Changes for version 0.35 - 2020-09-13
- ADDITIONS
- is_rough(n,k) true if all prime factors p|n are p >= k
- smooth_part(n,k) the largest k-smooth divisor of n
- rough_part(n,k) the largest k-rough divisor of n
- make_coprime(n,k) make n coprime to k by removing factors from n
- dirichlet_sum(n,...) the Dirichlet hyperbola method
- ratmod(r,m) modular rational operation, returning an integer
- IMPROVEMENTS
- Optimizations in `sum(...)` for integer arguments.
- Optimizations in `faulhaber_sum(n,k)` for k = 2 and k >= n.
- Extended `powmod(b, n, m)` to support rational bases `b`.
- Internal code simplifications.
Modules
Arbitrary size precision for integers, rationals, floating-points and complex numbers.
Examples
- examples/BPSW_primality_test.pl
- examples/PSW_primality_test.pl
- examples/agm_pi.pl
- examples/arithmetic_coding.pl
- examples/bernoulli_numbers_from_primes.pl
- examples/bernoulli_numbers_recursive.pl
- examples/bernoulli_seidel.pl
- examples/binary_arithmetic_coding.pl
- examples/binradix_arithmetic_coding.pl
- examples/computing_pi.pl
- examples/faulhaber_s_formula.pl
- examples/fibonacci.pl
- examples/fibonacci_validation.pl
- examples/halley_s_method.pl
- examples/inverse_of_factorial.pl
- examples/inverse_of_fibonacci.pl
- examples/is_power.pl
- examples/krzysztof_reformulated_zeta_function.pl
- examples/lambert_W.pl
- examples/mandelbrot_set.pl
- examples/miller_rabin_primality_test.pl
- examples/newton_s_method.pl
- examples/partial_sums_of_sigma_function.pl
- examples/pi_machin.pl
- examples/rsa_algorithm.pl
- examples/solve_pell_equation.pl
- examples/tac-compressor.pl
- examples/tribonacci.pl
- examples/zeta_2n.pl
- examples/zeta_2n_fast.pl