NAME
Compression::Util - Implementation of various techniques used in data compression.
SYNOPSIS
use 5.036;
use Getopt::Std qw(getopts);
use Compression::Util qw(:all);
use constant {CHUNK_SIZE => 1 << 17};
local $Compression::Util::VERBOSE = 0;
getopts('d', \my %opts);
sub compress ($fh, $out_fh) {
while (read($fh, (my $chunk), CHUNK_SIZE)) {
print $out_fh bwt_compress($chunk);
}
}
sub decompress ($fh, $out_fh) {
while (!eof($fh)) {
print $out_fh bwt_decompress($fh);
}
}
$opts{d} ? decompress(\*STDIN, \*STDOUT) : compress(\*STDIN, \*STDOUT);
DESCRIPTION
Compression::Util is a function-based module, implementing various techniques used in data compression, such as:
* Burrows-Wheeler transform
* Move-to-front transform
* Huffman Coding
* Arithmetic Coding (in fixed bits)
* Run-length encoding
* Fibonacci coding
* Elias gamma/omega coding
* Delta coding
* BWT-based (de)compression
* LZ77/LZSS (de)compression
* LZW (de)compression
* Bzip2 (de)compression
* Gzip (de)compression
* LZ4 (de)compression
The provided techniques can be easily combined in various ways to create powerful compressors, such as the Bzip2 compressor, which is a pipeline of the following methods:
1. Run-length encoding (RLE4)
2. Burrows-Wheeler transform (BWT)
3. Move-to-front transform (MTF)
4. Zero run-length encoding (ZRLE)
5. Huffman coding
A simple BWT-based compression method (similar to Bzip2) is provided by the function bwt_compress()
, which can be explicitly implemented as:
use 5.036;
use Compression::Util qw(:all);
my $data = do { open my $fh, '<:raw', $^X; local $/; <$fh> };
my $rle4 = rle4_encode(string2symbols($data));
my ($bwt, $idx) = bwt_encode(symbols2string($rle4));
my ($mtf, $alphabet) = mtf_encode(string2symbols($bwt));
my $rle = zrle_encode($mtf);
my $enc = pack('N', $idx)
. encode_alphabet($alphabet)
. create_huffman_entry($rle);
say "Original size : ", length($data);
say "Compressed size: ", length($enc);
# Decompress the result
bwt_decompress($enc) eq $data or die "decompression error";
TERMINOLOGY
bit
A bit value is either 1
or 0
.
bitstring
A bitstring is a string containing only 1s and 0s.
byte
A byte value is an integer between 0
and 255
, inclusive.
string
A string means a binary (non-UTF*) string.
symbols
An array of symbols means an array of non-negative integer values.
filehandle
A filehandle is denoted by $fh
.
The encoding of file-handles must be set to :raw
.
PACKAGE VARIABLES
Compression::Util provides the following package variables:
$Compression::Util::VERBOSE = 0; # true to enable verbose/debug mode
$Compression::Util::LZ_MIN_LEN = 4; # minimum match length in LZ parsing
$Compression::Util::LZ_MAX_LEN = 1 << 15; # maximum match length in LZ parsing
$Compression::Util::LZ_MAX_DIST = ~0; # maximum back-reference distance allowed
$Compression::Util::LZ_MAX_CHAIN_LEN = 32; # how many recent positions to remember for each match in LZ parsing
These package variables can also be imported as:
use Compression::Util qw(
$LZ_MIN_LEN
$LZ_MAX_LEN
$LZ_MAX_DIST
$LZ_MAX_CHAIN_LEN
);
$LZ_MIN_LEN
Minimum length of a match in LZ parsing. The value must be an integer greater than or equal to 2
. Larger values will result in faster parsing, but lower compression ratio.
By default, $LZ_MIN_LEN
is set to 4
.
NOTE: for lzss_encode_fast()
is recommended to set $LZ_MIN_LEN = 5
, which will result in slightly better compression ratio.
$LZ_MAX_LEN
Maximum length of a match in LZ parsing. The value must be an integer greater than or equal to 0
.
By default, $LZ_MAX_LEN
is set to 32768
.
NOTE: the functions lz77_encode()
and lzb_compress()
will ignore this value and will always use unlimited match lengths.
$LZ_MAX_DIST
Maximum back-reference distance allowed in LZ parsing. Smaller values will result in faster parsing, but lower compression ratio.
By default, the value is unlimited, meaning that arbitrarily large back-references will be generated.
NOTE: the function lzb_compress()
will ignore this value and will always use the value 2**16 - 1
as the maximum back-reference distance.
$LZ_MAX_CHAIN_LEN
The value of $LZ_MAX_CHAIN_LEN
controls the amount of recent positions to remember for each matched prefix. A larger value results in better compression, finding longer matches, at the expense of speed.
By default, $LZ_MAX_CHAIN_LEN
is set to 32
.
NOTE: the function lzss_encode_fast()
will ignore this value, always using a value of 1
.
HIGH-LEVEL FUNCTIONS
create_huffman_entry(\@symbols) # Create a Huffman Coding block
decode_huffman_entry($fh) # Decode a Huffman Coding block
create_ac_entry(\@symbols) # Create an Arithmetic Coding block
decode_ac_entry($fh) # Decode an Arithmetic Coding block
create_adaptive_ac_entry(\@symbols) # Create an Adaptive Arithmetic Coding block
decode_adaptive_ac_entry($fh) # Decode an Adaptive Arithmetic Coding block
mrl_compress($string) # MRL compression (MTF+ZRLE+RLE4+Huffman coding)
mrl_decompress($fh) # Inverse of the above method
mrl_compress_symbolic(\@symbols) # Symbolic MRL compression (MTF+ZRLE+RLE4+Huffman coding)
mrl_decompress_symbolic($fh) # Inverse of the above method
bwt_compress($string) # BWT-based compression (RLE4+BWT+MTF+ZRLE+Huffman coding)
bwt_decompress($fh) # Inverse of the above method
bwt_compress_symbolic(\@symbols) # Symbolic BWT-based compression (RLE4+sBWT+MTF+ZRLE+Huffman coding)
bwt_decompress_symbolic($fh) # Inverse of the above method
bzip2_compress($string) # Compress a given string using the Bzip2 format
bzip2_decompress($fh) # Inverse of the above method
gzip_compress($string) # Compress a given string using the Gzip format
gzip_decompress($fh) # Inverse of the above method
lzss_compress($string) # LZSS + DEFLATE-like encoding of lengths and distances
lzss_decompress($fh) # Inverse of the above method
lzss_compress_symbolic(\@symbols) # Symbolic LZSS + DEFLATE-like encoding of lengths and distances
lzss_decompress_symbolic($fh) # Inverse of the above method
lz77_compress($string) # LZ77 + Huffman coding of lengths and literals + OBH for distances
lz77_decompress($fh) # Inverse of the above method
lz77_compress_symbolic(\@symbols) # Symbolic LZ77 + Huffman coding of lengths and literals + OBH for distances
lz77_decompress_symbolic($fh) # Inverse of the above method
lzb_compress($string) # LZSS compression, using a byte-aligned encoding method, similar to LZ4
lzb_decompress($fh) # Inverse of the above method
lzw_compress($string) # LZW + abc_encode() compression
lzw_decompress($fh) # Inverse of the above method
lz4_compress($string) # Compress a given string using the LZ4 frame format
lz4_decompress($fh) # Inverse of the above method
MEDIUM-LEVEL FUNCTIONS
deltas(\@ints) # Computes the differences between integers
accumulate(\@deltas) # Inverse of the above method
delta_encode(\@ints) # Delta+RLE encoding of an array-ref of integers
delta_decode($fh) # Inverse of the above method
fibonacci_encode(\@symbols) # Fibonacci coding of an array-ref of symbols
fibonacci_decode($fh) # Inverse of the above method
elias_gamma_encode(\@symbols) # Elias Gamma coding method of an array-ref of symbols
elias_gamma_decode($fh) # Inverse of the above method
elias_omega_encode(\@symbols) # Elias Omega coding method of an array-ref of symbols
elias_omega_decode($fh) # Inverse of the above method
abc_encode(\@symbols) # Adaptive Binary Concatenation method of an array-ref of symbols
abc_decode($fh) # Inverse of the above method
obh_encode(\@symbols) # Offset bits + Huffman coding of an array-ref of symbols
obh_decode($fh) # Inverse of the above method
bwt_encode($string) # Burrows-Wheeler transform
bwt_decode($bwt, $idx) # Inverse of Burrows-Wheeler transform
bwt_encode_symbolic(\@symbols) # Burrows-Wheeler transform over an array-ref of symbols
bwt_decode_symbolic(\@bwt, $idx) # Inverse of symbolic Burrows-Wheeler transform
mtf_encode(\@symbols) # Move-to-front transform
mtf_decode(\@mtf, \@alphabet) # Inverse of the above method
encode_alphabet(\@alphabet) # Encode an alphabet of symbols into a binary string
decode_alphabet($fh) # Inverse of the above method
encode_alphabet_256(\@alphabet) # Encode an alphabet of symbols (limited to [0..255]) into a binary string
decode_alphabet_256($fh) # Inverse of the above method
frequencies(\@symbols) # Returns a dictionary with symbol frequencies
run_length(\@symbols, $max=undef) # Run-length encoding, returning a 2D array-ref
rle4_encode(\@symbols, $max=255) # Run-length encoding with 4 or more consecutive characters
rle4_decode(\@rle4) # Inverse of the above method
zrle_encode(\@symbols) # Run-length encoding of zeros
zrle_decode(\@zrle) # Inverse of the above method
ac_encode(\@symbols) # Arithmetic Coding applied on an array-ref of symbols
ac_decode($bitstring, \%freq) # Inverse of the above method
adaptive_ac_encode(\@symbols) # Adaptive Arithmetic Coding applied on an array-ref of symbols
adaptive_ac_decode($bitstring, \@alphabet) # Inverse of the above method
lzw_encode($string) # LZW encoding of a given string
lzw_decode(\@symbols) # Inverse of the above method
LOW-LEVEL FUNCTIONS
crc32($string, $prev_crc = 0) # Compute the CRC32 value of a given string
read_bit($fh, \$buffer) # Read one bit from file-handle (MSB)
read_bit_lsb($fh, \$buffer) # Read one bit from file-handle (LSB)
read_bits($fh, $len) # Read `$len` bits from file-handle (MSB)
read_bits_lsb($fh, $len) # Read `$len` bits from file-handle (LSB)
int2bits($symbol, $size) # Convert an integer to bits of width `$size` (MSB)
int2bits_lsb($symbol, $size) # Convert an integer to bits of width `$size` (LSB)
bits2int($fh, $size, \$buffer) # Inverse of `int2bits()`
bits2int_lsb($fh, $size, \$buffer) # Inverse of `int2bits_lsb()`
bytes2int($fh, $n) # Read `$n` bytes from file-handle as an integer (MSB)
bytes2int_lsb($fh, $n) # Read `$n` bytes from file-handle as an integer (LSB)
int2bytes($symbol, $size) # Convert an integer into `$size` bytes. (MSB)
int2bytes_lsb($symbol, $size) # Convert an integer into `$size` bytes. (LSB)
string2symbols($string) # Returns an array-ref of code points
symbols2string(\@symbols) # Returns a string, given an array-ref of code points
read_null_terminated($fh) # Read a binary string that ends with NULL ("\0")
binary_vrl_encode($bitstring) # Binary variable run-length encoding
binary_vrl_decode($bitstring) # Binary variable run-length decoding
bwt_sort($string) # Burrows-Wheeler sorting
bwt_sort_symbolic(\@symbols) # Burrows-Wheeler sorting, applied on an array-ref of symbols
huffman_encode(\@symbols, \%dict) # Huffman encoding
huffman_decode($bitstring, \%dict) # Huffman decoding, given a string of bits
huffman_from_freq(\%freq) # Create Huffman dictionaries, given an hash-ref of frequencies
huffman_from_symbols(\@symbols) # Create Huffman dictionaries, given an array-ref of symbols
huffman_from_code_lengths(\@lens) # Create canonical Huffman codes, given an array-ref of code lengths
make_deflate_tables($max_dist, $max_len) # Returns the DEFLATE tables for distance and length symbols
find_deflate_index($value, \@table) # Returns the index in a DEFLATE table, given a numerical value
lzss_encode($string) # LZSS encoding into literals, distances and lengths
lzss_encode_symbolic(\@symbols) # LZSS encoding into literals, distances and lengths (symbolic)
lzss_encode_fast($string) # Fast-LZSS encoding into literals, distances and lengths
lzss_encode_fast_symbolic(\@symbols) # Fast-LZSS encoding into literals, distances and lengths (symbolic)
lzss_decode(\@lits, \@dist, \@lens) # Inverse of lzss_encode() and lzss_encode_fast()
lzss_decode_symbolic(\@lits, \@dist, \@lens) # Inverse of lzss_encode_symbolic() and lzss_encode_fast_symbolic()
lz77_encode($string) # LZ77 encoding into literals, distances, lengths and matches
lz77_encode_symbolic(\@symbols) # LZ77 encoding into literals, distances, lengths and matches (symbolic)
lz77_decode(\@lits, \@dist, \@lens, \@matches) # Inverse of lz77_encode()
lz77_decode_symbolic(\@lits, \@dist, \@lens, \@matches) # Inverse of lz77_encode_symbolic()
deflate_encode(\@lits, \@dist, \@lens) # DEFLATE-like encoding of values returned by lzss_encode()
deflate_decode($fh) # Inverse of the above method
INTERFACE FOR HIGH-LEVEL FUNCTIONS
create_huffman_entry
my $string = create_huffman_entry(\@symbols);
High-level function that generates a Huffman coding block, given an array-ref of symbols.
decode_huffman_entry
my $symbols = decode_huffman_entry($fh);
my $symbols = decode_huffman_entry($string);
Inverse of create_huffman_entry()
.
create_ac_entry
my $string = create_ac_entry(\@symbols);
High-level function that generates an Arithmetic Coding block, given an array-ref of symbols.
decode_ac_entry
my $symbols = decode_ac_entry($fh);
my $symbols = decode_ac_entry($string);
Inverse of create_ac_entry()
.
create_adaptive_ac_entry
my $string = create_adaptive_ac_entry(\@symbols);
High-level function that generates an Adaptive Arithmetic Coding block, given an array-ref of symbols.
decode_adaptive_ac_entry
my $symbols = decode_adaptive_ac_entry($fh);
my $symbols = decode_adaptive_ac_entry($string);
Inverse of create_adaptive_ac_entry()
.
lz77_compress / lz77_compress_symbolic
# With Huffman coding
my $string = lz77_compress($data);
my $string = lz77_compress(\@symbols);
# With Arithmetic Coding
my $string = lz77_compress($data, \&create_ac_entry);
# Using Fast-LZSS parsing + Huffman coding
my $string = lz77_compress($data, \&create_huffman_entry, \&lzss_encode_fast);
High-level function that performs LZ77 compression on the provided data, using the pipeline:
1. lz77_encode
2. create_huffman_entry(literals)
3. create_huffman_entry(lengths)
4. create_huffman_entry(matches)
5. obh_encode(distances)
The function accepts either a string or an array-ref of symbols as the first argument.
lz77_decompress / lz77_decompress_symbolic
# With Huffman coding
my $data = lz77_decompress($fh);
my $data = lz77_decompress($string);
# With Arithemtic coding
my $data = lz77_decompress($fh, \&decode_ac_entry);
my $data = lz77_decompress($string, \&decode_ac_entry);
# Symbolic, with Huffman coding
my $symbols = lz77_decompress_symbolic($fh);
my $symbols = lz77_decompress_symbolic($string);
Inverse of lz77_compress()
and lz77_compress_symbolic()
, respectively.
lzss_compress / lzss_compress_symbolic
# With Huffman coding
my $string = lzss_compress($data);
my $string = lzss_compress(\@symbols);
# With Arithmetic Coding
my $string = lzss_compress($data, \&create_ac_entry);
# Using Fast-LZSS parsing + Huffman coding
my $string = lzss_compress($data, \&create_huffman_entry, \&lzss_encode_fast);
High-level function that performs LZSS (Lempel-Ziv-Storer-Szymanski) compression on the provided data, using the pipeline:
1. lzss_encode
2. deflate_encode
The function accepts either a string or an array-ref of symbols as the first argument.
lzss_decompress / lzss_decompress_symbolic
# With Huffman coding
my $data = lzss_decompress($fh);
my $data = lzss_decompress($string);
# With Arithmetic coding
my $data = lzss_decompress($fh, \&decode_ac_entry);
my $data = lzss_decompress($string, \&decode_ac_entry);
# Symbolic, with Huffman coding
my $symbols = lzss_decompress_symbolic($fh);
my $symbols = lzss_decompress_symbolic($string);
Inverse of lzss_compress()
and lzss_compress_symbolic()
, respectively.
lzb_compress
my $string = lzb_compress($data);
my $string = lzb_compress($data, \&lzss_encode_fast); # with fast-LZ parsing
High-level function that performs byte-oriented LZSS compression, inspired by LZ4.
lzb_decompress
my $data = lzb_decompress($fh);
my $data = lzb_decompress($string);
Inverse of lzb_compress()
.
lz4_compress
my $string = lz4_compress($fh);
my $string = lz4_compress($data);
my $string = lz4_compress($data, \&lzss_encode_fast); # with fast-LZ parsing
Valid LZ4 compressor, using the LZ4 Frame format, given either a string or an input file-handle.
The input data is split into chunks of length 2**17
and compressed into independent LZ4 blocks.
lz4_decompress
my $data = lz4_decompress($fh);
my $data = lz4_decompress($string);
Decompress LZ4 Frame data, given either a string or an input file-handle. Concatenated LZ4 Frames are also supported.
lzw_compress
my $string = lzw_compress($data);
High-level function that performs LZW (Lempel-Ziv-Welch) compression on the provided data, using the pipeline:
1. lzw_encode
2. abc_encode
lzw_decompress
my $data = lzw_decompress($fh);
my $data = lzw_decompress($string);
Performs Lempel-Ziv-Welch (LZW) decompression on the provided string or file-handle. Inverse of lzw_compress()
.
bwt_compress
# Using Huffman Coding
my $string = bwt_compress($data);
# Using Arithmetic Coding
my $string = bwt_compress($data, \&create_ac_entry);
High-level function that performs BWT-based compression on the provided data, using the pipeline:
1. rle4_encode
2. bwt_encode
3. mtf_encode
4. zrle_encode
5. create_huffman_entry
bwt_decompress
# With Huffman coding
my $data = bwt_decompress($fh);
my $data = bwt_decompress($string);
# With Arithmetic coding
my $data = bwt_decompress($fh, \&decode_ac_entry);
my $data = bwt_decompress($string, \&decode_ac_entry);
Inverse of bwt_compress()
.
bwt_compress_symbolic
# Does Huffman coding
my $string = bwt_compress_symbolic(\@symbols);
# Does Arithmetic coding
my $string = bwt_compress_symbolic(\@symbols, \&create_ac_entry);
Similar to bwt_compress()
, except that it accepts an arbitrary array-ref of non-negative integer values as input. It is also a bit slower on large inputs.
bwt_decompress_symbolic
# Using Huffman coding
my $symbols = bwt_decompress_symbolic($fh);
my $symbols = bwt_decompress_symbolic($string);
# Using Arithmetic coding
my $symbols = bwt_decompress_symbolic($fh, \&decode_ac_entry);
my $symbols = bwt_decompress_symbolic($string, \&decode_ac_entry);
Inverse of bwt_compress_symbolic()
.
bzip2_compress
my $string = bzip2_compress($data);
my $string = bzip2_compress($fh);
Valid Bzip2 compressor, given a string or an input file-handle.
bzip2_decompress
my $data = bzip2_decompress($string);
my $data = bzip2_decompress($fh);
Valid Bzip2 decompressor, given a string or an input file-handle.
gzip_compress
my $string = gzip_compress($fh);
my $string = gzip_compress($data);
my $string = gzip_compress($data, \&lzss_encode_fast); # using fast LZ-parsing
Valid Gzip compressor, given a string or an input file-handle.
gzip_decompress
my $data = gzip_decompress($string);
my $data = gzip_decompress($fh);
Valid Bzip2 decompressor, given a string or an input file-handle.
mrl_compress / mrl_compress_symbolic
# Does Huffman coding
my $enc = mrl_compress($str);
my $enc = mrl_compress(\@symbols);
# Does Arithmetic coding
my $enc = mrl_compress($str, \&create_ac_entry);
my $enc = mrl_compress(\@symbols, \&create_ac_entry);
A fast compression method, using the following pipeline:
1. mtf_encode
2. zrle_encode
3. rle4_encode
4. create_huffman_entry
It accepts an arbitrary array-ref of non-negative integer values as input.
mrl_decompress / mrl_decompress_symbolic
# With Huffman coding
my $data = mrl_decompress($fh);
my $data = mrl_decompress($string);
# Symbolic, with Huffman coding
my $symbols = mrl_decompress_symbolic($fh);
my $symbols = mrl_decompress_symbolic($string);
# Symbolic, with Arithmetic coding
my $symbols = mrl_decompress_symbolic($fh, \&decode_ac_entry);
my $symbols = mrl_decompress_symbolic($string, \&decode_ac_entry);
Inverse of mrl_decompress()
and mrl_compress_symbolic()
.
INTERFACE FOR MEDIUM-LEVEL FUNCTIONS
frequencies
my $freq = frequencies(\@symbols);
Returns an hash ref dictionary with frequencies, given an array-ref of symbols.
deltas
my $deltas = deltas(\@integers);
Computes the differences between consecutive integers, returning an array.
accumulate
my $integers = accumulate(\@deltas);
Inverse of deltas()
.
delta_encode
my $string = delta_encode(\@integers);
Encodes a sequence of integers (including negative integers) using Delta + Run-length + Elias omega coding, returning a binary string.
Delta encoding calculates the difference between consecutive integers in the sequence and encodes these differences using Elias omega coding. When it's beneficial, runs of identical symbols are collapsed with RLE.
This method supports both positive and negative integers.
delta_decode
# Given a file-handle
my $integers = delta_decode($fh);
# Given a string
my $integers = delta_decode($string);
Inverse of delta_encode()
.
fibonacci_encode
my $string = fibonacci_encode(\@symbols);
Encodes a sequence of non-negative integers using Fibonacci coding, returning a binary string.
fibonacci_decode
# Given a file-handle
my $symbols = fibonacci_decode($fh);
# Given a binary string
my $symbols = fibonacci_decode($string);
Inverse of fibonacci_encode()
.
elias_gamma_encode
my $string = elias_gamma_encode(\@symbols);
Encodes a sequence of non-negative integers using Elias Gamma coding, returning a binary string.
elias_gamma_decode
# Given a file-handle
my $symbols = elias_gamma_decode($fh);
# Given a binary string
my $symbols = elias_gamma_decode($string);
Inverse of elias_gamma_encode()
.
elias_omega_encode
my $string = elias_omega_encode(\@symbols);
Encodes a sequence of non-negative integers using Elias Omega coding, returning a binary string.
elias_omega_decode
# Given a file-handle
my $symbols = elias_omega_decode($fh);
# Given a binary string
my $symbols = elias_omega_decode($string);
Inverse of elias_omega_encode()
.
abc_encode
my $string = abc_encode(\@symbols);
Encodes a sequence of non-negative integers using the Adaptive Binary Concatenation encoding method.
This method is particularly effective in encoding a sequence of integers that are in ascending order or have roughly the same size in binary.
abc_decode
# Given a file-handle
my $symbols = abc_decode($fh);
# Given a binary string
my $symbols = abc_decode($string);
Inverse of abc_encode()
.
obh_encode
# With Huffman Coding
my $string = obh_encode(\@symbols);
# With Arithmetic Coding
my $string = obh_encode(\@symbols, \&create_ac_entry);
Encodes a sequence of non-negative integers using offset bits and Huffman coding.
This method is particularly effective in encoding a sequence of moderately large random integers, such as the list of distances returned by lzss_encode()
.
obh_decode
# Given a file-handle
my $symbols = obh_decode($fh); # Huffman decoding
my $symbols = obh_decode($fh, \&decode_ac_entry); # Arithmetic decoding
# Given a binary string
my $symbols = obh_decode($string); # Huffman decoding
my $symbols = obh_decode($string, \&decode_ac_entry); # Arithmetic decoding
Inverse of obh_encode()
.
bwt_encode
my ($bwt, $idx) = bwt_encode($string);
my ($bwt, $idx) = bwt_encode($string, $lookahead_len);
Applies the Burrows-Wheeler Transform (BWT) to a given string.
bwt_decode
my $string = bwt_decode($bwt, $idx);
Reverses the Burrows-Wheeler Transform (BWT) applied to a string.
The function returns the original string.
bwt_encode_symbolic
my ($bwt_symbols, $idx) = bwt_encode_symbolic(\@symbols);
Applies the Burrows-Wheeler Transform (BWT) to a sequence of symbolic elements.
bwt_decode_symbolic
my $symbols = bwt_decode_symbolic(\@bwt_symbols, $idx);
Reverses the Burrows-Wheeler Transform (BWT) applied to a sequence of symbolic elements.
mtf_encode
my $mtf = mtf_encode(\@symbols, \@alphabet);
my ($mtf, $alphabet) = mtf_encode(\@symbols);
Performs Move-To-Front (MTF) encoding on a sequence of symbols.
The function returns the encoded MTF sequence and the sorted list of unique symbols in the input data, representing the alphabet.
Optionally, the alphabet can be provided as a second argument. When two arguments are provided, only the MTF sequence is returned.
mtf_decode
my $symbols = mtf_decode(\@mtf, \@alphabet);
Inverse of mtf_encode()
.
encode_alphabet / encode_alphabet_256
my $string = encode_alphabet(\@alphabet); # supports arbitrarily large symbols
my $string = encode_alphabet_256(\@alphabet); # limited to symbols [0..255]
Encode a sorted alphabet of symbols into a binary string.
decode_alphabet / decode_alphabet_256
my $alphabet = decode_alphabet($fh);
my $alphabet = decode_alphabet($string);
my $alphabet = decode_alphabet_256($fh);
my $alphabet = decode_alphabet_256($string);
Decodes an encoded alphabet, given a file-handle or a binary string, returning an array-ref of symbols. Inverse of encode_alphabet()
.
run_length
my $rl = run_length(\@symbols);
my $rl = run_length(\@symbols, $max_run);
Performs Run-Length Encoding (RLE) on a sequence of symbolic elements.
It takes two parameters: \@symbols
, representing an array of symbols, and $max_run
, indicating the maximum run length allowed.
The function returns a 2D-array, with pairs: [symbol, run_length]
, such that the following code reconstructs the \@symbols
array:
my @symbols = map { ($_->[0]) x $_->[1] } @$rl;
By default, the maximum run-length is unlimited.
rle4_encode
my $rle4 = rle4_encode($string);
my $rle4 = rle4_encode(\@symbols);
my $rle4 = rle4_encode(\@symbols, $max_run);
Performs Run-Length Encoding (RLE) on a sequence of symbolic elements, specifically designed for runs of four or more consecutive symbols.
It takes two parameters: \@symbols
, representing an array of symbols, and $max_run
, indicating the maximum run length allowed during encoding.
The function returns the encoded RLE sequence as an array-ref of symbols.
By default, the maximum run-length is limited to 255
.
rle4_decode
my $symbols = rle4_decode(\@rle4);
my $symbols = rle4_decode($rle4_string);
Inverse of rle4_encode()
.
zrle_encode
my $zrle = zrle_encode(\@symbols);
Performs Zero-Run-Length Encoding (ZRLE) on a sequence of symbolic elements, returning the encoded ZRLE sequence as an array-ref of symbols.
This function efficiently encodes runs of zeros, but also increments each symbol by 1
.
zrle_decode
my $symbols = zrle_decode($zrle);
Inverse of zrle_encode()
.
ac_encode
my ($bitstring, $freq) = ac_encode(\@symbols);
Performs Arithmetic Coding on the provided symbols.
It takes a single parameter, \@symbols
, representing the symbols to be encoded.
The function returns two values: $bitstring
, which is a string of 1s and 0s, and $freq
, representing the frequency table used for encoding.
ac_decode
my $symbols = ac_decode($bits_fh, \%freq);
my $symbols = ac_decode($bitstring, \%freq);
Performs Arithmetic Coding decoding using the provided frequency table and a string of 1s and 0s. Inverse of ac_encode()
.
It takes two parameters: $bitstring
, representing a string of 1s and 0s containing the arithmetic coded data, and \%freq
, representing the frequency table used for encoding.
The function returns the decoded sequence of symbols.
adaptive_ac_encode
my ($bitstring, $alphabet) = adaptive_ac_encode(\@symbols);
Performs Adaptive Arithmetic Coding on the provided symbols.
It takes a single parameter, \@symbols
, representing the symbols to be encoded.
The function returns two values: $bitstring
, which is a string of 1s and 0s, and $alphabet
, which is an array-ref of distinct sorted symbols.
adaptive_ac_decode
my $symbols = adaptive_ac_decode($bits_fh, \@alphabet);
my $symbols = adaptive_ac_decode($bitstring, \@alphabet);
Performs Adaptive Arithmetic Coding decoding using the provided frequency table and a string of 1s and 0s.
It takes two parameters: $bitstring
, representing a string of 1s and 0s containing the adaptive arithmetic coded data, and \@alphabet
, representing the array of distinct sorted symbols that appear in the encoded data.
The function returns the decoded sequence of symbols.
lzw_encode
my $symbols = lzw_encode($string);
Performs Lempel-Ziv-Welch (LZW) encoding on the provided string.
It takes a single parameter, $string
, representing the data to be encoded.
The function returns an array-ref of symbols.
lzw_decode
my $string = lzw_decode(\@symbols);
Performs Lempel-Ziv-Welch (LZW) decoding on the provided symbols. Inverse of lzw_encode()
.
The function returns the decoded string.
INTERFACE FOR LOW-LEVEL FUNCTIONS
crc32
my $int32 = crc32($data);
my $int32 = crc32($data, $prev_crc32);
Compute the CRC32 of a given string.
read_bit
my $bit = read_bit($fh, \$buffer);
Reads a single bit from a file-handle $fh
(MSB order).
The function stores the extra bits inside the $buffer
, reading one character at a time from the file-handle.
read_bit_lsb
my $bit = read_bit_lsb($fh, \$buffer);
Reads a single bit from a file-handle $fh
(LSB order).
The function stores the extra bits inside the $buffer
, reading one character at a time from the file-handle.
read_bits
my $bitstring = read_bits($fh, $bits_len);
Reads a specified number of bits ($bits_len
) from a file-handle ($fh
) and returns them as a string, in MSB order.
read_bits_lsb
my $bitstring = read_bits_lsb($fh, $bits_len);
Reads a specified number of bits ($bits_len
) from a file-handle ($fh
) and returns them as a string, in LSB order.
int2bits
my $bitstring = int2bits($symbol, $size)
Convert a non-negative integer to a bitstring of width $size
, in MSB order.
int2bits_lsb
my $bitstring = int2bits_lsb($symbol, $size)
Convert a non-negative integer to a bitstring of width $size
, in LSB order.
int2bytes
my $string = int2bytes($symbol, $size);
Convert a non-negative integer to a byte-string of width $size
, in MSB order.
int2bytes_lsb
my $string = int2bytes_lsb($symbol, $size);
Convert a non-negative integer to a byte-string of width $size
, in LSB order.
bits2int
my $integer = bits2int($fh, $size, \$buffer);
Read $size
bits from a file-handle $fh
and convert them to an integer, in MSB order. Inverse of int2bits()
.
The function stores the extra bits inside the $buffer
, reading one character at a time from the file-handle.
bits2int_lsb
my $integer = bits2int_lsb($fh, $size, \$buffer);
Read $size
bits from a file-handle $fh
and convert them to an integer, in LSB order. Inverse of int2bits_lsb()
.
The function stores the extra bits inside the $buffer
, reading one character at a time from the file-handle.
bytes2int
my $integer = bytes2int($fh, $n);
my $integer = bytes2int($str, $n);
Read $n
bytes from a file-handle $fh
or from a string $str
and convert them to an integer, in MSB order.
bytes2int_lsb
my $integer = bytes2int_lsb($fh, $n);
my $integer = bytes2int_lsb($str, $n);
Read $n
bytes from a file-handle $fh
or from a string $str
and convert them to an integer, in LSB order.
string2symbols
my $symbols = string2symbols($string)
Returns an array-ref of code points, given a string.
symbols2string
my $string = symbols2string(\@symbols)
Returns a string, given an array-ref of code points.
read_null_terminated
my $string = read_null_terminated($fh)
Read a string from file-handle $fh
that ends with a NULL character ("\0").
binary_vrl_encode
my $bitstring_enc = binary_vrl_encode($bitstring);
Given a string of 1s and 0s, returns back a bitstring of 1s and 0s encoded using variable run-length encoding.
binary_vrl_decode
my $bitstring = binary_vrl_decode($bitstring_enc);
Given an encoded bitstring, returned by binary_vrl_encode()
, gives back the decoded string of 1s and 0s.
bwt_sort
my $indices = bwt_sort($string);
my $indices = bwt_sort($string, $lookahead_len);
Low-level function that sorts the rotations of a given string using the Burrows-Wheeler Transform (BWT) algorithm.
It takes two parameters: $string
, which is the input string to be transformed, and $LOOKAHEAD_LEN
(optional), representing the length of look-ahead during sorting.
The function returns an array-ref of indices.
There is probably no need to call this function explicitly. Use bwt_encode()
instead!
bwt_sort_symbolic
my $indices = bwt_sort_symbolic(\@symbols);
Low-level function that sorts the rotations of a sequence of symbolic elements using the Burrows-Wheeler Transform (BWT) algorithm.
It takes a single parameter \@symbols
, which represents the input sequence of symbolic elements. The function returns an array of indices.
There is probably no need to call this function explicitly. Use bwt_encode_symbolic()
instead!
huffman_from_freq
my $dict = huffman_from_freq(\%freq);
my ($dict, $rev_dict) = huffman_from_freq(\%freq);
Low-level function that constructs Huffman prefix codes, based on the frequency of symbols provided in a hash table.
It takes a single parameter, \%freq
, representing the hash table where keys are symbols, and values are their corresponding frequencies.
The function returns two values: $dict
, which is the mapping of symbols to Huffman codes, and $rev_dict
, which holds the reverse mapping of Huffman codes to symbols.
The prefix codes are in canonical form, as defined in RFC 1951 (Section 3.2.2).
huffman_from_symbols
my $dict = huffman_from_symbols(\@symbols);
my ($dict, $rev_dict) = huffman_from_symbols(\@symbols);
Low-level function that constructs Huffman prefix codes, given an array-ref of symbols.
It takes a single parameter, \@symbols
, from which it computes the frequency of each symbol and generates the corresponding Huffman prefix codes.
The function returns two values: $dict
, which is the mapping of symbols to Huffman codes, and $rev_dict
, which holds the reverse mapping of Huffman codes to symbols.
The prefix codes are in canonical form, as defined in RFC 1951 (Section 3.2.2).
huffman_from_code_lengths
my $dict = huffman_from_code_lengths(\@code_lengths);
my ($dict, $rev_dict) = huffman_from_code_lengths(\@code_lengths);
Low-level function that constructs a dictionary of canonical prefix codes, given an array of code lengths, as defined in RFC 1951 (Section 3.2.2).
It takes a single parameter, \@code_lengths
, where entry $i
in the array corresponds to the code length for symbol $i
.
The function returns two values: $dict
, which is the mapping of symbols to Huffman codes, and $rev_dict
, which holds the reverse mapping of Huffman codes to symbols.
huffman_encode
my $bitstring = huffman_encode(\@symbols, $dict);
Low-level function that performs Huffman encoding on a sequence of symbols using a provided dictionary, returned by huffman_from_freq()
.
It takes two parameters: \@symbols
, representing the sequence of symbols to be encoded, and $dict
, representing the Huffman dictionary mapping symbols to their corresponding Huffman codes.
The function returns a concatenated string of 1s and 0s, representing the Huffman-encoded sequence of symbols.
huffman_decode
my $symbols = huffman_decode($bitstring, $rev_dict);
Low-level function that decodes a Huffman-encoded binary string into a sequence of symbols using a provided reverse dictionary.
It takes two parameters: $bitstring
, representing the Huffman-encoded string of 1s and 0s, as returned by huffman_encode()
, and $rev_dict
, representing the reverse dictionary mapping Huffman codes to their corresponding symbols.
The function returns the decoded sequence of symbols as an array-ref.
lz77_encode / lz77_encode_symbolic
my ($literals, $distances, $lengths, $matches) = lz77_encode($string);
my ($literals, $distances, $lengths, $matches) = lz77_encode(\@symbols);
Low-level function that combines LZSS with ideas from the LZ4 method.
The function returns four values:
$literals # array-ref of uncompressed symbols
$distances # array-ref of back-reference distances
$lengths # array-ref of literal lengths
$matches # array-ref of match lengths
The output can be decoded with lz77_decode()
and lz77_decode_symbolic()
, respectively.
lz77_decode / lz77_decode_symbolic
my $string = lz77_decode(\@literals, \@distances, \@lengths, \@matches);
my $symbols = lz77_decode_symbolic(\@literals, \@distances, \@lengths, \@matches);
Low-level function that performs decoding using the provided literals, distances, lengths and matches, returned by LZ77 encoding.
Inverse of lz77_encode()
and lz77_encode_symbolic()
, respectively.
lzss_encode / lzss_encode_fast / lzss_encode_symbolic / lzss_encode_fast_symbolic
# Standard version
my ($literals, $distances, $lengths) = lzss_encode($data, %params);
my ($literals, $distances, $lengths) = lzss_encode(\@symbols, %params);
# Faster version
my ($literals, $distances, $lengths) = lzss_encode_fast($data, %params);
my ($literals, $distances, $lengths) = lzss_encode_fast(\@symbols, %params);
Low-level function that applies the LZSS (Lempel-Ziv-Storer-Szymanski) algorithm on the provided data.
The accepted %params
are:
min_len => $LZ_MIN_LEN,
max_len => $LZ_MAX_LEN,
max_dist => $LZ_MAX_DIST,
max_chain_len => $LZ_MAX_CHAIN_LEN,
The function returns three values:
$literals # array-ref of uncompressed symbols
$distances # array-ref of back-reference distances
$lengths # array-ref of match lengths
The output can be decoded with lzss_decode()
and lzss_decode_symbolic()
, respectively.
lzss_decode / lzss_decode_symbolic
my $string = lzss_decode(\@literals, \@distances, \@lengths);
my $symbols = lzss_decode_symbolic(\@literals, \@distances, \@lengths);
Low-level function that decodes the LZSS encoding, using the provided literals, distances, and lengths of matched sub-strings.
Inverse of lzss_encode()
and lzss_encode_fast()
.
deflate_encode
# Returns a binary string
my $string = deflate_encode(\@literals, \@distances, \@lengths);
my $string = deflate_encode(\@literals, \@distances, \@lengths, \&create_ac_entry);
Low-level function that encodes the results returned by lzss_encode()
and lzss_encode_fast()
, using a DEFLATE-like approach, combined with Huffman coding.
deflate_decode
# Huffman decoding
my ($literals, $distances, $lengths) = deflate_decode($fh);
my ($literals, $distances, $lengths) = deflate_decode($string);
# Arithmetic decoding
my ($literals, $distances, $lengths) = deflate_decode($fh, \&decode_ac_entry);
my ($literals, $distances, $lengths) = deflate_decode($string, \&decode_ac_entry);
Inverse of deflate_encode()
.
make_deflate_tables
my ($DISTANCE_SYMBOLS, $LENGTH_SYMBOLS, $LENGTH_INDICES) = make_deflate_tables($max_dist, $max_len);
Low-level function that returns a list of tables used in encoding the relative back-reference distances and lengths returned by lzss_encode()
and lzss_encode_fast()
.
When no arguments are provided:
$max_dist = $Compression::Util::LZ_MAX_DIST
$max_len = $Compression::Util::LZ_MAX_LEN
There is no need to call this function explicitly. Use deflate_encode()
instead!
find_deflate_index
my $index = find_deflate_index($value, $DISTANCE_SYMBOLS);
Low-level function that returns the index inside the DEFLATE tables for a given value.
EXPORT
Each function can be exported individually, as:
use Compression::Util qw(bwt_compress);
By specifying the :all keyword, will export all the exportable functions:
use Compression::Util qw(:all);
Nothing is exported by default.
EXAMPLES
The functions can be combined in various ways, easily creating novel compression methods, as illustrated in the following examples.
Combining LZSS + MRL compression:
my $enc = lzss_compress($str, \&mrl_compress_symbolic);
my $dec = lzss_decompress($enc, \&mrl_decompress_symbolic);
Combining LZ77 + OBH encoding:
my $enc = lz77_compress($str, \&obh_encode);
my $dec = lz77_decompress($enc, \&obh_decode);
Combining LZSS + symbolic BWT compression:
my $enc = lzss_compress($str, \&bwt_compress_symbolic);
my $dec = lzss_decompress($enc, \&bwt_decompress_symbolic);
Combining BWT + symbolic LZSS:
my $enc = bwt_compress($str, \&lzss_compress_symbolic);
my $dec = bwt_decompress($enc, \&lzss_decompress_symbolic);
Combining LZW + Fibonacci encoding:
my $enc = lzw_compress($str, \&fibonacci_encode);
my $dec = lzw_decompress($enc, \&fibonacci_decode);
Combining BWT + symbolic LZ77 + symbolic MRL:
my $enc = bwt_compress($str, sub ($s) { lz77_compress_symbolic($s, \&mrl_compress_symbolic) });
my $dec = bwt_decompress($enc, sub ($s) { lz77_decompress_symbolic($s, \&mrl_decompress_symbolic) });
Combining LZ77 + BWT compression + Fibonacci encoding + Huffman coding + OBH encoding + MRL compression:
# Compression
my $enc = do {
my ($literals, $distances, $lengths, $matches) = lz77_encode($str);
bwt_compress(symbols2string($literals))
. fibonacci_encode($lengths)
. create_huffman_entry($matches)
. obh_encode($distances, \&mrl_compress_symbolic);
};
# Decompression
my $dec = do {
open my $fh, '<:raw', \$enc;
my $literals = string2symbols(bwt_decompress($fh));
my $lengths = fibonacci_decode($fh);
my $matches = decode_huffman_entry($fh);
my $distances = obh_decode($fh, \&mrl_decompress_symbolic);
lz77_decode($literals, $distances, $lengths, $matches);
};
REFERENCES
DEFLATE Compressed Data Format Specification https://datatracker.ietf.org/doc/html/rfc1951
GZIP file format specification https://datatracker.ietf.org/doc/html/rfc1952
BZIP2 Format Specification, by Joe Tsai: https://github.com/dsnet/compress/blob/master/doc/bzip2-format.pdf
LZ4 Frame format https://github.com/lz4/lz4/blob/dev/doc/lz4_Frame_format.md
LZ4 Block format https://github.com/lz4/lz4/blob/dev/doc/lz4_Block_format.md
Data Compression (Summer 2023) - Lecture 4 - The Unix 'compress' Program: https://youtube.com/watch?v=1cJL9Va80Pk
Data Compression (Summer 2023) - Lecture 5 - Basic Techniques: https://youtube.com/watch?v=TdFWb8mL5Gk
Data Compression (Summer 2023) - Lecture 11 - DEFLATE (gzip): https://youtube.com/watch?v=SJPvNi4HrWQ
Data Compression (Summer 2023) - Lecture 12 - The Burrows-Wheeler Transform (BWT): https://youtube.com/watch?v=rQ7wwh4HRZM
Data Compression (Summer 2023) - Lecture 13 - BZip2: https://youtube.com/watch?v=cvoZbBZ3M2A
Data Compression (Summer 2023) - Lecture 15 - Infinite Precision in Finite Bits: https://youtube.com/watch?v=EqKbT3QdtOI
Information Retrieval WS 17/18, Lecture 4: Compression, Codes, Entropy: https://youtube.com/watch?v=A_F94FV21Ek
COMP526 7-5 SS7.4 Run length encoding: https://youtube.com/watch?v=3jKLjmV1bL8
COMP526 Unit 7-6 2020-03-24 Compression - Move-to-front transform: https://youtube.com/watch?v=Q2pinaj3i9Y
Basic arithmetic coder in C++: https://github.com/billbird/arith32
REPOSITORY
BUGS AND LIMITATIONS
Please report any bugs or feature requests to: https://github.com/trizen/Compression-Util.
AUTHOR
Daniel "Trizen" Șuteu <trizen@cpan.org>
ACKNOWLEDGEMENTS
Special thanks to professor Bill Bird for the awesome YouTube lectures on data compression.
LICENSE
This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself, either Perl version 5.38.2 or, at your option, any later version of Perl 5 you may have available.