Changes for version 0.12 - 2017-09-18
- ADDITIONS
- Added the `rat_approx(n)` function, which returns the smallest rational approximation for a given real number `n`.
- IMPROVEMENTS
- The newly added functions in Math::MPFR-3.36, Rmpfr_q_div() and Rmpfr_z_div(), are now used by Math::AnyNum.
- PERFORMANCE OPTIMIZATIONS
- Re-implemented all the methods without Class::Multimethods, which makes Math::AnyNum ~35% faster.
- Many internal simplifications and optimizations.
Modules
Arbitrary size precision for integers, rationals, floating-points and complex numbers.
Examples
- examples/agm_pi.pl
- examples/arithmetic_coding.pl
- examples/bernoulli_numbers_from_primes.pl
- examples/bernoulli_numbers_recursive.pl
- examples/bernoulli_seidel.pl
- examples/binary_arithmetic_coding.pl
- examples/binradix_arithmetic_coding.pl
- examples/computing_pi.pl
- examples/faulhaber_s_formula.pl
- examples/fibonacci.pl
- examples/fibonacci_validation.pl
- examples/halley_s_method.pl
- examples/inverse_of_factorial.pl
- examples/is_power.pl
- examples/krzysztof_reformulated_zeta_function.pl
- examples/lambert_W.pl
- examples/miller_rabin_primality_test.pl
- examples/newton_s_method.pl
- examples/pi_machin.pl
- examples/power_pairs.pl
- examples/prime_count_approx.pl
- examples/rsa_algorithm.pl
- examples/solve_pell_equation.pl
- examples/tac-compressor.pl
- examples/tribonacci.pl
- examples/zeta_2n.pl
- examples/zeta_2n_fast.pl