NAME

AI::MXNet::Gluon::ModelZoo::Vision::ResNet::BasicBlockV1 - BasicBlock V1 from `"Deep Residual Learning for Image Recognition"

DESCRIPTION

BasicBlock V1 from `"Deep Residual Learning for Image Recognition"
<http://arxiv.org/abs/1512.03385>`_ paper.
This is used for ResNet V1 for 18, 34 layers.

Parameters
----------
channels : Int
    Number of output channels.
stride : Int
    Stride size.
downsample : Bool, default 0
    Whether to downsample the input.
in_channels : Int, default 0
    Number of input channels. Default is 0, to infer from the graph.

NAME

AI::MXNet::Gluon::ModelZoo::Vision::ResNet::BottleneckV1 - Bottleneck V1 from "Deep Residual Learning for Image Recognition"

DESCRIPTION

Bottleneck V1 from "Deep Residual Learning for Image Recognition"
<http://arxiv.org/abs/1512.03385> paper.
This is used for ResNet V1 for 50, 101, 152 layers.

Parameters
----------
channels : int
    Number of output channels.
stride : int
    Stride size.
downsample : bool, default False
    Whether to downsample the input.
in_channels : int, default 0
    Number of input channels. Default is 0, to infer from the graph.

NAME

AI::MXNet::Gluon::ModelZoo::Vision::ResNet::BasicBlockV2 - BasicBlock V2 from "Identity Mappings in Deep Residual Networks"

DESCRIPTION

Bottleneck V2 from "Identity Mappings in Deep Residual Networks"
<https://arxiv.org/abs/1603.05027> paper.
This is used for ResNet V2 for 18, 34 layers.

Parameters
----------
channels : Int
    Number of output channels.
stride : Int
    Stride size.
downsample : Bool, default 0
    Whether to downsample the input.
in_channels : Int, default 0
    Number of input channels. Default is 0, to infer from the graph.

NAME

AI::MXNet::Gluon::ModelZoo::Vision::ResNet::BottleneckV2 - Bottleneck V2 from "Identity Mappings in Deep Residual Networks"

DESCRIPTION

Bottleneck V2 from "Identity Mappings in Deep Residual Networks"
<https://arxiv.org/abs/1603.05027> paper.
This is used for ResNet V2 for 50, 101, 152 layers.

Parameters
----------
channels : int
    Number of output channels.
stride : int
    Stride size.
downsample : bool, default False
    Whether to downsample the input.
in_channels : int, default 0
    Number of input channels. Default is 0, to infer from the graph.

NAME

AI::MXNet::Gluon::ModelZoo::Vision::ResNet::V1 - ResNet V1 model from "Deep Residual Learning for Image Recognition"

DESCRIPTION

ResNet V1 model from from "Deep Residual Learning for Image Recognition"
<http://arxiv.org/abs/1512.03385> paper.

Parameters
----------
block : AI::MXNet::Gluon::HybridBlock
    Class for the residual block. Options are AI::MXNet::Gluon::ModelZoo::Vision::ResNet::BasicBlockV1,
    AI::MXNet::Gluon::ModelZoo::Vision::ResNet::BottleneckV1.
layers : array ref of Int
    Numbers of layers in each block
channels : array ref of Int
    Numbers of channels in each block. Length should be one larger than layers list.
classes : int, default 1000
    Number of classification classes.
thumbnail : bool, default 0
    Enable thumbnail.

NAME

AI::MXNet::Gluon::ModelZoo::Vision::ResNet::V2 - ResNet V2 model from "Identity Mappings in Deep Residual Networks"

DESCRIPTION

ResNet V2 model from "Identity Mappings in Deep Residual Networks"
<https://arxiv.org/abs/1603.05027> paper.

Parameters
----------
block : AI::MXNet::Gluon::HybridBlock
    Class for the residual block. Options are AI::MXNet::Gluon::ModelZoo::Vision::ResNet::BasicBlockV2,
    AI::MXNet::Gluon::ModelZoo::Vision::ResNet::BottleneckV2.
layers : array ref of Int
    Numbers of layers in each block
channels : array ref of Int
    Numbers of channels in each block. Length should be one larger than layers list.
classes : int, default 1000
    Number of classification classes.
thumbnail : bool, default 0
    Enable thumbnail.

get_resnet

ResNet V1 model from "Deep Residual Learning for Image Recognition"
<http://arxiv.org/abs/1512.03385> paper.
ResNet V2 model from "Identity Mappings in Deep Residual Networks"
<https://arxiv.org/abs/1603.05027> paper.

Parameters
----------
$version : Int
    Version of ResNet. Options are 1, 2.
$num_layers : Int
    Numbers of layers. Options are 18, 34, 50, 101, 152.
:$pretrained : Bool, default 0
    Whether to load the pretrained weights for model.
:$ctx : AI::MXNet::Context, default CPU
    The context in which to load the pretrained weights.
:$root : Str, default '~/.mxnet/models'
    Location for keeping the model parameters.

resnet18_v1

ResNet-18 V1 model from "Deep Residual Learning for Image Recognition"
<http://arxiv.org/abs/1512.03385> paper.

Parameters
----------
:$pretrained : Bool, default 0
    Whether to load the pretrained weights for model.
:$ctx : AI::MXNet::Context, default CPU
    The context in which to load the pretrained weights.
:$root : Str, default '~/.mxnet/models'
    Location for keeping the model parameters.

resnet34_v1

ResNet-34 V1 model from "Deep Residual Learning for Image Recognition"
<http://arxiv.org/abs/1512.03385> paper.

Parameters
----------
:$pretrained : Bool, default 0
    Whether to load the pretrained weights for model.
:$ctx : AI::MXNet::Context, default CPU
    The context in which to load the pretrained weights.
:$root : Str, default '~/.mxnet/models'
    Location for keeping the model parameters.

resnet50_v1

ResNet-50 V1 model from "Deep Residual Learning for Image Recognition"
<http://arxiv.org/abs/1512.03385> paper.

Parameters
----------
:$pretrained : Bool, default 0
    Whether to load the pretrained weights for model.
:$ctx : AI::MXNet::Context, default CPU
    The context in which to load the pretrained weights.
:$root : Str, default '~/.mxnet/models'
    Location for keeping the model parameters.

resnet101_v1

ResNet-101 V1 model from "Deep Residual Learning for Image Recognition"
<http://arxiv.org/abs/1512.03385> paper.

Parameters
----------
:$pretrained : Bool, default 0
    Whether to load the pretrained weights for model.
:$ctx : AI::MXNet::Context, default CPU
    The context in which to load the pretrained weights.
:$root : Str, default '~/.mxnet/models'
    Location for keeping the model parameters.

resnet152_v1

ResNet-152 V1 model from "Deep Residual Learning for Image Recognition"
<http://arxiv.org/abs/1512.03385> paper.

Parameters
----------
:$pretrained : Bool, default 0
    Whether to load the pretrained weights for model.
:$ctx : AI::MXNet::Context, default CPU
    The context in which to load the pretrained weights.
:$root : Str, default '~/.mxnet/models'
    Location for keeping the model parameters.

resnet18_v2

ResNet-18 V2 model from "Identity Mappings in Deep Residual Networks"
<https://arxiv.org/abs/1603.05027> paper.

Parameters
----------
:$pretrained : Bool, default 0
    Whether to load the pretrained weights for model.
:$ctx : AI::MXNet::Context, default CPU
    The context in which to load the pretrained weights.
:$root : Str, default '~/.mxnet/models'
    Location for keeping the model parameters.

resnet34_v2

ResNet-34 V2 model from "Identity Mappings in Deep Residual Networks"
<https://arxiv.org/abs/1603.05027> paper.

Parameters
----------
:$pretrained : Bool, default 0
    Whether to load the pretrained weights for model.
:$ctx : AI::MXNet::Context, default CPU
    The context in which to load the pretrained weights.
:$root : Str, default '~/.mxnet/models'
    Location for keeping the model parameters.

resnet50_v2

ResNet-50 V2 model from "Identity Mappings in Deep Residual Networks"
<https://arxiv.org/abs/1603.05027> paper.

Parameters
----------
:$pretrained : Bool, default 0
    Whether to load the pretrained weights for model.
:$ctx : AI::MXNet::Context, default CPU
    The context in which to load the pretrained weights.
:$root : Str, default '~/.mxnet/models'
    Location for keeping the model parameters.

resnet101_v2

ResNet-101 V2 model from "Identity Mappings in Deep Residual Networks"
<https://arxiv.org/abs/1603.05027> paper.

Parameters
----------
:$pretrained : Bool, default 0
    Whether to load the pretrained weights for model.
:$ctx : AI::MXNet::Context, default CPU
    The context in which to load the pretrained weights.
:$root : Str, default '~/.mxnet/models'
    Location for keeping the model parameters.

resnet152_v2

ResNet-152 V2 model from "Identity Mappings in Deep Residual Networks"
<https://arxiv.org/abs/1603.05027> paper.

Parameters
----------
:$pretrained : Bool, default 0
    Whether to load the pretrained weights for model.
:$ctx : AI::MXNet::Context, default CPU
    The context in which to load the pretrained weights.
:$root : Str, default '~/.mxnet/models'
    Location for keeping the model parameters.