char_lstm.pl - Example of training char LSTM RNN on tiny shakespeare using high level RNN interface
SYNOPSIS
--test Whether to test or train (default 0)
--num-layers number of stacked RNN layers, default=2
--num-hidden hidden layer size, default=200
--num-seq sequence size, default=32
--gpus list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu.
Increase batch size when using multiple gpus for best performance.
--kv-store key-value store type, default='device'
--num-epochs max num of epochs, default=25
--lr initial learning rate, default=0.01
--optimizer the optimizer type, default='adam'
--mom momentum for sgd, default=0.0
--wd weight decay for sgd, default=0.00001
--batch-size the batch size type, default=32
--disp-batches show progress for every n batches, default=50
--model-prefix prefix for checkpoint files for loading/saving, default='lstm_'
--load-epoch load from epoch
--stack-rnn stack rnn to reduce communication overhead (1,0 default 0)
--bidirectional whether to use bidirectional layers (1,0 default 0)
--dropout dropout probability (1.0 - keep probability), default 0
Module Install Instructions
To install AI::MXNet, copy and paste the appropriate command in to your terminal.