NAME
AI::MXNet::Executor::Group - Manager for a group of executors working in different contexts.
DESCRIPTION
DataParallelExecutorGroup is a group of executors that lives on a group of devices.
This is a helper class used to implement data parallelization. Each mini-batch will
be split and run on the devices.
Parameters for constructor
----------
symbol : AI::MXNet::Symbol
The common symbolic computation graph for all executors.
contexts : ArrayRef[AI::MXNet::Context]
A array ref of contexts.
workload : ArrayRef[Num]
If not undef, could be an array ref of numbers that specify the workload to be assigned
to different context. Larger number indicate heavier workload.
data_shapes : ArrayRef[NameShape|AI::MXNet::DataDesc]
Should be a array ref of [name, shape] array refs, for the shapes of data. Note the order is
important and should be the same as the order that the `DataIter` provide the data.
label_shapes : Maybe[ArrayRef[NameShape|AI::MXNet::DataDesc]]
Should be a array ref of [$name, $shape] array refs, for the shapes of label. Note the order is
important and should be the same as the order that the `DataIter` provide the label.
param_names : ArrayRef[Str]
A array ref of strings, indicating the names of parameters (e.g. weights, filters, etc.)
in the computation graph.
for_training : Bool
Indicate whether the executors should be bind for training. When not doing training,
the memory for gradients will not be allocated.
inputs_need_grad : Bool
Indicate whether the gradients for the input data should be computed. This is currently
not used. It will be useful for implementing composition of modules.
shared_group : AI::MXNet::DataParallelExecutorGroup
Default is undef. This is used in bucketing. When not undef, it should be a executor
group corresponding to a different bucket. In other words, it will correspond to a different
symbol but with the same set of parameters (e.g. unrolled RNNs with different lengths).
In this case, many memory will be shared.
logger : Logger
Default is AI::MXNet::Logging->get_logger.
fixed_param_names: Maybe[ArrayRef[Str]]
Indicate parameters to be fixed during training. Parameters in this array ref will not allocate
space for gradient, nor do gradient calculation.
grad_req : ArrayRef[GradReq]|HashRef[GradReq]|GradReq
Requirement for gradient accumulation. Can be 'write', 'add', or 'null'
(default to 'write').
Can be specified globally (str) or for each argument (array ref, hash ref).
state_names: Maybe[ArrayRef[Str]]
Bind executors on their respective devices.
Parameters ---------- $data_shapes : ArrayRef[AI::MXNet::DataDesc] $label_shapes : Maybe[ArrayRef[AI::MXNet::DataDesc]] $shared_group : Maybe[AI::MXNet::DataParallelExecutorGroup] $reshape : Bool
reshape
Reshape executors.
Parameters ---------- $data_shapes : ArrayRef[AI::MXNet::DataDesc] $label_shapes : Maybe[ArrayRef[AI::MXNet::DataDesc]]
Assign, i.e. copy parameters to all the executors.
Parameters ---------- $arg_params : HashRef[AI::MXNet::NDArray] A dictionary of name to AI::MXNet::NDArray parameter mapping. $aux_params : HashRef[AI::MXNet::NDArray] A dictionary of name to AI::MXNet::NDArray auxiliary variable mapping.
get_params
Copy data from each executor to arg_params and aux_params.
Parameters ---------- $arg_params : HashRef[AI::MXNet::NDArray] target parameter arrays $aux_params : HashRef[AI::MXNet::NDArray] target aux arrays
Notes ----- - This function will inplace update the NDArrays in arg_params and aux_params.
forward
Split the data_batch according to a workload and run forward on each devices.
Parameters ---------- data_batch : AI::MXNet::DataBatch Or could be any object implementing similar interface.
is_train : bool The hint for the backend, indicating whether we are during training phase. Default is undef, then the value $self->for_training will be used.
get_outputs
Gets outputs of the previous forward computation.
Parameters ---------- merge_multi_context : bool Default is 1. In the case when data-parallelism is used, the outputs will be collected from multiple devices. A 1 value indicates that we should merge the collected results so that they look like from a single executor.
Returns ------- If merge_multi_context is 1, it is [$out1, $out2]. Otherwise, it is [[$out1_dev1, $out1_dev2], [$out2_dev1, $out2_dev2]]. All the output elements are `AI::MXNet::NDArray`.
get_input_grads
Get the gradients with respect to the inputs of the module.
Parameters ---------- merge_multi_context : bool Default is 1. In the case when data-parallelism is used, the outputs will be collected from multiple devices. A 1 value indicates that we should merge the collected results so that they look like from a single executor.
Returns ------- If merge_multi_context is 1, it is [$grad1, $grad2]. Otherwise, it is [[$grad1_dev1, $grad1_dev2], [$grad2_dev1, $grad2_dev2]]. All the output elements are AI::MXNet::NDArray.
backward
Run backward on all devices. A backward should be called after a call to the forward function. Backward cannot be called unless $self->for_training is 1.
Parameters ---------- out_grads : NDArray or array ref of NDArray, optional Gradient on the outputs to be propagated back. This parameter is only needed when bind is called on outputs that are not a loss function.
update_metric
Accumulate the performance according to eval_metric on all devices.
Parameters ---------- eval_metric : AI::MXNet::EvalMetric The metric used for evaluation. labels : array ref of NDArray Typically comes from label of AI::MXNet::DataBatch.
_sliced_shape
Get the sliced shapes for the i-th executor.
Parameters ---------- shapes : array ref of (str, array ref) The original (name, shape) pairs. i : int Which executor we are dealing with.
install_monitor
Install monitor on all executors
Parameters ---------- $mon : AI::MXNet::Monitor
3 POD Errors
The following errors were encountered while parsing the POD:
- Around line 307:
=cut found outside a pod block. Skipping to next block.
- Around line 436:
Unknown directive: =method
- Around line 516:
Unknown directive: =head