—#
# Complex numbers and associated mathematical functions
# -- Raphael Manfredi Since Sep 1996
# -- Jarkko Hietaniemi Since Mar 1997
# -- Daniel S. Lewart Since Sep 1997
#
package
Math::Complex;
{
use
5.006; }
use
strict;
our
$VERSION
= 1.59;
use
Config;
our
(
$Inf
,
$ExpInf
);
BEGIN {
my
%DBL_MAX
=
(
4
=>
'1.70141183460469229e+38'
,
8
=>
'1.7976931348623157e+308'
,
# AFAICT the 10, 12, and 16-byte long doubles
# all have the same maximum.
10
=>
'1.1897314953572317650857593266280070162E+4932'
,
12
=>
'1.1897314953572317650857593266280070162E+4932'
,
16
=>
'1.1897314953572317650857593266280070162E+4932'
,
);
my
$nvsize
=
$Config
{nvsize} ||
(
$Config
{uselongdouble} &&
$Config
{longdblsize}) ||
$Config
{doublesize};
die
"Math::Complex: Could not figure out nvsize\n"
unless
defined
$nvsize
;
die
"Math::Complex: Cannot not figure out max nv (nvsize = $nvsize)\n"
unless
defined
$DBL_MAX
{
$nvsize
};
my
$DBL_MAX
=
eval
$DBL_MAX
{
$nvsize
};
die
"Math::Complex: Could not figure out max nv (nvsize = $nvsize)\n"
unless
defined
$DBL_MAX
;
my
$BIGGER_THAN_THIS
= 1e30;
# Must find something bigger than this.
if
($^O eq
'unicosmk'
) {
$Inf
=
$DBL_MAX
;
}
else
{
local
$SIG
{FPE} = { };
local
$!;
# We do want an arithmetic overflow, Inf INF inf Infinity.
for
my
$t
(
'exp(99999)'
,
# Enough even with 128-bit long doubles.
'inf'
,
'Inf'
,
'INF'
,
'infinity'
,
'Infinity'
,
'INFINITY'
,
'1e99999'
,
) {
local
$^W = 0;
my
$i
=
eval
"$t+1.0"
;
if
(
defined
$i
&&
$i
>
$BIGGER_THAN_THIS
) {
$Inf
=
$i
;
last
;
}
}
$Inf
=
$DBL_MAX
unless
defined
$Inf
;
# Oh well, close enough.
die
"Math::Complex: Could not get Infinity"
unless
$Inf
>
$BIGGER_THAN_THIS
;
$ExpInf
=
exp
(99999);
}
# print "# On this machine, Inf = '$Inf'\n";
}
use
warnings;
no
warnings
'syntax'
;
# To avoid the (_) warnings.
BEGIN {
# For certain functions that we override, in 5.10 or better
# we can set a smarter prototype that will handle the lexical $_
# (also a 5.10+ feature).
if
($] >= 5.010000) {
set_prototype \
&abs
,
'_'
;
set_prototype \
&cos
,
'_'
;
set_prototype \
&exp
,
'_'
;
set_prototype \
&log
,
'_'
;
set_prototype \
&sin
,
'_'
;
set_prototype \
&sqrt
,
'_'
;
}
}
my
$i
;
my
%LOGN
;
# Regular expression for floating point numbers.
# These days we could use Scalar::Util::lln(), I guess.
my
$gre
=
qr'\s*([\+\-]?(?:(?:(?:\d+(?:_\d+)*(?:\.\d*(?:_\d+)*)?|\.\d+(?:_\d+)*)(?:[eE][\+\-]?\d+(?:_\d+)*)?))|inf)'
i;
require
Exporter;
our
@ISA
=
qw(Exporter)
;
my
@trig
=
qw(
pi
tan
csc cosec sec cot cotan
asin acos atan
acsc acosec asec acot acotan
sinh cosh tanh
csch cosech sech coth cotanh
asinh acosh atanh
acsch acosech asech acoth acotanh
)
;
our
@EXPORT
= (
qw(
i Re Im rho theta arg
sqrt log ln
log10 logn cbrt root
cplx cplxe
atan2
)
,
@trig
);
my
@pi
=
qw(pi pi2 pi4 pip2 pip4 Inf)
;
our
@EXPORT_OK
=
@pi
;
our
%EXPORT_TAGS
= (
'trig'
=> [
@trig
],
'pi'
=> [
@pi
],
);
use
overload
'='
=> \
&_copy
,
'+='
=> \
&_plus
,
'+'
=> \
&_plus
,
'-='
=> \
&_minus
,
'-'
=> \
&_minus
,
'*='
=> \
&_multiply
,
'*'
=> \
&_multiply
,
'/='
=> \
&_divide
,
'/'
=> \
&_divide
,
'**='
=> \
&_power
,
'**'
=> \
&_power
,
'=='
=> \
&_numeq
,
'<=>'
=> \
&_spaceship
,
'neg'
=> \
&_negate
,
'~'
=> \
&_conjugate
,
'abs'
=> \
&abs
,
'sqrt'
=> \
&sqrt
,
'exp'
=> \
&exp
,
'log'
=> \
&log
,
'sin'
=> \
&sin
,
'cos'
=> \
&cos
,
'atan2'
=> \
&atan2
,
'""'
=> \
&_stringify
;
#
# Package "privates"
#
my
%DISPLAY_FORMAT
= (
'style'
=>
'cartesian'
,
'polar_pretty_print'
=> 1);
my
$eps
= 1e-14;
# Epsilon
#
# Object attributes (internal):
# cartesian [real, imaginary] -- cartesian form
# polar [rho, theta] -- polar form
# c_dirty cartesian form not up-to-date
# p_dirty polar form not up-to-date
# display display format (package's global when not set)
#
# Die on bad *make() arguments.
sub
_cannot_make {
die
"@{[(caller(1))[3]]}: Cannot take $_[0] of '$_[1]'.\n"
;
}
sub
_make {
my
$arg
=
shift
;
my
(
$p
,
$q
);
if
(
$arg
=~ /^
$gre
$/) {
(
$p
,
$q
) = ($1, 0);
}
elsif
(
$arg
=~ /^(?:
$gre
)?
$gre
\s
*i
\s*$/) {
(
$p
,
$q
) = ($1 || 0, $2);
}
elsif
(
$arg
=~ /^\s*\(\s
*$gre
\s*(?:,\s
*$gre
\s*)?\)\s*$/) {
(
$p
,
$q
) = ($1, $2 || 0);
}
if
(
defined
$p
) {
$p
=~ s/^\+//;
$p
=~ s/^(-?)inf$/
"${1}9**9**9"
/e;
$q
=~ s/^\+//;
$q
=~ s/^(-?)inf$/
"${1}9**9**9"
/e;
}
return
(
$p
,
$q
);
}
sub
_emake {
my
$arg
=
shift
;
my
(
$p
,
$q
);
if
(
$arg
=~ /^\s*\[\s
*$gre
\s*(?:,\s
*$gre
\s*)?\]\s*$/) {
(
$p
,
$q
) = ($1, $2 || 0);
}
elsif
(
$arg
=~ m!^\s*\[\s
*$gre
\s*(?:,\s*([-+]?\d*\s*)?pi(?:/\s*(\d+))?\s*)?\]\s*$!) {
(
$p
,
$q
) = ($1, ($2 eq
'-'
? -1 : ($2 || 1)) * pi() / ($3 || 1));
}
elsif
(
$arg
=~ /^\s*\[\s
*$gre
\s*\]\s*$/) {
(
$p
,
$q
) = ($1, 0);
}
elsif
(
$arg
=~ /^\s
*$gre
\s*$/) {
(
$p
,
$q
) = ($1, 0);
}
if
(
defined
$p
) {
$p
=~ s/^\+//;
$q
=~ s/^\+//;
$p
=~ s/^(-?)inf$/
"${1}9**9**9"
/e;
$q
=~ s/^(-?)inf$/
"${1}9**9**9"
/e;
}
return
(
$p
,
$q
);
}
sub
_copy {
my
$self
=
shift
;
my
$clone
= {
%$self
};
if
(
$self
->{
'cartesian'
}) {
$clone
->{
'cartesian'
} = [@{
$self
->{
'cartesian'
}}];
}
if
(
$self
->{
'polar'
}) {
$clone
->{
'polar'
} = [@{
$self
->{
'polar'
}}];
}
bless
$clone
,__PACKAGE__;
return
$clone
;
}
#
# ->make
#
# Create a new complex number (cartesian form)
#
sub
make {
my
$self
=
bless
{},
shift
;
my
(
$re
,
$im
);
if
(
@_
== 0) {
(
$re
,
$im
) = (0, 0);
}
elsif
(
@_
== 1) {
return
(
ref
$self
)->emake(
$_
[0])
if
(
$_
[0] =~ /^\s*\[/);
(
$re
,
$im
) = _make(
$_
[0]);
}
elsif
(
@_
== 2) {
(
$re
,
$im
) =
@_
;
}
if
(
defined
$re
) {
_cannot_make(
"real part"
,
$re
)
unless
$re
=~ /^
$gre
$/;
}
$im
||= 0;
_cannot_make(
"imaginary part"
,
$im
)
unless
$im
=~ /^
$gre
$/;
$self
->_set_cartesian([
$re
,
$im
]);
$self
->display_format(
'cartesian'
);
return
$self
;
}
#
# ->emake
#
# Create a new complex number (exponential form)
#
sub
emake {
my
$self
=
bless
{},
shift
;
my
(
$rho
,
$theta
);
if
(
@_
== 0) {
(
$rho
,
$theta
) = (0, 0);
}
elsif
(
@_
== 1) {
return
(
ref
$self
)->make(
$_
[0])
if
(
$_
[0] =~ /^\s*\(/ ||
$_
[0] =~ /i\s*$/);
(
$rho
,
$theta
) = _emake(
$_
[0]);
}
elsif
(
@_
== 2) {
(
$rho
,
$theta
) =
@_
;
}
if
(
defined
$rho
&&
defined
$theta
) {
if
(
$rho
< 0) {
$rho
= -
$rho
;
$theta
= (
$theta
<= 0) ?
$theta
+ pi() :
$theta
- pi();
}
}
if
(
defined
$rho
) {
_cannot_make(
"rho"
,
$rho
)
unless
$rho
=~ /^
$gre
$/;
}
$theta
||= 0;
_cannot_make(
"theta"
,
$theta
)
unless
$theta
=~ /^
$gre
$/;
$self
->_set_polar([
$rho
,
$theta
]);
$self
->display_format(
'polar'
);
return
$self
;
}
sub
new {
&make
}
# For backward compatibility only.
#
# cplx
#
# Creates a complex number from a (re, im) tuple.
# This avoids the burden of writing Math::Complex->make(re, im).
#
sub
cplx {
return
__PACKAGE__->make(
@_
);
}
#
# cplxe
#
# Creates a complex number from a (rho, theta) tuple.
# This avoids the burden of writing Math::Complex->emake(rho, theta).
#
sub
cplxe {
return
__PACKAGE__->emake(
@_
);
}
#
# pi
#
# The number defined as pi = 180 degrees
#
sub
pi () { 4 * CORE::
atan2
(1, 1) }
#
# pi2
#
# The full circle
#
sub
pi2 () { 2 * pi }
#
# pi4
#
# The full circle twice.
#
sub
pi4 () { 4 * pi }
#
# pip2
#
# The quarter circle
#
sub
pip2 () { pi / 2 }
#
# pip4
#
# The eighth circle.
#
sub
pip4 () { pi / 4 }
#
# _uplog10
#
# Used in log10().
#
sub
_uplog10 () { 1 / CORE::
log
(10) }
#
# i
#
# The number defined as i*i = -1;
#
sub
i () {
return
$i
if
(
$i
);
$i
=
bless
{};
$i
->{
'cartesian'
} = [0, 1];
$i
->{
'polar'
} = [1, pip2];
$i
->{c_dirty} = 0;
$i
->{p_dirty} = 0;
return
$i
;
}
#
# _ip2
#
# Half of i.
#
sub
_ip2 () { i / 2 }
#
# Attribute access/set routines
#
sub
_cartesian {
$_
[0]->{c_dirty} ?
$_
[0]->_update_cartesian :
$_
[0]->{
'cartesian'
}}
sub
_polar {
$_
[0]->{p_dirty} ?
$_
[0]->_update_polar :
$_
[0]->{
'polar'
}}
sub
_set_cartesian {
$_
[0]->{p_dirty}++;
$_
[0]->{c_dirty} = 0;
$_
[0]->{
'cartesian'
} =
$_
[1] }
sub
_set_polar {
$_
[0]->{c_dirty}++;
$_
[0]->{p_dirty} = 0;
$_
[0]->{
'polar'
} =
$_
[1] }
#
# ->_update_cartesian
#
# Recompute and return the cartesian form, given accurate polar form.
#
sub
_update_cartesian {
my
$self
=
shift
;
my
(
$r
,
$t
) = @{
$self
->{
'polar'
}};
$self
->{c_dirty} = 0;
return
$self
->{
'cartesian'
} = [
$r
* CORE::
cos
(
$t
),
$r
* CORE::
sin
(
$t
)];
}
#
#
# ->_update_polar
#
# Recompute and return the polar form, given accurate cartesian form.
#
sub
_update_polar {
my
$self
=
shift
;
my
(
$x
,
$y
) = @{
$self
->{
'cartesian'
}};
$self
->{p_dirty} = 0;
return
$self
->{
'polar'
} = [0, 0]
if
$x
== 0 &&
$y
== 0;
return
$self
->{
'polar'
} = [CORE::
sqrt
(
$x
*$x
+
$y
*$y
),
CORE::
atan2
(
$y
,
$x
)];
}
#
# (_plus)
#
# Computes z1+z2.
#
sub
_plus {
my
(
$z1
,
$z2
,
$regular
) =
@_
;
my
(
$re1
,
$im1
) = @{
$z1
->_cartesian};
$z2
= cplx(
$z2
)
unless
ref
$z2
;
my
(
$re2
,
$im2
) =
ref
$z2
? @{
$z2
->_cartesian} : (
$z2
, 0);
unless
(
defined
$regular
) {
$z1
->_set_cartesian([
$re1
+
$re2
,
$im1
+
$im2
]);
return
$z1
;
}
return
(
ref
$z1
)->make(
$re1
+
$re2
,
$im1
+
$im2
);
}
#
# (_minus)
#
# Computes z1-z2.
#
sub
_minus {
my
(
$z1
,
$z2
,
$inverted
) =
@_
;
my
(
$re1
,
$im1
) = @{
$z1
->_cartesian};
$z2
= cplx(
$z2
)
unless
ref
$z2
;
my
(
$re2
,
$im2
) = @{
$z2
->_cartesian};
unless
(
defined
$inverted
) {
$z1
->_set_cartesian([
$re1
-
$re2
,
$im1
-
$im2
]);
return
$z1
;
}
return
$inverted
?
(
ref
$z1
)->make(
$re2
-
$re1
,
$im2
-
$im1
) :
(
ref
$z1
)->make(
$re1
-
$re2
,
$im1
-
$im2
);
}
#
# (_multiply)
#
# Computes z1*z2.
#
sub
_multiply {
my
(
$z1
,
$z2
,
$regular
) =
@_
;
if
(
$z1
->{p_dirty} == 0 and
ref
$z2
and
$z2
->{p_dirty} == 0) {
# if both polar better use polar to avoid rounding errors
my
(
$r1
,
$t1
) = @{
$z1
->_polar};
my
(
$r2
,
$t2
) = @{
$z2
->_polar};
my
$t
=
$t1
+
$t2
;
if
(
$t
> pi()) {
$t
-= pi2 }
elsif
(
$t
<= -pi()) {
$t
+= pi2 }
unless
(
defined
$regular
) {
$z1
->_set_polar([
$r1
*
$r2
,
$t
]);
return
$z1
;
}
return
(
ref
$z1
)->emake(
$r1
*
$r2
,
$t
);
}
else
{
my
(
$x1
,
$y1
) = @{
$z1
->_cartesian};
if
(
ref
$z2
) {
my
(
$x2
,
$y2
) = @{
$z2
->_cartesian};
return
(
ref
$z1
)->make(
$x1
*$x2
-
$y1
*$y2
,
$x1
*$y2
+
$y1
*$x2
);
}
else
{
return
(
ref
$z1
)->make(
$x1
*$z2
,
$y1
*$z2
);
}
}
}
#
# _divbyzero
#
# Die on division by zero.
#
sub
_divbyzero {
my
$mess
=
"$_[0]: Division by zero.\n"
;
if
(
defined
$_
[1]) {
$mess
.=
"(Because in the definition of $_[0], the divisor "
;
$mess
.=
"$_[1] "
unless
(
"$_[1]"
eq
'0'
);
$mess
.=
"is 0)\n"
;
}
my
@up
=
caller
(1);
$mess
.=
"Died at $up[1] line $up[2].\n"
;
die
$mess
;
}
#
# (_divide)
#
# Computes z1/z2.
#
sub
_divide {
my
(
$z1
,
$z2
,
$inverted
) =
@_
;
if
(
$z1
->{p_dirty} == 0 and
ref
$z2
and
$z2
->{p_dirty} == 0) {
# if both polar better use polar to avoid rounding errors
my
(
$r1
,
$t1
) = @{
$z1
->_polar};
my
(
$r2
,
$t2
) = @{
$z2
->_polar};
my
$t
;
if
(
$inverted
) {
_divbyzero
"$z2/0"
if
(
$r1
== 0);
$t
=
$t2
-
$t1
;
if
(
$t
> pi()) {
$t
-= pi2 }
elsif
(
$t
<= -pi()) {
$t
+= pi2 }
return
(
ref
$z1
)->emake(
$r2
/
$r1
,
$t
);
}
else
{
_divbyzero
"$z1/0"
if
(
$r2
== 0);
$t
=
$t1
-
$t2
;
if
(
$t
> pi()) {
$t
-= pi2 }
elsif
(
$t
<= -pi()) {
$t
+= pi2 }
return
(
ref
$z1
)->emake(
$r1
/
$r2
,
$t
);
}
}
else
{
my
(
$d
,
$x2
,
$y2
);
if
(
$inverted
) {
(
$x2
,
$y2
) = @{
$z1
->_cartesian};
$d
=
$x2
*$x2
+
$y2
*$y2
;
_divbyzero
"$z2/0"
if
$d
== 0;
return
(
ref
$z1
)->make((
$x2
*$z2
)/
$d
, -(
$y2
*$z2
)/
$d
);
}
else
{
my
(
$x1
,
$y1
) = @{
$z1
->_cartesian};
if
(
ref
$z2
) {
(
$x2
,
$y2
) = @{
$z2
->_cartesian};
$d
=
$x2
*$x2
+
$y2
*$y2
;
_divbyzero
"$z1/0"
if
$d
== 0;
my
$u
= (
$x1
*$x2
+
$y1
*$y2
)/
$d
;
my
$v
= (
$y1
*$x2
-
$x1
*$y2
)/
$d
;
return
(
ref
$z1
)->make(
$u
,
$v
);
}
else
{
_divbyzero
"$z1/0"
if
$z2
== 0;
return
(
ref
$z1
)->make(
$x1
/
$z2
,
$y1
/
$z2
);
}
}
}
}
#
# (_power)
#
# Computes z1**z2 = exp(z2 * log z1)).
#
sub
_power {
my
(
$z1
,
$z2
,
$inverted
) =
@_
;
if
(
$inverted
) {
return
1
if
$z1
== 0 ||
$z2
== 1;
return
0
if
$z2
== 0 && Re(
$z1
) > 0;
}
else
{
return
1
if
$z2
== 0 ||
$z1
== 1;
return
0
if
$z1
== 0 && Re(
$z2
) > 0;
}
my
$w
=
$inverted
?
&exp
(
$z1
*
&log
(
$z2
))
:
&exp
(
$z2
*
&log
(
$z1
));
# If both arguments cartesian, return cartesian, else polar.
return
$z1
->{c_dirty} == 0 &&
(not
ref
$z2
or
$z2
->{c_dirty} == 0) ?
cplx(@{
$w
->_cartesian}) :
$w
;
}
#
# (_spaceship)
#
# Computes z1 <=> z2.
# Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i.
#
sub
_spaceship {
my
(
$z1
,
$z2
,
$inverted
) =
@_
;
my
(
$re1
,
$im1
) =
ref
$z1
? @{
$z1
->_cartesian} : (
$z1
, 0);
my
(
$re2
,
$im2
) =
ref
$z2
? @{
$z2
->_cartesian} : (
$z2
, 0);
my
$sgn
=
$inverted
? -1 : 1;
return
$sgn
* (
$re1
<=>
$re2
)
if
$re1
!=
$re2
;
return
$sgn
* (
$im1
<=>
$im2
);
}
#
# (_numeq)
#
# Computes z1 == z2.
#
# (Required in addition to _spaceship() because of NaNs.)
sub
_numeq {
my
(
$z1
,
$z2
,
$inverted
) =
@_
;
my
(
$re1
,
$im1
) =
ref
$z1
? @{
$z1
->_cartesian} : (
$z1
, 0);
my
(
$re2
,
$im2
) =
ref
$z2
? @{
$z2
->_cartesian} : (
$z2
, 0);
return
$re1
==
$re2
&&
$im1
==
$im2
? 1 : 0;
}
#
# (_negate)
#
# Computes -z.
#
sub
_negate {
my
(
$z
) =
@_
;
if
(
$z
->{c_dirty}) {
my
(
$r
,
$t
) = @{
$z
->_polar};
$t
= (
$t
<= 0) ?
$t
+ pi :
$t
- pi;
return
(
ref
$z
)->emake(
$r
,
$t
);
}
my
(
$re
,
$im
) = @{
$z
->_cartesian};
return
(
ref
$z
)->make(-
$re
, -
$im
);
}
#
# (_conjugate)
#
# Compute complex's _conjugate.
#
sub
_conjugate {
my
(
$z
) =
@_
;
if
(
$z
->{c_dirty}) {
my
(
$r
,
$t
) = @{
$z
->_polar};
return
(
ref
$z
)->emake(
$r
, -
$t
);
}
my
(
$re
,
$im
) = @{
$z
->_cartesian};
return
(
ref
$z
)->make(
$re
, -
$im
);
}
#
# (abs)
#
# Compute or set complex's norm (rho).
#
sub
abs
{
my
(
$z
,
$rho
) =
@_
?
@_
:
$_
;
unless
(
ref
$z
) {
if
(
@_
== 2) {
$_
[0] =
$_
[1];
}
else
{
return
CORE::
abs
(
$z
);
}
}
if
(
defined
$rho
) {
$z
->{
'polar'
} = [
$rho
, ${
$z
->_polar}[1] ];
$z
->{p_dirty} = 0;
$z
->{c_dirty} = 1;
return
$rho
;
}
else
{
return
${
$z
->_polar}[0];
}
}
sub
_theta {
my
$theta
=
$_
[0];
if
(
$$theta
> pi()) {
$$theta
-= pi2 }
elsif
(
$$theta
<= -pi()) {
$$theta
+= pi2 }
}
#
# arg
#
# Compute or set complex's argument (theta).
#
sub
arg {
my
(
$z
,
$theta
) =
@_
;
return
$z
unless
ref
$z
;
if
(
defined
$theta
) {
_theta(\
$theta
);
$z
->{
'polar'
} = [ ${
$z
->_polar}[0],
$theta
];
$z
->{p_dirty} = 0;
$z
->{c_dirty} = 1;
}
else
{
$theta
= ${
$z
->_polar}[1];
_theta(\
$theta
);
}
return
$theta
;
}
#
# (sqrt)
#
# Compute sqrt(z).
#
# It is quite tempting to use wantarray here so that in list context
# sqrt() would return the two solutions. This, however, would
# break things like
#
# print "sqrt(z) = ", sqrt($z), "\n";
#
# The two values would be printed side by side without no intervening
# whitespace, quite confusing.
# Therefore if you want the two solutions use the root().
#
sub
sqrt
{
my
(
$z
) =
@_
?
$_
[0] :
$_
;
my
(
$re
,
$im
) =
ref
$z
? @{
$z
->_cartesian} : (
$z
, 0);
return
$re
< 0 ? cplx(0, CORE::
sqrt
(-
$re
)) : CORE::
sqrt
(
$re
)
if
$im
== 0;
my
(
$r
,
$t
) = @{
$z
->_polar};
return
(
ref
$z
)->emake(CORE::
sqrt
(
$r
),
$t
/2);
}
#
# cbrt
#
# Compute cbrt(z) (cubic root).
#
# Why are we not returning three values? The same answer as for sqrt().
#
sub
cbrt {
my
(
$z
) =
@_
;
return
$z
< 0 ?
-CORE::
exp
(CORE::
log
(-
$z
)/3) :
(
$z
> 0 ? CORE::
exp
(CORE::
log
(
$z
)/3): 0)
unless
ref
$z
;
my
(
$r
,
$t
) = @{
$z
->_polar};
return
0
if
$r
== 0;
return
(
ref
$z
)->emake(CORE::
exp
(CORE::
log
(
$r
)/3),
$t
/3);
}
#
# _rootbad
#
# Die on bad root.
#
sub
_rootbad {
my
$mess
=
"Root '$_[0]' illegal, root rank must be positive integer.\n"
;
my
@up
=
caller
(1);
$mess
.=
"Died at $up[1] line $up[2].\n"
;
die
$mess
;
}
#
# root
#
# Computes all nth root for z, returning an array whose size is n.
# `n' must be a positive integer.
#
# The roots are given by (for k = 0..n-1):
#
# z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n))
#
sub
root {
my
(
$z
,
$n
,
$k
) =
@_
;
_rootbad(
$n
)
if
(
$n
< 1 or
int
(
$n
) !=
$n
);
my
(
$r
,
$t
) =
ref
$z
?
@{
$z
->_polar} : (CORE::
abs
(
$z
),
$z
>= 0 ? 0 : pi);
my
$theta_inc
= pi2 /
$n
;
my
$rho
=
$r
** (1/
$n
);
my
$cartesian
=
ref
$z
&&
$z
->{c_dirty} == 0;
if
(
@_
== 2) {
my
@root
;
for
(
my
$i
= 0,
my
$theta
=
$t
/
$n
;
$i
<
$n
;
$i
++,
$theta
+=
$theta_inc
) {
my
$w
= cplxe(
$rho
,
$theta
);
# Yes, $cartesian is loop invariant.
push
@root
,
$cartesian
? cplx(@{
$w
->_cartesian}) :
$w
;
}
return
@root
;
}
elsif
(
@_
== 3) {
my
$w
= cplxe(
$rho
,
$t
/
$n
+
$k
*
$theta_inc
);
return
$cartesian
? cplx(@{
$w
->_cartesian}) :
$w
;
}
}
#
# Re
#
# Return or set Re(z).
#
sub
Re {
my
(
$z
,
$Re
) =
@_
;
return
$z
unless
ref
$z
;
if
(
defined
$Re
) {
$z
->{
'cartesian'
} = [
$Re
, ${
$z
->_cartesian}[1] ];
$z
->{c_dirty} = 0;
$z
->{p_dirty} = 1;
}
else
{
return
${
$z
->_cartesian}[0];
}
}
#
# Im
#
# Return or set Im(z).
#
sub
Im {
my
(
$z
,
$Im
) =
@_
;
return
0
unless
ref
$z
;
if
(
defined
$Im
) {
$z
->{
'cartesian'
} = [ ${
$z
->_cartesian}[0],
$Im
];
$z
->{c_dirty} = 0;
$z
->{p_dirty} = 1;
}
else
{
return
${
$z
->_cartesian}[1];
}
}
#
# rho
#
# Return or set rho(w).
#
sub
rho {
Math::Complex::
abs
(
@_
);
}
#
# theta
#
# Return or set theta(w).
#
sub
theta {
Math::Complex::arg(
@_
);
}
#
# (exp)
#
# Computes exp(z).
#
sub
exp
{
my
(
$z
) =
@_
?
@_
:
$_
;
return
CORE::
exp
(
$z
)
unless
ref
$z
;
my
(
$x
,
$y
) = @{
$z
->_cartesian};
return
(
ref
$z
)->emake(CORE::
exp
(
$x
),
$y
);
}
#
# _logofzero
#
# Die on logarithm of zero.
#
sub
_logofzero {
my
$mess
=
"$_[0]: Logarithm of zero.\n"
;
if
(
defined
$_
[1]) {
$mess
.=
"(Because in the definition of $_[0], the argument "
;
$mess
.=
"$_[1] "
unless
(
$_
[1] eq
'0'
);
$mess
.=
"is 0)\n"
;
}
my
@up
=
caller
(1);
$mess
.=
"Died at $up[1] line $up[2].\n"
;
die
$mess
;
}
#
# (log)
#
# Compute log(z).
#
sub
log
{
my
(
$z
) =
@_
?
@_
:
$_
;
unless
(
ref
$z
) {
_logofzero(
"log"
)
if
$z
== 0;
return
$z
> 0 ? CORE::
log
(
$z
) : cplx(CORE::
log
(-
$z
), pi);
}
my
(
$r
,
$t
) = @{
$z
->_polar};
_logofzero(
"log"
)
if
$r
== 0;
if
(
$t
> pi()) {
$t
-= pi2 }
elsif
(
$t
<= -pi()) {
$t
+= pi2 }
return
(
ref
$z
)->make(CORE::
log
(
$r
),
$t
);
}
#
# ln
#
# Alias for log().
#
sub
ln { Math::Complex::
log
(
@_
) }
#
# log10
#
# Compute log10(z).
#
sub
log10 {
return
Math::Complex::
log
(
$_
[0]) * _uplog10;
}
#
# logn
#
# Compute logn(z,n) = log(z) / log(n)
#
sub
logn {
my
(
$z
,
$n
) =
@_
;
$z
= cplx(
$z
, 0)
unless
ref
$z
;
my
$logn
=
$LOGN
{
$n
};
$logn
=
$LOGN
{
$n
} = CORE::
log
(
$n
)
unless
defined
$logn
;
# Cache log(n)
return
&log
(
$z
) /
$logn
;
}
#
# (cos)
#
# Compute cos(z) = (exp(iz) + exp(-iz))/2.
#
sub
cos
{
my
(
$z
) =
@_
?
@_
:
$_
;
return
CORE::
cos
(
$z
)
unless
ref
$z
;
my
(
$x
,
$y
) = @{
$z
->_cartesian};
my
$ey
= CORE::
exp
(
$y
);
my
$sx
= CORE::
sin
(
$x
);
my
$cx
= CORE::
cos
(
$x
);
my
$ey_1
=
$ey
? 1 /
$ey
: Inf();
return
(
ref
$z
)->make(
$cx
* (
$ey
+
$ey_1
)/2,
$sx
* (
$ey_1
-
$ey
)/2);
}
#
# (sin)
#
# Compute sin(z) = (exp(iz) - exp(-iz))/2.
#
sub
sin
{
my
(
$z
) =
@_
?
@_
:
$_
;
return
CORE::
sin
(
$z
)
unless
ref
$z
;
my
(
$x
,
$y
) = @{
$z
->_cartesian};
my
$ey
= CORE::
exp
(
$y
);
my
$sx
= CORE::
sin
(
$x
);
my
$cx
= CORE::
cos
(
$x
);
my
$ey_1
=
$ey
? 1 /
$ey
: Inf();
return
(
ref
$z
)->make(
$sx
* (
$ey
+
$ey_1
)/2,
$cx
* (
$ey
-
$ey_1
)/2);
}
#
# tan
#
# Compute tan(z) = sin(z) / cos(z).
#
sub
tan {
my
(
$z
) =
@_
;
my
$cz
=
&cos
(
$z
);
_divbyzero
"tan($z)"
,
"cos($z)"
if
$cz
== 0;
return
&sin
(
$z
) /
$cz
;
}
#
# sec
#
# Computes the secant sec(z) = 1 / cos(z).
#
sub
sec {
my
(
$z
) =
@_
;
my
$cz
=
&cos
(
$z
);
_divbyzero
"sec($z)"
,
"cos($z)"
if
(
$cz
== 0);
return
1 /
$cz
;
}
#
# csc
#
# Computes the cosecant csc(z) = 1 / sin(z).
#
sub
csc {
my
(
$z
) =
@_
;
my
$sz
=
&sin
(
$z
);
_divbyzero
"csc($z)"
,
"sin($z)"
if
(
$sz
== 0);
return
1 /
$sz
;
}
#
# cosec
#
# Alias for csc().
#
sub
cosec { Math::Complex::csc(
@_
) }
#
# cot
#
# Computes cot(z) = cos(z) / sin(z).
#
sub
cot {
my
(
$z
) =
@_
;
my
$sz
=
&sin
(
$z
);
_divbyzero
"cot($z)"
,
"sin($z)"
if
(
$sz
== 0);
return
&cos
(
$z
) /
$sz
;
}
#
# cotan
#
# Alias for cot().
#
sub
cotan { Math::Complex::cot(
@_
) }
#
# acos
#
# Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)).
#
sub
acos {
my
$z
=
$_
[0];
return
CORE::
atan2
(CORE::
sqrt
(1-
$z
*$z
),
$z
)
if
(!
ref
$z
) && CORE::
abs
(
$z
) <= 1;
$z
= cplx(
$z
, 0)
unless
ref
$z
;
my
(
$x
,
$y
) = @{
$z
->_cartesian};
return
0
if
$x
== 1 &&
$y
== 0;
my
$t1
= CORE::
sqrt
((
$x
+1)*(
$x
+1) +
$y
*$y
);
my
$t2
= CORE::
sqrt
((
$x
-1)*(
$x
-1) +
$y
*$y
);
my
$alpha
= (
$t1
+
$t2
)/2;
my
$beta
= (
$t1
-
$t2
)/2;
$alpha
= 1
if
$alpha
< 1;
if
(
$beta
> 1) {
$beta
= 1 }
elsif
(
$beta
< -1) {
$beta
= -1 }
my
$u
= CORE::
atan2
(CORE::
sqrt
(1-
$beta
*$beta
),
$beta
);
my
$v
= CORE::
log
(
$alpha
+ CORE::
sqrt
(
$alpha
*$alpha
-1));
$v
= -
$v
if
$y
> 0 || (
$y
== 0 &&
$x
< -1);
return
(
ref
$z
)->make(
$u
,
$v
);
}
#
# asin
#
# Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)).
#
sub
asin {
my
$z
=
$_
[0];
return
CORE::
atan2
(
$z
, CORE::
sqrt
(1-
$z
*$z
))
if
(!
ref
$z
) && CORE::
abs
(
$z
) <= 1;
$z
= cplx(
$z
, 0)
unless
ref
$z
;
my
(
$x
,
$y
) = @{
$z
->_cartesian};
return
0
if
$x
== 0 &&
$y
== 0;
my
$t1
= CORE::
sqrt
((
$x
+1)*(
$x
+1) +
$y
*$y
);
my
$t2
= CORE::
sqrt
((
$x
-1)*(
$x
-1) +
$y
*$y
);
my
$alpha
= (
$t1
+
$t2
)/2;
my
$beta
= (
$t1
-
$t2
)/2;
$alpha
= 1
if
$alpha
< 1;
if
(
$beta
> 1) {
$beta
= 1 }
elsif
(
$beta
< -1) {
$beta
= -1 }
my
$u
= CORE::
atan2
(
$beta
, CORE::
sqrt
(1-
$beta
*$beta
));
my
$v
= -CORE::
log
(
$alpha
+ CORE::
sqrt
(
$alpha
*$alpha
-1));
$v
= -
$v
if
$y
> 0 || (
$y
== 0 &&
$x
< -1);
return
(
ref
$z
)->make(
$u
,
$v
);
}
#
# atan
#
# Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)).
#
sub
atan {
my
(
$z
) =
@_
;
return
CORE::
atan2
(
$z
, 1)
unless
ref
$z
;
my
(
$x
,
$y
) =
ref
$z
? @{
$z
->_cartesian} : (
$z
, 0);
return
0
if
$x
== 0 &&
$y
== 0;
_divbyzero
"atan(i)"
if
(
$z
== i);
_logofzero
"atan(-i)"
if
(-
$z
== i);
# -i is a bad file test...
my
$log
=
&log
((i +
$z
) / (i -
$z
));
return
_ip2 *
$log
;
}
#
# asec
#
# Computes the arc secant asec(z) = acos(1 / z).
#
sub
asec {
my
(
$z
) =
@_
;
_divbyzero
"asec($z)"
,
$z
if
(
$z
== 0);
return
acos(1 /
$z
);
}
#
# acsc
#
# Computes the arc cosecant acsc(z) = asin(1 / z).
#
sub
acsc {
my
(
$z
) =
@_
;
_divbyzero
"acsc($z)"
,
$z
if
(
$z
== 0);
return
asin(1 /
$z
);
}
#
# acosec
#
# Alias for acsc().
#
sub
acosec { Math::Complex::acsc(
@_
) }
#
# acot
#
# Computes the arc cotangent acot(z) = atan(1 / z)
#
sub
acot {
my
(
$z
) =
@_
;
_divbyzero
"acot(0)"
if
$z
== 0;
return
(
$z
>= 0) ? CORE::
atan2
(1,
$z
) : CORE::
atan2
(-1, -
$z
)
unless
ref
$z
;
_divbyzero
"acot(i)"
if
(
$z
- i == 0);
_logofzero
"acot(-i)"
if
(
$z
+ i == 0);
return
atan(1 /
$z
);
}
#
# acotan
#
# Alias for acot().
#
sub
acotan { Math::Complex::acot(
@_
) }
#
# cosh
#
# Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2.
#
sub
cosh {
my
(
$z
) =
@_
;
my
$ex
;
unless
(
ref
$z
) {
$ex
= CORE::
exp
(
$z
);
return
$ex
? (
$ex
==
$ExpInf
? Inf() : (
$ex
+ 1/
$ex
)/2) : Inf();
}
my
(
$x
,
$y
) = @{
$z
->_cartesian};
$ex
= CORE::
exp
(
$x
);
my
$ex_1
=
$ex
? 1 /
$ex
: Inf();
return
(
ref
$z
)->make(CORE::
cos
(
$y
) * (
$ex
+
$ex_1
)/2,
CORE::
sin
(
$y
) * (
$ex
-
$ex_1
)/2);
}
#
# sinh
#
# Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2.
#
sub
sinh {
my
(
$z
) =
@_
;
my
$ex
;
unless
(
ref
$z
) {
return
0
if
$z
== 0;
$ex
= CORE::
exp
(
$z
);
return
$ex
? (
$ex
==
$ExpInf
? Inf() : (
$ex
- 1/
$ex
)/2) : -Inf();
}
my
(
$x
,
$y
) = @{
$z
->_cartesian};
my
$cy
= CORE::
cos
(
$y
);
my
$sy
= CORE::
sin
(
$y
);
$ex
= CORE::
exp
(
$x
);
my
$ex_1
=
$ex
? 1 /
$ex
: Inf();
return
(
ref
$z
)->make(CORE::
cos
(
$y
) * (
$ex
-
$ex_1
)/2,
CORE::
sin
(
$y
) * (
$ex
+
$ex_1
)/2);
}
#
# tanh
#
# Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z).
#
sub
tanh {
my
(
$z
) =
@_
;
my
$cz
= cosh(
$z
);
_divbyzero
"tanh($z)"
,
"cosh($z)"
if
(
$cz
== 0);
my
$sz
= sinh(
$z
);
return
1
if
$cz
==
$sz
;
return
-1
if
$cz
== -
$sz
;
return
$sz
/
$cz
;
}
#
# sech
#
# Computes the hyperbolic secant sech(z) = 1 / cosh(z).
#
sub
sech {
my
(
$z
) =
@_
;
my
$cz
= cosh(
$z
);
_divbyzero
"sech($z)"
,
"cosh($z)"
if
(
$cz
== 0);
return
1 /
$cz
;
}
#
# csch
#
# Computes the hyperbolic cosecant csch(z) = 1 / sinh(z).
#
sub
csch {
my
(
$z
) =
@_
;
my
$sz
= sinh(
$z
);
_divbyzero
"csch($z)"
,
"sinh($z)"
if
(
$sz
== 0);
return
1 /
$sz
;
}
#
# cosech
#
# Alias for csch().
#
sub
cosech { Math::Complex::csch(
@_
) }
#
# coth
#
# Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z).
#
sub
coth {
my
(
$z
) =
@_
;
my
$sz
= sinh(
$z
);
_divbyzero
"coth($z)"
,
"sinh($z)"
if
$sz
== 0;
my
$cz
= cosh(
$z
);
return
1
if
$cz
==
$sz
;
return
-1
if
$cz
== -
$sz
;
return
$cz
/
$sz
;
}
#
# cotanh
#
# Alias for coth().
#
sub
cotanh { Math::Complex::coth(
@_
) }
#
# acosh
#
# Computes the area/inverse hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)).
#
sub
acosh {
my
(
$z
) =
@_
;
unless
(
ref
$z
) {
$z
= cplx(
$z
, 0);
}
my
(
$re
,
$im
) = @{
$z
->_cartesian};
if
(
$im
== 0) {
return
CORE::
log
(
$re
+ CORE::
sqrt
(
$re
*$re
- 1))
if
$re
>= 1;
return
cplx(0, CORE::
atan2
(CORE::
sqrt
(1 -
$re
*$re
),
$re
))
if
CORE::
abs
(
$re
) < 1;
}
my
$t
=
&sqrt
(
$z
*
$z
- 1) +
$z
;
# Try Taylor if looking bad (this usually means that
# $z was large negative, therefore the sqrt is really
# close to abs(z), summing that with z...)
$t
= 1/(2 *
$z
) - 1/(8 *
$z
**3) + 1/(16 *
$z
**5) - 5/(128 *
$z
**7)
if
$t
== 0;
my
$u
=
&log
(
$t
);
$u
->Im(-
$u
->Im)
if
$re
< 0 &&
$im
== 0;
return
$re
< 0 ? -
$u
:
$u
;
}
#
# asinh
#
# Computes the area/inverse hyperbolic sine asinh(z) = log(z + sqrt(z*z+1))
#
sub
asinh {
my
(
$z
) =
@_
;
unless
(
ref
$z
) {
my
$t
=
$z
+ CORE::
sqrt
(
$z
*$z
+ 1);
return
CORE::
log
(
$t
)
if
$t
;
}
my
$t
=
&sqrt
(
$z
*
$z
+ 1) +
$z
;
# Try Taylor if looking bad (this usually means that
# $z was large negative, therefore the sqrt is really
# close to abs(z), summing that with z...)
$t
= 1/(2 *
$z
) - 1/(8 *
$z
**3) + 1/(16 *
$z
**5) - 5/(128 *
$z
**7)
if
$t
== 0;
return
&log
(
$t
);
}
#
# atanh
#
# Computes the area/inverse hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)).
#
sub
atanh {
my
(
$z
) =
@_
;
unless
(
ref
$z
) {
return
CORE::
log
((1 +
$z
)/(1 -
$z
))/2
if
CORE::
abs
(
$z
) < 1;
$z
= cplx(
$z
, 0);
}
_divbyzero
'atanh(1)'
,
"1 - $z"
if
(1 -
$z
== 0);
_logofzero
'atanh(-1)'
if
(1 +
$z
== 0);
return
0.5 *
&log
((1 +
$z
) / (1 -
$z
));
}
#
# asech
#
# Computes the area/inverse hyperbolic secant asech(z) = acosh(1 / z).
#
sub
asech {
my
(
$z
) =
@_
;
_divbyzero
'asech(0)'
,
"$z"
if
(
$z
== 0);
return
acosh(1 /
$z
);
}
#
# acsch
#
# Computes the area/inverse hyperbolic cosecant acsch(z) = asinh(1 / z).
#
sub
acsch {
my
(
$z
) =
@_
;
_divbyzero
'acsch(0)'
,
$z
if
(
$z
== 0);
return
asinh(1 /
$z
);
}
#
# acosech
#
# Alias for acosh().
#
sub
acosech { Math::Complex::acsch(
@_
) }
#
# acoth
#
# Computes the area/inverse hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)).
#
sub
acoth {
my
(
$z
) =
@_
;
_divbyzero
'acoth(0)'
if
(
$z
== 0);
unless
(
ref
$z
) {
return
CORE::
log
((
$z
+ 1)/(
$z
- 1))/2
if
CORE::
abs
(
$z
) > 1;
$z
= cplx(
$z
, 0);
}
_divbyzero
'acoth(1)'
,
"$z - 1"
if
(
$z
- 1 == 0);
_logofzero
'acoth(-1)'
,
"1 + $z"
if
(1 +
$z
== 0);
return
&log
((1 +
$z
) / (
$z
- 1)) / 2;
}
#
# acotanh
#
# Alias for acot().
#
sub
acotanh { Math::Complex::acoth(
@_
) }
#
# (atan2)
#
# Compute atan(z1/z2), minding the right quadrant.
#
sub
atan2
{
my
(
$z1
,
$z2
,
$inverted
) =
@_
;
my
(
$re1
,
$im1
,
$re2
,
$im2
);
if
(
$inverted
) {
(
$re1
,
$im1
) =
ref
$z2
? @{
$z2
->_cartesian} : (
$z2
, 0);
(
$re2
,
$im2
) =
ref
$z1
? @{
$z1
->_cartesian} : (
$z1
, 0);
}
else
{
(
$re1
,
$im1
) =
ref
$z1
? @{
$z1
->_cartesian} : (
$z1
, 0);
(
$re2
,
$im2
) =
ref
$z2
? @{
$z2
->_cartesian} : (
$z2
, 0);
}
if
(
$im1
||
$im2
) {
# In MATLAB the imaginary parts are ignored.
# warn "atan2: Imaginary parts ignored";
# NOTE: Mathematica ArcTan[x,y] while atan2(y,x)
my
$s
=
$z1
*
$z1
+
$z2
*
$z2
;
_divbyzero(
"atan2"
)
if
$s
== 0;
my
$i
=
&i
;
my
$r
=
$z2
+
$z1
*
$i
;
return
-
$i
*
&log
(
$r
/
&sqrt
(
$s
));
}
return
CORE::
atan2
(
$re1
,
$re2
);
}
#
# display_format
# ->display_format
#
# Set (get if no argument) the display format for all complex numbers that
# don't happen to have overridden it via ->display_format
#
# When called as an object method, this actually sets the display format for
# the current object.
#
# Valid object formats are 'c' and 'p' for cartesian and polar. The first
# letter is used actually, so the type can be fully spelled out for clarity.
#
sub
display_format {
my
$self
=
shift
;
my
%display_format
=
%DISPLAY_FORMAT
;
if
(
ref
$self
) {
# Called as an object method
if
(
exists
$self
->{display_format}) {
my
%obj
= %{
$self
->{display_format}};
@display_format
{
keys
%obj
} =
values
%obj
;
}
}
if
(
@_
== 1) {
$display_format
{style} =
shift
;
}
else
{
my
%new
=
@_
;
@display_format
{
keys
%new
} =
values
%new
;
}
if
(
ref
$self
) {
# Called as an object method
$self
->{display_format} = {
%display_format
};
return
wantarray
?
%{
$self
->{display_format}} :
$self
->{display_format}->{style};
}
# Called as a class method
%DISPLAY_FORMAT
=
%display_format
;
return
wantarray
?
%DISPLAY_FORMAT
:
$DISPLAY_FORMAT
{style};
}
#
# (_stringify)
#
# Show nicely formatted complex number under its cartesian or polar form,
# depending on the current display format:
#
# . If a specific display format has been recorded for this object, use it.
# . Otherwise, use the generic current default for all complex numbers,
# which is a package global variable.
#
sub
_stringify {
my
(
$z
) =
shift
;
my
$style
=
$z
->display_format;
$style
=
$DISPLAY_FORMAT
{style}
unless
defined
$style
;
return
$z
->_stringify_polar
if
$style
=~ /^p/i;
return
$z
->_stringify_cartesian;
}
#
# ->_stringify_cartesian
#
# Stringify as a cartesian representation 'a+bi'.
#
sub
_stringify_cartesian {
my
$z
=
shift
;
my
(
$x
,
$y
) = @{
$z
->_cartesian};
my
(
$re
,
$im
);
my
%format
=
$z
->display_format;
my
$format
=
$format
{
format
};
if
(
$x
) {
if
(
$x
=~ /^NaN[QS]?$/i) {
$re
=
$x
;
}
else
{
if
(
$x
=~ /^-?\Q
$Inf
\E$/oi) {
$re
=
$x
;
}
else
{
$re
=
defined
$format
?
sprintf
(
$format
,
$x
) :
$x
;
}
}
}
else
{
undef
$re
;
}
if
(
$y
) {
if
(
$y
=~ /^(NaN[QS]?)$/i) {
$im
=
$y
;
}
else
{
if
(
$y
=~ /^-?\Q
$Inf
\E$/oi) {
$im
=
$y
;
}
else
{
$im
=
defined
$format
?
sprintf
(
$format
,
$y
) :
(
$y
== 1 ?
""
: (
$y
== -1 ?
"-"
:
$y
));
}
}
$im
.=
"i"
;
}
else
{
undef
$im
;
}
my
$str
=
$re
;
if
(
defined
$im
) {
if
(
$y
< 0) {
$str
.=
$im
;
}
elsif
(
$y
> 0 ||
$im
=~ /^NaN[QS]?i$/i) {
$str
.=
"+"
if
defined
$re
;
$str
.=
$im
;
}
}
elsif
(!
defined
$re
) {
$str
=
"0"
;
}
return
$str
;
}
#
# ->_stringify_polar
#
# Stringify as a polar representation '[r,t]'.
#
sub
_stringify_polar {
my
$z
=
shift
;
my
(
$r
,
$t
) = @{
$z
->_polar};
my
$theta
;
my
%format
=
$z
->display_format;
my
$format
=
$format
{
format
};
if
(
$t
=~ /^NaN[QS]?$/i ||
$t
=~ /^-?\Q
$Inf
\E$/oi) {
$theta
=
$t
;
}
elsif
(
$t
== pi) {
$theta
=
"pi"
;
}
elsif
(
$r
== 0 ||
$t
== 0) {
$theta
=
defined
$format
?
sprintf
(
$format
,
$t
) :
$t
;
}
return
"[$r,$theta]"
if
defined
$theta
;
#
# Try to identify pi/n and friends.
#
$t
-=
int
(CORE::
abs
(
$t
) / pi2) * pi2;
if
(
$format
{polar_pretty_print} &&
$t
) {
my
(
$a
,
$b
);
for
$a
(2..9) {
$b
=
$t
*
$a
/ pi;
if
(
$b
=~ /^-?\d+$/) {
$b
=
$b
< 0 ?
"-"
:
""
if
CORE::
abs
(
$b
) == 1;
$theta
=
"${b}pi/$a"
;
last
;
}
}
}
if
(
defined
$format
) {
$r
=
sprintf
(
$format
,
$r
);
$theta
=
sprintf
(
$format
,
$t
)
unless
defined
$theta
;
}
else
{
$theta
=
$t
unless
defined
$theta
;
}
return
"[$r,$theta]"
;
}
sub
Inf {
return
$Inf
;
}
1;
__END__
=pod
=head1 NAME
Math::Complex - complex numbers and associated mathematical functions
=head1 SYNOPSIS
use Math::Complex;
$z = Math::Complex->make(5, 6);
$t = 4 - 3*i + $z;
$j = cplxe(1, 2*pi/3);
=head1 DESCRIPTION
This package lets you create and manipulate complex numbers. By default,
I<Perl> limits itself to real numbers, but an extra C<use> statement brings
full complex support, along with a full set of mathematical functions
typically associated with and/or extended to complex numbers.
If you wonder what complex numbers are, they were invented to be able to solve
the following equation:
x*x = -1
and by definition, the solution is noted I<i> (engineers use I<j> instead since
I<i> usually denotes an intensity, but the name does not matter). The number
I<i> is a pure I<imaginary> number.
The arithmetics with pure imaginary numbers works just like you would expect
it with real numbers... you just have to remember that
i*i = -1
so you have:
5i + 7i = i * (5 + 7) = 12i
4i - 3i = i * (4 - 3) = i
4i * 2i = -8
6i / 2i = 3
1 / i = -i
Complex numbers are numbers that have both a real part and an imaginary
part, and are usually noted:
a + bi
where C<a> is the I<real> part and C<b> is the I<imaginary> part. The
arithmetic with complex numbers is straightforward. You have to
keep track of the real and the imaginary parts, but otherwise the
rules used for real numbers just apply:
(4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i
(2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i
A graphical representation of complex numbers is possible in a plane
(also called the I<complex plane>, but it's really a 2D plane).
The number
z = a + bi
is the point whose coordinates are (a, b). Actually, it would
be the vector originating from (0, 0) to (a, b). It follows that the addition
of two complex numbers is a vectorial addition.
Since there is a bijection between a point in the 2D plane and a complex
number (i.e. the mapping is unique and reciprocal), a complex number
can also be uniquely identified with polar coordinates:
[rho, theta]
where C<rho> is the distance to the origin, and C<theta> the angle between
the vector and the I<x> axis. There is a notation for this using the
exponential form, which is:
rho * exp(i * theta)
where I<i> is the famous imaginary number introduced above. Conversion
between this form and the cartesian form C<a + bi> is immediate:
a = rho * cos(theta)
b = rho * sin(theta)
which is also expressed by this formula:
z = rho * exp(i * theta) = rho * (cos theta + i * sin theta)
In other words, it's the projection of the vector onto the I<x> and I<y>
axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta>
the I<argument> of the complex number. The I<norm> of C<z> is
marked here as C<abs(z)>.
The polar notation (also known as the trigonometric representation) is
much more handy for performing multiplications and divisions of
complex numbers, whilst the cartesian notation is better suited for
additions and subtractions. Real numbers are on the I<x> axis, and
therefore I<y> or I<theta> is zero or I<pi>.
All the common operations that can be performed on a real number have
been defined to work on complex numbers as well, and are merely
I<extensions> of the operations defined on real numbers. This means
they keep their natural meaning when there is no imaginary part, provided
the number is within their definition set.
For instance, the C<sqrt> routine which computes the square root of
its argument is only defined for non-negative real numbers and yields a
non-negative real number (it is an application from B<R+> to B<R+>).
If we allow it to return a complex number, then it can be extended to
negative real numbers to become an application from B<R> to B<C> (the
set of complex numbers):
sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i
It can also be extended to be an application from B<C> to B<C>,
whilst its restriction to B<R> behaves as defined above by using
the following definition:
sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)
Indeed, a negative real number can be noted C<[x,pi]> (the modulus
I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative
number) and the above definition states that
sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i
which is exactly what we had defined for negative real numbers above.
The C<sqrt> returns only one of the solutions: if you want the both,
use the C<root> function.
All the common mathematical functions defined on real numbers that
are extended to complex numbers share that same property of working
I<as usual> when the imaginary part is zero (otherwise, it would not
be called an extension, would it?).
A I<new> operation possible on a complex number that is
the identity for real numbers is called the I<conjugate>, and is noted
with a horizontal bar above the number, or C<~z> here.
z = a + bi
~z = a - bi
Simple... Now look:
z * ~z = (a + bi) * (a - bi) = a*a + b*b
We saw that the norm of C<z> was noted C<abs(z)> and was defined as the
distance to the origin, also known as:
rho = abs(z) = sqrt(a*a + b*b)
so
z * ~z = abs(z) ** 2
If z is a pure real number (i.e. C<b == 0>), then the above yields:
a * a = abs(a) ** 2
which is true (C<abs> has the regular meaning for real number, i.e. stands
for the absolute value). This example explains why the norm of C<z> is
noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet
is the regular C<abs> we know when the complex number actually has no
imaginary part... This justifies I<a posteriori> our use of the C<abs>
notation for the norm.
=head1 OPERATIONS
Given the following notations:
z1 = a + bi = r1 * exp(i * t1)
z2 = c + di = r2 * exp(i * t2)
z = <any complex or real number>
the following (overloaded) operations are supported on complex numbers:
z1 + z2 = (a + c) + i(b + d)
z1 - z2 = (a - c) + i(b - d)
z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))
z1 / z2 = (r1 / r2) * exp(i * (t1 - t2))
z1 ** z2 = exp(z2 * log z1)
~z = a - bi
abs(z) = r1 = sqrt(a*a + b*b)
sqrt(z) = sqrt(r1) * exp(i * t/2)
exp(z) = exp(a) * exp(i * b)
log(z) = log(r1) + i*t
sin(z) = 1/2i (exp(i * z1) - exp(-i * z))
cos(z) = 1/2 (exp(i * z1) + exp(-i * z))
atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order.
The definition used for complex arguments of atan2() is
-i log((x + iy)/sqrt(x*x+y*y))
Note that atan2(0, 0) is not well-defined.
The following extra operations are supported on both real and complex
numbers:
Re(z) = a
Im(z) = b
arg(z) = t
abs(z) = r
cbrt(z) = z ** (1/3)
log10(z) = log(z) / log(10)
logn(z, n) = log(z) / log(n)
tan(z) = sin(z) / cos(z)
csc(z) = 1 / sin(z)
sec(z) = 1 / cos(z)
cot(z) = 1 / tan(z)
asin(z) = -i * log(i*z + sqrt(1-z*z))
acos(z) = -i * log(z + i*sqrt(1-z*z))
atan(z) = i/2 * log((i+z) / (i-z))
acsc(z) = asin(1 / z)
asec(z) = acos(1 / z)
acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i))
sinh(z) = 1/2 (exp(z) - exp(-z))
cosh(z) = 1/2 (exp(z) + exp(-z))
tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z))
csch(z) = 1 / sinh(z)
sech(z) = 1 / cosh(z)
coth(z) = 1 / tanh(z)
asinh(z) = log(z + sqrt(z*z+1))
acosh(z) = log(z + sqrt(z*z-1))
atanh(z) = 1/2 * log((1+z) / (1-z))
acsch(z) = asinh(1 / z)
asech(z) = acosh(1 / z)
acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1))
I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>,
I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>,
I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>,
I<acosech>, I<acotanh>, respectively. C<Re>, C<Im>, C<arg>, C<abs>,
C<rho>, and C<theta> can be used also as mutators. The C<cbrt>
returns only one of the solutions: if you want all three, use the
C<root> function.
The I<root> function is available to compute all the I<n>
roots of some complex, where I<n> is a strictly positive integer.
There are exactly I<n> such roots, returned as a list. Getting the
number mathematicians call C<j> such that:
1 + j + j*j = 0;
is a simple matter of writing:
$j = ((root(1, 3))[1];
The I<k>th root for C<z = [r,t]> is given by:
(root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)
You can return the I<k>th root directly by C<root(z, n, k)>,
indexing starting from I<zero> and ending at I<n - 1>.
The I<spaceship> numeric comparison operator, E<lt>=E<gt>, is also
defined. In order to ensure its restriction to real numbers is conform
to what you would expect, the comparison is run on the real part of
the complex number first, and imaginary parts are compared only when
the real parts match.
=head1 CREATION
To create a complex number, use either:
$z = Math::Complex->make(3, 4);
$z = cplx(3, 4);
if you know the cartesian form of the number, or
$z = 3 + 4*i;
if you like. To create a number using the polar form, use either:
$z = Math::Complex->emake(5, pi/3);
$x = cplxe(5, pi/3);
instead. The first argument is the modulus, the second is the angle
(in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a
notation for complex numbers in the polar form).
It is possible to write:
$x = cplxe(-3, pi/4);
but that will be silently converted into C<[3,-3pi/4]>, since the
modulus must be non-negative (it represents the distance to the origin
in the complex plane).
It is also possible to have a complex number as either argument of the
C<make>, C<emake>, C<cplx>, and C<cplxe>: the appropriate component of
the argument will be used.
$z1 = cplx(-2, 1);
$z2 = cplx($z1, 4);
The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
understand a single (string) argument of the forms
2-3i
-3i
[2,3]
[2,-3pi/4]
[2]
in which case the appropriate cartesian and exponential components
will be parsed from the string and used to create new complex numbers.
The imaginary component and the theta, respectively, will default to zero.
The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
understand the case of no arguments: this means plain zero or (0, 0).
=head1 DISPLAYING
When printed, a complex number is usually shown under its cartesian
style I<a+bi>, but there are legitimate cases where the polar style
I<[r,t]> is more appropriate. The process of converting the complex
number into a string that can be displayed is known as I<stringification>.
By calling the class method C<Math::Complex::display_format> and
supplying either C<"polar"> or C<"cartesian"> as an argument, you
override the default display style, which is C<"cartesian">. Not
supplying any argument returns the current settings.
This default can be overridden on a per-number basis by calling the
C<display_format> method instead. As before, not supplying any argument
returns the current display style for this number. Otherwise whatever you
specify will be the new display style for I<this> particular number.
For instance:
use Math::Complex;
Math::Complex::display_format('polar');
$j = (root(1, 3))[1];
print "j = $j\n"; # Prints "j = [1,2pi/3]"
$j->display_format('cartesian');
print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i"
The polar style attempts to emphasize arguments like I<k*pi/n>
(where I<n> is a positive integer and I<k> an integer within [-9, +9]),
this is called I<polar pretty-printing>.
For the reverse of stringifying, see the C<make> and C<emake>.
=head2 CHANGED IN PERL 5.6
The C<display_format> class method and the corresponding
C<display_format> object method can now be called using
a parameter hash instead of just a one parameter.
The old display format style, which can have values C<"cartesian"> or
C<"polar">, can be changed using the C<"style"> parameter.
$j->display_format(style => "polar");
The one parameter calling convention also still works.
$j->display_format("polar");
There are two new display parameters.
The first one is C<"format">, which is a sprintf()-style format string
to be used for both numeric parts of the complex number(s). The is
somewhat system-dependent but most often it corresponds to C<"%.15g">.
You can revert to the default by setting the C<format> to C<undef>.
# the $j from the above example
$j->display_format('format' => '%.5f');
print "j = $j\n"; # Prints "j = -0.50000+0.86603i"
$j->display_format('format' => undef);
print "j = $j\n"; # Prints "j = -0.5+0.86603i"
Notice that this affects also the return values of the
C<display_format> methods: in list context the whole parameter hash
will be returned, as opposed to only the style parameter value.
This is a potential incompatibility with earlier versions if you
have been calling the C<display_format> method in list context.
The second new display parameter is C<"polar_pretty_print">, which can
be set to true or false, the default being true. See the previous
section for what this means.
=head1 USAGE
Thanks to overloading, the handling of arithmetics with complex numbers
is simple and almost transparent.
Here are some examples:
use Math::Complex;
$j = cplxe(1, 2*pi/3); # $j ** 3 == 1
print "j = $j, j**3 = ", $j ** 3, "\n";
print "1 + j + j**2 = ", 1 + $j + $j**2, "\n";
$z = -16 + 0*i; # Force it to be a complex
print "sqrt($z) = ", sqrt($z), "\n";
$k = exp(i * 2*pi/3);
print "$j - $k = ", $j - $k, "\n";
$z->Re(3); # Re, Im, arg, abs,
$j->arg(2); # (the last two aka rho, theta)
# can be used also as mutators.
=head1 CONSTANTS
=head2 PI
The constant C<pi> and some handy multiples of it (pi2, pi4,
and pip2 (pi/2) and pip4 (pi/4)) are also available if separately
exported:
use Math::Complex ':pi';
$third_of_circle = pi2 / 3;
=head2 Inf
The floating point infinity can be exported as a subroutine Inf():
use Math::Complex qw(Inf sinh);
my $AlsoInf = Inf() + 42;
my $AnotherInf = sinh(1e42);
print "$AlsoInf is $AnotherInf\n" if $AlsoInf == $AnotherInf;
Note that the stringified form of infinity varies between platforms:
it can be for example any of
inf
infinity
INF
1.#INF
or it can be something else.
Also note that in some platforms trying to use the infinity in
arithmetic operations may result in Perl crashing because using
an infinity causes SIGFPE or its moral equivalent to be sent.
The way to ignore this is
local $SIG{FPE} = sub { };
=head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO
The division (/) and the following functions
log ln log10 logn
tan sec csc cot
atan asec acsc acot
tanh sech csch coth
atanh asech acsch acoth
cannot be computed for all arguments because that would mean dividing
by zero or taking logarithm of zero. These situations cause fatal
runtime errors looking like this
cot(0): Division by zero.
(Because in the definition of cot(0), the divisor sin(0) is 0)
Died at ...
or
atanh(-1): Logarithm of zero.
Died at...
For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the
logarithmic functions and the C<atanh>, C<acoth>, the argument cannot
be C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be
C<-1> (minus one). For the C<atan>, C<acot>, the argument cannot be
C<i> (the imaginary unit). For the C<atan>, C<acoth>, the argument
cannot be C<-i> (the negative imaginary unit). For the C<tan>,
C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k>
is any integer. atan2(0, 0) is undefined, and if the complex arguments
are used for atan2(), a division by zero will happen if z1**2+z2**2 == 0.
Note that because we are operating on approximations of real numbers,
these errors can happen when merely `too close' to the singularities
listed above.
=head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS
The C<make> and C<emake> accept both real and complex arguments.
When they cannot recognize the arguments they will die with error
messages like the following
Math::Complex::make: Cannot take real part of ...
Math::Complex::make: Cannot take real part of ...
Math::Complex::emake: Cannot take rho of ...
Math::Complex::emake: Cannot take theta of ...
=head1 BUGS
Saying C<use Math::Complex;> exports many mathematical routines in the
caller environment and even overrides some (C<sqrt>, C<log>, C<atan2>).
This is construed as a feature by the Authors, actually... ;-)
All routines expect to be given real or complex numbers. Don't attempt to
use BigFloat, since Perl has currently no rule to disambiguate a '+'
operation (for instance) between two overloaded entities.
In Cray UNICOS there is some strange numerical instability that results
in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware.
The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex.
Whatever it is, it does not manifest itself anywhere else where Perl runs.
=head1 SEE ALSO
L<Math::Trig>
=head1 AUTHORS
Daniel S. Lewart <F<lewart!at!uiuc.edu>>,
Jarkko Hietaniemi <F<jhi!at!iki.fi>>,
Raphael Manfredi <F<Raphael_Manfredi!at!pobox.com>>,
Zefram <zefram@fysh.org>
=head1 LICENSE
This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself.
=cut
1;
# eof