NAME

AI::MXNet::InitDesc - A container for the initialization pattern serialization.

new

Parameters --------- name : str name of variable attrs : hash ref of str to str attributes of this variable taken from AI::MXNet::Symbol->attr_dict

NAME

AI::MXNet::Initializer - Base class for all Initializers

register

Register an initializer class to the AI::MXNet::Initializer factory

init

Parameters ---------- desc : AI::MXNet::InitDesc|str a name of corresponding ndarray or the object that describes the initializer

arr : AI::MXNet::NDArray an ndarray to be Initialized

NAME

AI::MXNet::Load - Initialize by loading a pretrained param from a hash ref

new

Parameters ---------- param: HashRef[AI::MXNet::NDArray] default_init: Initializer default initializer when a name is not found in the param hash ref. verbose: bool log the names when initializing.

NAME

AI::MXNet::Mixed - A container for multiple initializer patterns.

new

patterns: array ref of str array ref of regular expression patterns to match parameter names. initializers: array ref of AI::MXNet::Initializer objects. array ref of Initializers corresponding to the patterns.

NAME

AI::MXNet::Uniform - Initialize the weight with uniform random values

DESCRIPTION

Initialize the weight with uniform random values contained within of [-scale, scale]

Parameters ---------- scale : float, optional The scale of the uniform distribution.

NAME

AI::MXNet::Normal - Initialize the weight with gaussian random values.

DESCRIPTION

Initialize the weight with gaussian random values contained within of [0, sigma]

Parameters ---------- sigma : float, optional Standard deviation for the gaussian distribution.

NAME

AI::MXNet::Orthogonal - Intialize the weight as an Orthogonal matrix.

DESCRIPTION

Intialize weight as Orthogonal matrix

Parameters ---------- scale : float, optional scaling factor of weight

rand_type: string optional use "uniform" or "normal" random number to initialize weight

Reference --------- Exact solutions to the nonlinear dynamics of learning in deep linear neural networks arXiv preprint arXiv:1312.6120 (2013).

NAME

AI::MXNet::Xavier - Initialize the weight with Xavier or similar initialization scheme.

DESCRIPTION

Parameters ---------- rnd_type: str, optional Use gaussian or uniform. factor_type: str, optional Use avg, in, or out. magnitude: float, optional The scale of the random number range.

NAME

AI::MXNet::MSRAPrelu - Custom initialization scheme.

DESCRIPTION

Initialize the weight with initialization scheme from Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

Parameters ---------- factor_type: str, optional Use avg, in, or out. slope: float, optional initial slope of any PReLU (or similar) nonlinearities.

NAME

AI::MXNet::LSTMBias - Custom initializer for LSTM cells.

DESCRIPTION

Initializes all biases of an LSTMCell to 0.0 except for the forget gate's bias that is set to a custom value.

Parameters ---------- forget_bias: float,a bias for the forget gate. Jozefowicz et al. 2015 recommends setting this to 1.0.

NAME

AI::MXNet::FusedRNN - Custom initializer for fused RNN cells.

DESCRIPTION

Initializes parameters for fused rnn layer

Parameters ---------- init : Initializer intializer applied to unpacked weights. num_hidden : int should be the same with arguments passed to FusedRNNCell. num_layers : int should be the same with arguments passed to FusedRNNCell. mode : str should be the same with arguments passed to FusedRNNCell. bidirectional : bool should be the same with arguments passed to FusedRNNCell. forget_bias : float should be the same with arguments passed to FusedRNNCell.