Changes for version 0.13 - 2017-09-26
- ADDITIONS
- acmp(x, y): absolute comparison of `x` and `y`.
- polygonal(n, k): returns the nth k-gonal number.
- polygonal_root(n, k): returns the k-gonal root of `n`.
- polygonal_root2(n, k): returns the second k-gonal root of `n`.
- ipolygonal_root(n, k): returns the integer k-gonal root of `n`.
- ipolygonal_root2(n, k): returns the second integer k-gonal root of `n`.
- is_polygonal(n, k): returns 1 when `n` is a k-gonal number.
- is_polygonal2(n, k): returns 1 when `n` is a second k-gonal number.
- faulhaber_sum(n, p): computes 1^p + 2^p + 3^p + ... + n^p, using Faulhaber's formula.
Modules
Arbitrary size precision for integers, rationals, floating-points and complex numbers.
Examples
- examples/agm_pi.pl
- examples/arithmetic_coding.pl
- examples/bernoulli_numbers_from_primes.pl
- examples/bernoulli_numbers_recursive.pl
- examples/bernoulli_seidel.pl
- examples/binary_arithmetic_coding.pl
- examples/binradix_arithmetic_coding.pl
- examples/computing_pi.pl
- examples/faulhaber_s_formula.pl
- examples/fibonacci.pl
- examples/fibonacci_validation.pl
- examples/halley_s_method.pl
- examples/inverse_of_factorial.pl
- examples/is_power.pl
- examples/krzysztof_reformulated_zeta_function.pl
- examples/lambert_W.pl
- examples/miller_rabin_primality_test.pl
- examples/newton_s_method.pl
- examples/pi_machin.pl
- examples/power_pairs.pl
- examples/prime_count_approx.pl
- examples/rsa_algorithm.pl
- examples/solve_pell_equation.pl
- examples/tac-compressor.pl
- examples/tribonacci.pl
- examples/zeta_2n.pl
- examples/zeta_2n_fast.pl