char_lstm.pl - Example of training char LSTM RNN on tiny shakespeare using high level RNN interface
with optional inferred sampling (RNN generates Shakespeare like text)
SYNOPSIS
--num-layers number of stacked RNN layers, default=2
--num-hidden hidden layer size, default=256
--num-embed embed size, default=10
--num-seq sequence size, default=60
--gpus list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu.
Increase batch size when using multiple gpus for best performance.
--kv-store key-value store type, default='device'
--num-epochs max num of epochs, default=25
--lr initial learning rate, default=0.01
--optimizer the optimizer type, default='adam'
--mom momentum for sgd, default=0.0
--wd weight decay for sgd, default=0.00001
--batch-size the batch size type, default=32
--bidirectional use bidirectional cell, default false (0)
--disp-batches show progress for every n batches, default=50
--chkp-prefix prefix for checkpoint files, default='lstm_'
--cell-mode RNN cell mode (LSTM, GRU, RNN, default=LSTM)
--sample-size a size of inferred sample text (default=10000) after each epoch
--chkp-epoch save checkpoint after this many epoch, default=1 (saving every checkpoint)
Module Install Instructions
To install AI::MXNet, copy and paste the appropriate command in to your terminal.