Changes for version 0.17 - 2017-11-04
- Optimized `is_div(n, k)` when `n` and `k` are integers.
- Optimized `kronecker(n, k)` when `k` is a native integer.
- Improvements in `__bernfrac__(n)`, using a more optimized sieve for prime numbers.
- Minor simplifications inside `faulhaber_sum(n)`.
Modules
Arbitrary size precision for integers, rationals, floating-points and complex numbers.
Examples
- examples/agm_pi.pl
- examples/arithmetic_coding.pl
- examples/bernoulli_numbers_from_primes.pl
- examples/bernoulli_numbers_recursive.pl
- examples/bernoulli_seidel.pl
- examples/binary_arithmetic_coding.pl
- examples/binradix_arithmetic_coding.pl
- examples/computing_pi.pl
- examples/faulhaber_s_formula.pl
- examples/fibonacci.pl
- examples/fibonacci_validation.pl
- examples/halley_s_method.pl
- examples/inverse_of_factorial.pl
- examples/is_power.pl
- examples/krzysztof_reformulated_zeta_function.pl
- examples/lambert_W.pl
- examples/miller_rabin_primality_test.pl
- examples/newton_s_method.pl
- examples/pi_machin.pl
- examples/power_pairs.pl
- examples/prime_count_approx.pl
- examples/rsa_algorithm.pl
- examples/solve_pell_equation.pl
- examples/tac-compressor.pl
- examples/tribonacci.pl
- examples/zeta_2n.pl
- examples/zeta_2n_fast.pl