math::GnuMPz (for mpz types), Math::GnuMPq (for mpq types)
and Math::GnuMPf (for mpf types). These modules (both
source code and win32 binaries) are available from
http://www.kalinabears.com.au/w32perl/math_gnump.html
FUNCTIONS
These next 3 functions are demonstrated above:
$rop = Rmpfr_init();
$rop = Rmpfr_init2($p);
$str = Rmpfr_get_str($op, $base, $digits, $rnd); # 1 < $base < 37
The third argument to Rmpfr_get_str() specifies the number
of digits required to be output. Up to $digits digits
will be generated. Trailing zeros are not returned. No
more digits than can be accurately represented by OP are
ever generated. If $digits is 0 then that accurate
maximum number of digits are generated.
The following functions are simply wrappers around an mpfr
function of the same name. eg. Rmpfr_swap() is a wrapper around
mpfr_swap().
"$rop", "$op1", "$op2", etc. are Math::MPFR objects - the
return value of the Rmpfr_init* functions.
They are in fact references to mpfr structures.
Generally, $rop, $op1, $op2, etc. can be the same perl variable,
though usually they will be distinct perl variables
referencing distinct mpfr structures.
Eg something like Rmpfr_add($r1, $r1, $r1),
where $r1 *is* the same reference to the same mpfr structure,
would add $r1 to itself and store the result in $r1. Alternatively,
you could (courtesy of operatore overloading) simply code it
as $r1 += $r1. Otoh, Rmpfr_add($r1, $r2, $r3), where each of the
arguments is a different reference to a different mpfr structure
would add $r2 to $r3 and store the result in $r1. Alternatively
it could be coded as $r1 = $r2 + $r3.
"$ui" means any integer that will fit into a C 'unsigned long int',
which for most of us means that it will be less than 2**32.
"$si" means any integer that will fit into a C 'signed long int'.
which for most of us means that it will be greater than
-(2**31) and less than 2**31.
"$double" is a C 'double.
"$bool" means a value (usually a 'signed long int') in which
the only interest is whether it evaluates as false or true.
"$str" simply means a string of symbols that represent a number,
eg "1234567890987654321234567@7" which might be a base 10 number,
or "zsa34760sdfgq123r5@11" which would have to represent a base 36
number (because "z" is a valid digit only in base 36). Valid
bases for MPFR numbers are 2 to 36 (inclusive).
$rnd is simply one of the 4 rounding mode values (discussed above).
$p is the (unsigned long) value for precision.
##############
ROUNDING MODES
Rmpfr_set_default_rounding_mode($rnd);
Sets the default rounding mode to $rnd.
The default rounding mode is to nearest initially (GMP_RNDN).
The default rounding mode is the rounding mode that
is used in overloaded operations.
$si = Rmpfr_get_default_rounding_mode();
Returns the numeric value (0, 1, 2 or 3) of the
current default rounding mode. This will initially be 0.
$si = Rmpfr_prec_round($rop, $p, $rnd);
Rounds $rop according to $rnd with precision $p, which may be
different from that of $rop. If $p is greater or equal to the
precision of $rop, then new space is allocated for the mantissa,
and it is filled with zeroes. Otherwise, the mantissa is rounded
to precision $p with the given direction. In both cases, the
precision of $rop is changed to $p. The returned value is zero
when the result is exact, positive when it is greater than the
original value of $rop, and negative when it is smaller. The
precision $p can be any integer between Rmpfr_min_prec() and
Rmpfr_max_prec().
##########
EXCEPTIONS
$si = Rmpfr_get_emin();
$si = Rmpfr_get_emax();
Return the (current) smallest and largest exponents
allowed for a floating-point variable.
$bool = Rmpfr_set_emin($si);
$bool = Rmpfr_set_emax($si);
Set the smallest and largest exponents allowed for a
floating-point variable. Return a non-zero value when $si is not
in the range accepted by the implementation (in that case the
smallest or largest exponent is not changed), and zero otherwise.
If the user changes the exponent range, it is her/his
responsibility to check that all current floating-point variables
are in the new allowed range (for example using `Rmpfr_check_range',
otherwise the subsequent behaviour will be undefined, in the sense
of the ISO C standard.
$si2 = Rmpfr_check_range($op, $si1, $rnd);
This function has changed from earlier implementations.
It now forces $op to be in the current range of acceptable
values, $si1 the current ternary value: negative if $op is
smaller than the exact value, positive if $op is larger than the
exact value and zero if $op is exact (before the call). It generates
an underflow or an overflow if the exponent of $op is outside the
current allowed range; the value of $si1 may be used to avoid a
double rounding. This function returns zero if the rounded result
is equal to the exact one, a positive value if the rounded result
is larger than the exact one, a negative value if the rounded
result is smaller than the exact one. Note that unlike most
functions, the result is compared to the exact one, not the input
value $op, i.e. the ternary value is propagated.
Rmpfr_clear_underflow();
Rmpfr_clear_overflow();
Rmpfr_clear_nanflag();
Rmpfr_clear_inexflag();
Clear the underflow, overflow, invalid, and inexact flags.
Rmpfr_clear_flags();
Clear all global flags (underflow, overflow, inexact, invalid).
$bool = Rmpfr_underflow_p();
$bool = Rmpfr_overflow_p();
$bool = Rmpfr_nanflag_p();
$bool = Rmpfr_inexflag_p();
Return the corresponding (underflow, overflow, invalid, inexact)
flag, which is non-zero iff the flag is set.
##############
INITIALIZATION
Normally, a variable should be initialized once only or at least be
cleared, using `Rmpfr_clear', between initializations.
'DESTROY' (which calls 'Rmpfr_clear') is automatically called on
blessed objects whenever they go out of scope.
First read the section 'MEMORY MANAGEMENT' (above).
Rmpfr_set_default_prec($p);
Set the default precision to be *exactly* $p bits. The
precision of a variable means the number of bits used to store its
mantissa. All subsequent calls to `mpfr_init' will use this
precision, but previously initialized variables are unaffected.
This default precision is set to 53 bits initially. The precision
can be any integer between Rmpfr_min_prec() and Rmpfr_max_prec().
$ui = Rmpfr_get_default_prec();
Returns the default MPFR precision in bits.
$rop = Rmpfr_init();
$rop = Rmpfr_init_nobless();
Initialize $rop, and set its value to NaN. The precision
of $rop is the default precision, which can be changed
by a call to `Rmpfr_set_default_prec'.
$rop = Rmpfr_init2($p);
$rop = Rmpfr_init2_nobless($p);
Initialize $rop, set its precision to be *exactly* $p bits,
and set its value to NaN. To change the precision of a
variable which has already been initialized,
use `Rmpfr_set_prec' instead. The precision PREC can be
any integer between Rmpfr_min_prec() andRmpfr_max_prec().
Rmpfr_set_prec($op, $p);
Reset the precision of $op to be *exactly* $p bits.
The previous value stored in $op is lost. The precision
$p can be any integer between Rmpfr_min_prec() and
Rmpfr_max_prec(). If you want to keep the previous
value stored in $op, use 'Rmpfr_prec_round' instead.
$ui = Rmpfr_get_prec($op);
Return the precision actually used for assignments of $op,
i.e. the number of bits used to store its mantissa.
Rmpfr_set_prec_raw($rop, $p);
Reset the precision of $rop to be *exactly* $p bits. The only
difference with `mpfr_set_prec' is that $p is assumed to be small
enough so that the mantissa fits into the current allocated
memory space for $rop. Otherwise an error will occur.
$minimum_precision = Rmpfr_min_prec();
$maximum_precision = Rmpfr_max_prec();
Returns the minimum/maximum allowed precision
##########
ASSIGNMENT
$si = Rmpfr_set($rop, $op, $rnd);
$si = Rmpfr_set_ui($rop, $ui, $rnd);
$si = Rmpfr_set_si($rop, $si, $rnd);
$si = Rmpfr_set_d($rop, $double, $rnd);
$si = Rmpfr_set_z($rop, $z, $rnd); # $z is a mpz object.
$si = Rmpfr_set_q($rop, $q, $rnd); # $q is a mpq object.
$si = Rmpfr_set_f($rop, $f, $rnd); # $f is a mpf object.
Set the value of $rop from 2nd arg, rounded to the precision of
$rop towards the given direction $rnd. Please note that even a
'long int' may have to be rounded if the destination precision
is less than the machine word width. The return value is zero
when $rop=2nd arg, positive when $rop>2nd arg, and negative when
$rop<2nd arg. For `mpfr_set_d', be careful that the input
number OP may not be exactly representable as a double-precision
number (this happens for 0.1 for instance), in which case it is
first rounded by the C compiler to a double-precision number,
and then only to a mpfr floating-point number.
$si = Rmpfr_set_str($rop, $str, $base, $rnd);
Set $rop to the value of $str in base $base (between 2 and
36), rounded in direction $rnd to the precision of $rop.
The exponent is read in decimal. This function returns -1 if an
internal overflow occurred (for instance, because the exponent is
too large). Otherwise it returns 0 if the base is valid and if
the entire string is a valid number in base $base, and 1 if
the input is incorrect.
Rmpfr_set_str_binary($rop, $str);
Set $rop to the value of the binary number in $str, which has to
be of the form +/-xxxx.xxxxxxEyy. The exponent is read in decimal,
but is interpreted as the power of two to be multiplied by the
mantissa. The mantissa length of $str has to be less or equal to
the precision of $rop, otherwise an error occurs. If $str starts
with `N', it is interpreted as NaN (Not-a-Number); if it starts
with `I' after the sign, it is interpreted as infinity, with the
corresponding sign.
Rmpfr_set_inf($rop, $si);
Rmpfr_set_nan($rop);
Set the variable $rop to infinity or NaN (Not-a-Number) respectively.
In `mpfr_set_inf', $rop is set to plus infinity iff $si is positive.
Rmpfr_swap($op1, $op2);
Swap the values $op1 and $op2 efficiently. Warning: the precisions
are exchanged too; in case the precisions are different, `mpfr_swap'
is thus not equivalent to three `mpfr_set' calls using a third
auxiliary variable.
################################################
COMBINED INITIALIZATION AND ASSIGNMENT
NOTE: Do NOT use these functions if $rop has already
been initialised. Use the Rmpfr_set* functions in the
section 'ASSIGNMENT' (above).
First read the section 'MEMORY MANAGEMENT' (above).
($rop, $si) = Rmpfr_init_set($op, $rnd);
($rop, $si) = Rmpfr_init_set_nobless($op, $rnd);
($rop, $si) = Rmpfr_init_set_ui($ui, $rnd);
($rop, $si) = Rmpfr_init_set_ui_nobless($ui, $rnd);
($rop, $si) = Rmpfr_init_set_si($si, $rnd);
($rop, $si) = Rmpfr_init_set_si_nobless($si, $rnd);
($rop, $si) = Rmpfr_init_set_d($double, $rnd);
($rop, $si) = Rmpfr_init_set_d_nobless($double, $rnd);
($rop, $si) = Rmpfr_init_set_f($f, $rnd);# $f is a mpf object
($rop, $si) = Rmpfr_init_set_f_nobless($f, $rnd);# $f is a mpf object
($rop, $si) = Rmpfr_init_set_z($z, $rnd);# $z is a mpz object
($rop, $si) = Rmpfr_init_set_z_nobless($z, $rnd);# $z is a mpz object
($rop, $si) = Rmpfr_init_set_q($q, $rnd);# $q is a mpq object
($rop, $si) = Rmpfr_init_set_q_nobless($q, $rnd);# $q is a mpq object
Initialize $rop and set its value from the 1st arg, rounded to
direction $rnd. The precision of $rop will be taken from the
active default precision, as set by `Rmpfr_set_default_prec'.
If $rop = 1st arg, $si is zero. If $rop > 1st arg, $si is positive.
If $rop < 1st arg, $si is negative.
($rop, $si) = Rmpfr_init_set_str($str, $base, $rnd);
($rop, $si) = Rmpfr_init_set_str($str, $base, $rnd);
Initialize $rop and set its value from $str in base $base,
rounded to direction $rnd. See `Rmpfr_set_str'.
##########
CONVERSION
$str = Rmpfr_get_str($r, $base, $digits, $rnd);
Returns a string of the form, eg, '.83456712@3'
which means '834.56712'.
The third argument to Rmpfr_get_str() specifies the number
of digits required to be output. Up to $digits digits
will be generated. Trailing zeros are not returned. No
more digits than can be accurately represented by OP are
ever generated. If $digits is 0 then that accurate
maximum number of digits are generated.
$double = Rmpfr_get_d($op, $rnd);
Convert $op to a double, using the rounding mode $rnd.
$double = Rmpfr_get_d1($op);
Convert $op to a double, using the default MPFR rounding mode
(see function `mpfr_set_default_rounding_mode').
$ui = Rmpfr_get_z_exp($z, $op); # $z is a mpz object
Puts the mantissa of $rop into $z, and returns the exponent
$ui such that $rop equals $z multiplied by two exponent $ui.
##########
ARITHMETIC
$si = Rmpfr_add($rop, $op1, $op2, $rnd);
$si = Rmpfr_add_ui($rop, $op, $ui, $rnd);
$si = Rmpfr_add_z($rop, $op, $z, $rnd); # $z is a mpz object.
$si = Rmpfr_add_q($rop, $op, $q, $rnd); # $q is a mpq object.
Set $rop to 2nd arg + 3rd arg rounded in the direction $rnd.
The return value is zero if $rop is exactly 2nd arg + 3rd arg,
positive if $rop is larger than 2nd arg + 3rd arg, and negative
if $rop is smaller than 2nd arg + 3rd arg.
$si = Rmpfr_sub($rop, $op1, $op2, $rnd);
$si = Rmpfr_sub_ui($rop, $op, $ui, $rnd);
$si = Rmpfr_sub_z($rop, $op, $z, $rnd); # $z is a mpz object.
$si = Rmpfr_sub_q($rop, $op, $q, $rnd); # $q is a mpq object.
$si = Rmpfr_ui_sub($rop, $ui, $op, $rnd);
Set $rop to 2nd arg - 3rd arg rounded in the direction $rnd.
The return value is zero if $rop is exactly 2nd arg - 3rd arg,
positive if $rop is larger than 2nd arg - 3rd arg, and negative
if $rop is smaller than 2nd arg - 3rd arg.
$si = Rmpfr_mul($rop, $op1, $op2, $rnd);
$si = Rmpfr_mul_ui($rop, $op, $ui, $rnd);
$si = Rmpfr_mul_z($rop, $op, $z, $rnd); # $z is a mpz object.
$si = Rmpfr_mul_q($rop, $op, $q, $rnd); # $q is a Math::Gn$rnd.
Return 0 if the result is exact, a positive value if $rop is
greater than 2nd arg times 3rd arg, a negative value otherwise.
$si = Rmpfr_div($rop, $op1, $op2, $rnd);
$si = Rmpfr_div_ui($rop, $op, $ui, $rnd);
$si = Rmpfr_div_z($rop, $op, $z, $rnd); # $z is a mpz object.
$si = Rmpfr_div_q($rop, $op, $q, $rnd); # $q is a mpq object.
$si = Rmpfr_ui_div($rop, $ui, $op, $rnd);
Set $rop to 2nd arg / 3rd arg rounded in the direction $rnd.
These functions return 0 if the division is exact, a positive
value when $rop is larger than 2nd arg divided by 3rd arg,
and a negative value otherwise.
$bool = Rmpfr_sqrt($rop, $op, $rnd);
$bool = Rmpfr_sqrt_ui($rop, $ui, $rnd);
Set $rop to the square root of the 2nd arg rounded in the
direction $rnd. Set $rop to NaN if 2nd arg is negative.
Return 0 if the operation is exact, a non-zero value otherwise.
$bool = Rmpfr_cbrt($rop, $op, $rnd);
Set $rop to the cubic root (defined over the real numbers)
of $op, rounded in the direction $rnd.
$bool = Rmpfr_pow_ui($rop, $op, $ui, $rnd);
$bool = Rmpfr_ui_pow_ui($rop, $ui, $ui, $rnd);
Set $rop to 2nd arg raised to 3rd arg. The computation is done
by binary exponentiation. Return 0 if the result is exact,
a non-zero value otherwise (but the sign of the return value
has no meaning).
$si = Rmpfr_ui_pow($rop, $ui, $op, $rnd);
Set $rop to 2nd arg raised to 3rd arg, rounded to the directio
$rnd with the precision of $rop. Return zero iff the result is
exact, a positive value when the result is greater than 2nd arg
to the power 3rd arg, and a negative value when it is smaller.
$bool = Rmpfr_pow_si($rop, $op, $si, $rnd);
Set $rop to 2nd arg raised to the power 3rd arg, rounded to
the direction $rnd with the precision of $rop. Return zero
iff the result is exact.
$bool = Rmpfr_pow($rop, $op1, $op2, $rnd);
Set $rop to 2nd arg raised to the power 3rd arg, rounded to
the direction $rnd with the precision of $rop. If 2nd arg
is negative then $rop is set to NaN, even if 3rd arg is an
integer. Return zero iff the result is exact.
$si = Rmpfr_neg($rop, $op, $rnd);
Set $rop to -$op rounded in the direction $rnd. Just
changes the sign if $rop and $op are the same variable.
$si = Rmpfr_abs($rop, $op, $rnd);
Set $rop to the absolute value of $op, rounded in the direction
$rnd. Return 0 if the result is exact, a positive value if ROP
is larger than the absolute value of $op, and a negative value
otherwise.
$si = Rmpfr_mul_2exp($rop, $op, $ui, $rnd);
$si = Rmpfr_mul_2ui($rop, $op, $ui, $rnd);
$si = Rmpfr_mul_2si($rop, $op, $si, $rnd);
Set $rop to 2nd arg times 2 raised to 3rd arg rounded to the
direction $rnd. Just increases the exponent by 3rd arg when
$rop and 2nd arg are identical. Return zero when $rop = 2nd
arg, a positive value when $rop > 2nd arg, and a negative
value when $rop < 2nd arg. Note: The `Rmpfr_mul_2exp' function
is defined for compatibility reasons; you should use
`Rmpfr_mul_2ui' (or `Rmpfr_mul_2si') instead.
$si = Rmpfr_div_2exp($rop, $op, $ui, $rnd);
$si = Rmpfr_div_2ui($rop, $op, $ui, $rnd);
$si = Rmpfr_div_2si($rop, $op, $si, $rnd);
Set $rop to 2nd arg divided by 2 raised to 3rd arg rounded to
the direction $rnd. Just decreases the exponent by 3rd arg
when $rop and 2nd arg are identical. Return zero when
$rop = 2nd arg, a positive value when $rop > 2nd arg, and a
negative value when $rop < 2nd arg. Note: The `Rmpfr_div_2exp'
function is defined for compatibility reasons; you should
use `Rmpfr_div_2ui' (or `Rmpfr_div_2si') instead.
##########
COMPARISON
$si = Rmpfr_cmp($op1, $op2);
$si = Rmpfr_cmpabs($op1, $op2);
$si = Rmpfr_cmp_ui($op, $ui);
$si = Rmpfr_cmp_si($op, $si);
Compare 1st and 2nd args. In the case of 'Rmpfr_cmpabs()'
compare the absolute values of the 2 args. Return a positive
value if 1st arg > 2nd arg, zero if 1st arg = 2nd arg, and a
negative value if 1st arg < 2nd arg. Both args are considered
to their full own precision, which may differ. In case 1st and
2nd args are of same sign but different, the absolute value
returned is one plus the absolute difference of their exponents.
Behaviour is undefined if one of the operands is NaN (Not-a-Number).
$si = Rmpfr_cmp_ui_2exp($op, $ui, $si);
$si = Rmpfr_cmp_si_2exp($op, $si, $si);
Compare 1st arg and 2nd arg multiplied by two to the power
3rd arg.
$bool = Rmpfr_eq($op1, $op2, $ui);
Return non-zero if the first $ui bits of $op1 and $op2 are
equal, zero otherwise. I.e., tests if $op1 and $op2 are
approximately equal.
$bool = Rmpfr_nan_p($op);
Return non-zero if $op is Not-a-Number (NaN), zero otherwise.
$bool = Rmpfr_inf_p($op);
Return non-zero if $op is plus or minus infinity, zero otherwise.
$bool = Rmpfr_number_p($op);
Return non-zero if $op is an ordinary number, i.e. neither
Not-a-Number nor plus or minus infinity.
Rmpfr_reldiff($rop, $op1, $op2, $rnd);
Compute the relative difference between $op1 and $op2 and
store the result in $rop. This function does not guarantee
the exact rounding on the relative difference; it just
computes abs($op1-$op2)/$op1, using the rounding mode
$rnd for all operations.
$si = Rmpfr_sgn($op);
Return a positive value if op > 0, zero if $op = 0, and a
negative value if $op < 0. Its result is not specified
when $op is NaN (Not-a-Number).
$bool = Rmpfr_greater_p($op1, $op2);
Return non-zero if $op1 > $op2, zero otherwise.
$bool = Rmpfr_greaterequal_p($op1, $op2);
Return non-zero if $op1 >= $op2, zero otherwise.
$bool = Rmpfr_less_p($op1, $op2);
Return non-zero if $op1 < $op2, zero otherwise.
$bool = Rmpfr_lessequal_p($op1, $op2);
Return non-zero if $op1 <= $op2, zero otherwise.
$bool = Rmpfr_lessgreater_p($op1, $op2);
Return non-zero if $op1 < $op2 or $op1 > $op2 (i.e. neither
$op1, nor $op2 is NaN, and $op1 <> $op2), zero otherwise
(i.e. $op1 and/or $op2 are NaN, or $op1 = $op2).
$bool = Rmpfr_equal_p($op1, $op2);
Return non-zero if $op1 = $op2, zero otherwise
(i.e. $op1 and/or $op2 are NaN, or $op1 <> $op2).
$bool = Rmpfr_unordered_p($op1, $op2);
Return non-zero if $op1 or $op2 is a NaN
(i.e. they cannot be compared), zero otherwise.
#######
SPECIAL
$si = Rmpfr_log($rop, $op, $rnd);
Set $rop to the natural logarithm of $op, rounded to the
direction $rnd with the precision of $rop. Return zero when
the result is exact (this occurs in fact only when $op is 0,
1, or +infinity) and a non-zero value otherwise (except for
rounding to nearest, the sign of the return value is that
of $rop-log($op).
$si = Rmpfr_exp($rop, $op, $rnd);
Set $rop to the exponential of $op, rounded to the direction
$rnd with the precision of $rop. Return zero when the result
is exact (this occurs in fact only when $op is -infinity, 0,
or +infinity), a positive value when the result is greater
than the exponential of $op, and a negative value when it is
smaller.
$si = Rmpfr_exp2($rop, $op, $rnd);
Set $rop to 2 power of $op, rounded to the direction $rnd with
the precision of $rop. Return zero iff the result is exact
(this occurs in fact only when OP is -infinity, 0, or
+infinity), a positive value when the result is greater than
the exponential of $op, and a negative value when it is smaller.
$bool = Rmpfr_sin($rop $op, $rnd);
$bool = Rmpfr_cos($rop, $op, $rnd);
$bool = Rmpfr_tan($rop, $op, $rnd);
Set $rop to the sine/cosine/tangent respectively of $op,
rounded to the direction $rnd with the precision of $rop.
Return 0 iff the result is exact (this occurs in fact only
when $op is 0 i.e. the sine is 0, the cosine is 1, and the
tangent is 0).
$bool = Rmpfr_sin_cos($rop1, $rop2, $op, $rnd);
Set simultaneously $rop1 to the sine of $op and
$rop2 to the cosine of $op, rounded to the direction $rnd
with their corresponding precisions. Return 0 iff both
results are exact.
$bool = Rmpfr_acos($rop, $op, $rnd);
$bool = Rmpfr_asin($rop, $op, $rnd);
$bool = Rmpfr_atan($rop, $op, $rnd);
Set $rop to the arc-cosine, arc-sine or arc-tangent of $op,
rounded to the direction $rnd with the precision of $rop.
Return 0 iff the result is exact.
$bool = Rmpfr_cosh($rop, $op, $rnd);
$bool = Rmpfr_sinh($rop, $op, $rnd);
$bool = Rmpfr_tanh($rop, $op, $rnd);
Set $rop to the hyperbolic cosine/hyperbolic sine/hyperbolic
tangent respectively of $op, rounded to the direction$rnd
with the precision of $rop. Return 0 iff the result is exact
(this occurs in fact only when OP is 0 i.e. the result is 1).
$bool = Rmpfr_acosh($rop, $op, $rnd);
$bool = Rmpfr_asinh($rop, $op, $rnd);
$bool = Rmpfr_atanh($rop, $op, $rnd);
Set $rop to the inverse hyperbolic cosine, sine or tangent
of $op, rounded to the direction $rnd with the precision of
$rop. Return 0 iff the result is exact.
$bool = Rmpfr_fac_ui($rop, $ui, $rnd);
Set $rop to the factorial of $ui, rounded to the direction
$rnd with the precision of $rop. Return 0 iff the
result is exact.
$bool = Rmpfr_log1p($rop, $op, $rnd);
Set $rop to the logarithm of one plus $op, rounded to the
direction $rnd with the precision of $rop. Return 0 iff
the result is exact (this occurs in fact only when OP is 0
i.e. the result is 0).
$bool = Rmpfr_expm1($rop, $op, $rnd);
Set $rop to the exponential of $op minus one, rounded to the
direction $rnd with the precision of $rop. Return 0 iff the
result is exact (this occurs in fact only when OP is 0 i.e
the result is 0).
$bool = Rmpfr_log2($rop, $op, $rnd);
$bool = Rmpfr_log10($rop, $op, $rnd);
Set $rop to the log[t] (t=2 or 10)(log x / log t) of $op,
rounded to the direction $rnd with the precision of $rop.
Return 0 iff the result is exact (this occurs in fact
only when $op is 1 i.e. the result is 0).
$bool = Rmpfr_fma($rop, $op1, $op2, $op3, $rnd);
Set $rop to $op1 * $op2 + $op3, rounded to the direction
$rnd with the precision of $rop. Return 0 iff the result
is exact, a positive value if $rop is larger than
$op1 * $op2 + $op3, and a negative value otherwise.
$si = Rmpfr_agm($rop, $op1, $op2, $rnd);
Set $rop to the arithmetic-geometric mean of $op1 and $op2,
rounded to the direction $rnd with the precision of $rop.
Return zero if $rop is exact, a positive value if $rop is
larger than the exact value, or a negative value if $rop
is less than the exact value.
$si = Rmpfr_const_log2($rop, $rnd);
Set $rop to the logarithm of 2 rounded to the direction
$rnd with the precision of $rop. This function stores the
computed value to avoid another calculation if a lower or
equal precision is requested.
Return zero if $rop is exact, a positive value if $rop is
larger than the exact value, or a negative value if $rop
is less than the exact value.
$si = Rmpfr_const_pi($rop, $rnd);
Set $rop to the value of Pi rounded to the direction $rnd
with the precision of $rop. This function uses the Borwein,
Borwein, Plouffe formula which directly gives the expansion
of Pi in base 16.
Return zero if $rop is exact, a positive value if $rop is
larger than the exact value, or a negative value if $rop
is less than the exact value.
$si = Rmpfr_const_euler($rop, $rnd);
Set $rop to the value of Euler's constant 0.577... rounded
to the direction $rnd with the precision of $rop.
Return zero if $rop is exact, a positive value if $rop is
larger than the exact value, or a negative value if $rop
is less than the exact value.
$si = Rmpfr_gamma($rop, $op, $rnd);
Set $rop to the value of the Gamma function on $op, rounded
to the direction $rnd. Return zero if $rop is exact, a
positive value if $rop is larger than the exact value, or a
negative value if $rop is less than the exact value.
$si = Rmpfr_zeta($rop, $op, $rnd);
Set $rop to the value of the Riemann Zeta function on $op,
rounded to the direction $rnd. Return zero if $rop is exact,
a positive value if $rop is larger than the exact value, or
a negative value if $rop is less than the exact value.
$si = Rmpfr_erf($rop, $op, $rnd);
Set $rop to the value of the error function on $op,
rounded to the direction $rnd. Return zero if $rop is exact,
a positive value if $rop is larger than the exact value, or
a negative value if $rop is less than the exact value.
#############
I-O FUNCTIONS
$ui = Rmpfr_out_str($op, $base, $digits, $round);
Output $op to STDOUT, as a string of digits in base $base,
rounded in direction $round. The base may vary from 2 to 36.
Print $digits significant digits exactly, or if $digits is 0,
the maximum number of digits accurately representable by $op
(this feature may disappear). In addition to the significant
digits, a decimal point at the right of the first digit and a
trailing exponent in base 10, in the form `eNNN', are printed
If $base is greater than 10, `@' will be used instead of `e'
as exponent delimiter. Return the number of bytes written, or
if an error occurred, return 0.
$ui = Rmpfr_inp_str($rop, $base, $round);
Input a string in base $base from STDIN, rounded in
direction $round, and put the read float in $rop. The string
is of the form `M@N' or, if the base is 10 or less, alternatively
`MeN' or `MEN', or, if the base is 16, alternatively `MpB' or
`MPB'. `M' is the mantissa in the specified base, `N' is the
exponent written in decimal for the specified base, and in base 16,
`B' is the binary exponent written in decimal (i.e. it indicates
the power of 2 by which the mantissa is to be scaled).
The argument $base may be in the range 2 to 36.
Special values can be read as follows (the case does not matter):
`@NaN@', `@Inf@', `+@Inf@' and `-@Inf@', possibly followed by
other characters; if the base is smaller or equal to 16, the
following strings are accepted too: `NaN', `Inf', `+Inf' and
`-Inf'.
Return the number of bytes read, or if an error occurred, return 0.
Rmpfr_print_binary($op);
Output $op on stdout in raw binary format (the exponent is in
decimal, yet).
#############
MISCELLANEOUS
$si = Rmpfr_rint($rop, $op, $rnd);
$si = Rmpfr_ceil($rop, $op);
$si = Rmpfr_floor($rop, $op);
$si = Rmpfr_round($rop, $op);
$si = Rmpfr_trunc($rop, $op);
Set $rop to $op rounded to an integer. `Rmpfr_ceil' rounds to the
next higher representable integer, `Rmpfr_floor' to the next lower,
`Rmpfr_round' to the nearest representable integer, rounding
halfway cases away from zero, and `Rmpfr_trunc' to the
representable integer towards zero. `Rmpfr_rint' behaves like one
of these four functions, depending on the rounding mode. The
returned value is zero when the result is exact, positive when it
is greater than the original value of $op, and negative when it is
smaller. More precisely, the returned value is 0 when $op is an
integer representable in $rop, 1 or -1 when $op is an integer that
is not representable in $rop, 2 or -2 when $op is not an integer.
$si = Rmpfr_frac($rop, $op, $round);
Set $rop to the fractional part of OP, having the same sign as $op,
rounded in the direction $round (unlike in `mpfr_rint', $round
affects only how the exact fractional part is rounded, not how
the fractional part is generated).
$si = Rmpfr_integer_p($op);
Return non-zero iff $op is an integer.
Rmpfr_nexttoward($op1, $op2);
If $op1 or $op2 is NaN, set $op1 to NaN. Otherwise, if $op1 is
different from $op2, replace $op1 by the next floating-point number
(with the precision of $op1 and the current exponent range) in the
direction of $op2, if there is one (the infinite values are seen as
the smallest and largest floating-point numbers). If the result is
zero, it keeps the same sign. No underflow or overflow is generated.
Rmpfr_nextabove($op1);
Equivalent to `mpfr_nexttoward' where $op2 is plus infinity.
Rmpfr_nextbelow($op1);
Equivalent to `mpfr_nexttoward' where $op2 is minus infinity.
$si = Rmpfr_min($rop, $op1, $op2, $round);
Set $rop to the minimum of $op1 and $op2. If $op1 and $op2
are both NaN, then $rop is set to NaN. If $op1 or $op2 is
NaN, then $rop is set to the numeric value. If $op1 and
$op2 are zeros of different signs, then $rop is set to -0.
$si = Rmpfr_max($rop, $op1, $op2, $round);
Set $rop to the maximum of $op1 and $op2. If $op1 and $op2
are both NaN, then $rop is set to NaN. If $op1 or $op2 is
NaN, then $rop is set to the numeric value. If $op1 and
$op2 are zeros of different signs, then $rop is set to +0.
##############
RANDOM NUMBERS
Rmpfr_urandomb(@r, $state);
Each member of @r is a Math::MPFR object.
$state is a reference to a gmp_randstate_t structure.
Set each member of @r to a uniformly distributed random
float in the interval 0 <= $_ < 1.
Before using this function you must first create $state
by calling one of the 3 Rgmp_randinit functions, then
seed $state by calling one of the 2 Rgmp_randseed functions.
The memory associated with $state will not be freed until
either you call Rgmp_randclear, or the program ends.
Rmpfr_random2($rop, $si, $ui);
Generate a random float of at most abs($si) limbs, with long
strings of zeros and ones in the binary representation.
The exponent of the number is in the interval -$ui to
$ui. This function is useful for testing functions and
algorithms, since this kind of random numbers have proven
to be more likely to trigger corner-case bugs. Negative
random numbers are generated when $si is negative.
$state = Rgmp_randinit_default();
Initialise $state with a default algorithm. This will be
a compromise between speed and randomness, and is
recommended for applications with no special requirements.
(The GMP function is documented in the GMP, not MPFR, docs.)
$state = Rgmp_randinit_lc_2exp($a, $c, $m2exp);
This function is not tested in the test suite.
Use with caution - I often select values here that cause
Rmpf_urandomb() to behave non-randomly.
Initialise $state with a linear congruential algorithm:
X = ($a * X + $c) % 2 ** $m2exp
The low bits in X are not very random - for this reason
only the high half of each X is actually used.
$c and $m2exp sre both unsigned longs.
$a can be any one of Math::GMP, GMP::Mpz, or Math::GnuMPz
objects. Or it can be a string.
If it is a string of hex digits it must be prefixed with
either OX or Ox. If it is a string of octal digits it must
be prefixed with 'O'. Else it is assumed to be a decimal
integer. No other bases are allowed.
(The GMP function is documented in the GMP, not MPFR, docs.)
$state = Rgmp_randinit_lc_2exp_size($ui);
Initialise state as per Rgmp_randinit_lc_2exp. The values
for $a, $c. and $m2exp are selected from a table, chosen
so that $ui bits (or more) of each X will be used.
(The GMP function is documented in the GMP, not MPFR, docs.)
Rgmp_randseed($state, $seed);
$state is a reference to a gmp_randstate_t strucure (the
return value of one of the Rgmp_randinit functions).
$seed is the seed. It can be any one of Math::GMP,
GMP::Mpz, or Math::GnuMPz objects. Or it can be a string.
If it is a string of hex digits it must be prefixed with
either OX or Ox. If it is a string of octal digits it must
be prefixed with 'O'. Else it is assumed to be a decimal
integer. No other bases are allowed.
(The GMP function is documented in the GMP, not MPFR, docs.)
Rgmp_randseed_ui($state, $ui);
$state is a reference to a gmp_randstate_t strucure (the
return value of one of the Rgmp_randinit functions).
$ui is the seed.
(The GMP function is documented in the GMP, not MPFR, docs.)
#########
INTERNALS
$bool = Rmpfr_add_one_ulp($rop, $rnd);
Add one unit in last place (ulp) to $rop if $rop is finite
and positive, subtract one ulp if $rop is finite and negative;
otherwise, $rop is not changed. The return value is zero
unless an overflow occurs, in which case the `Rmpfr_add_one_ulp'
function behaves like a conventional addition.
$bool = Rmpfr_sub_one_ulp($rop, $rnd);
Subtract one ulp to $rop if $rop is finite and positive, add
one ulp if $rop is finite and negative; otherwise, $rop is not
changed. The return value is zero unless an underflow occurs,
in which case the `Rmpfr_sub_one_ulp' function behaves like a
conventional subtraction.
$bool = Rmpfr_can_round($op, $ui, $rnd1, $rnd2, $prec);
Assuming $op is an approximation of an unknown number X in direction
$rnd1 with error at most two to the power E(b)-$ui where E(b) is
the exponent of B, returns 1 if one is able to round exactly X
to precision $prec with direction $rnd2, and 0 otherwise. This
function *does not modify* its arguments.
$si = Rmpfr_get_exp($op);
Get the exponent of $op, assuming that $op is a non-zero
ordinary number.
$si = Rmpfr_set_exp($op, $si);
Set the exponent of $op if $si is in the current exponent
range, and return 0 (even if $op is not a non-zero
ordinary number); otherwise, return a non-zero value.
####################
OPERATOR OVERLOADING
Overloaded operations are performed using the current
"default rounding mode".
The following operators are overloaded:
+ - * /
+= -= *= /=
** **= sqrt
< <= > >= == != <=>
! not abs
atan2 cos sin log exp
int (on perl 5.8 only, NA on perl 5.6)
= ""
Attempting to use the overloaded operators with objects that
have been blessed into some package other than 'Math::MPFR'
will not (currently) work.
#####################
LICENSE
This program is free software; you may redistribute it
and/or modify it under the same terms as Perl itself.
AUTHOR
Sisyphus <kalinabears at iinet dot net dot au>