NAME
AI::TensorFlow::Libtensorflow::Manual::CAPI - List of functions exported by TensorFlow C API
DESCRIPTION
The following a list of functions exported by the TensorFlow C API with their associated documentation from the upstream TensorFlow project. It has been converted to POD for easy reference.
FUNCTIONS
TF_Version
TF_Version returns a string describing version information of the
TensorFlow library. TensorFlow uses semantic versioning.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern const char* TF_Version(void);
TF_TensorFromProto
Parsing a serialized TensorProto into a TF_Tensor.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_TensorFromProto(const TF_Buffer* from,
TF_Tensor* to, TF_Status* status);
TF_NewSessionOptions
Return a new options object.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_SessionOptions* TF_NewSessionOptions(void);
TF_SetTarget
Set the target in TF_SessionOptions.options.
target can be empty, a single entry, or a comma separated list of entries.
Each entry is in one of the following formats :
"local"
ip:port
host:port
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetTarget(TF_SessionOptions* options,
const char* target);
TF_SetConfig
Set the config in TF_SessionOptions.options.
config should be a serialized tensorflow.ConfigProto proto.
If config was not parsed successfully as a ConfigProto, record the
error information in *status.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetConfig(TF_SessionOptions* options,
const void* proto, size_t proto_len,
TF_Status* status);
TF_DeleteSessionOptions
Destroy an options object.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_DeleteSessionOptions(TF_SessionOptions*);
TF_NewGraph
Return a new graph object.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Graph* TF_NewGraph(void);
TF_DeleteGraph
Destroy an options object. Graph will be deleted once no more
TFSession's are referencing it.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_DeleteGraph(TF_Graph*);
TF_GraphSetTensorShape
Sets the shape of the Tensor referenced by `output` in `graph` to
the shape described by `dims` and `num_dims`.
If the number of dimensions is unknown, `num_dims` must be set to
-1 and `dims` can be null. If a dimension is unknown, the
corresponding entry in the `dims` array must be -1.
This does not overwrite the existing shape associated with `output`,
but merges the input shape with the existing shape. For example,
setting a shape of [-1, 2] with an existing shape [2, -1] would set
a final shape of [2, 2] based on shape merging semantics.
Returns an error into `status` if:
* `output` is not in `graph`.
* An invalid shape is being set (e.g., the shape being set
is incompatible with the existing shape).
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_GraphSetTensorShape(TF_Graph* graph,
TF_Output output,
const int64_t* dims,
const int num_dims,
TF_Status* status);
TF_GraphGetTensorNumDims
Returns the number of dimensions of the Tensor referenced by `output`
in `graph`.
If the number of dimensions in the shape is unknown, returns -1.
Returns an error into `status` if:
* `output` is not in `graph`.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_GraphGetTensorNumDims(TF_Graph* graph,
TF_Output output,
TF_Status* status);
TF_GraphGetTensorShape
Returns the shape of the Tensor referenced by `output` in `graph`
into `dims`. `dims` must be an array large enough to hold `num_dims`
entries (e.g., the return value of TF_GraphGetTensorNumDims).
If the number of dimensions in the shape is unknown or the shape is
a scalar, `dims` will remain untouched. Otherwise, each element of
`dims` will be set corresponding to the size of the dimension. An
unknown dimension is represented by `-1`.
Returns an error into `status` if:
* `output` is not in `graph`.
* `num_dims` does not match the actual number of dimensions.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_GraphGetTensorShape(TF_Graph* graph,
TF_Output output,
int64_t* dims, int num_dims,
TF_Status* status);
TF_NewOperationLocked
Creates a new operation - see `TF_NewOperation` for more details.
The lock for `graph` must be held when calling this function.
Unless implementing advanced behavior, like custom gradient functions, you
most likely need to call `TF_NewOperation` instead.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_OperationDescription* TF_NewOperationLocked(
TF_Graph* graph, const char* op_type, const char* oper_name);
TF_NewOperation
Operation will only be added to *graph when TF_FinishOperation() is
called (assuming TF_FinishOperation() does not return an error).
*graph must not be deleted until after TF_FinishOperation() is
called.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_OperationDescription* TF_NewOperation(
TF_Graph* graph, const char* op_type, const char* oper_name);
TF_SetDevice
Specify the device for `desc`. Defaults to empty, meaning unconstrained.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetDevice(TF_OperationDescription* desc,
const char* device);
TF_AddInput
For inputs that take a single tensor.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_AddInput(TF_OperationDescription* desc,
TF_Output input);
TF_AddInputList
For inputs that take a list of tensors.
inputs must point to TF_Output[num_inputs].
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_AddInputList(TF_OperationDescription* desc,
const TF_Output* inputs,
int num_inputs);
TF_AddControlInput
Call once per control input to `desc`.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_AddControlInput(TF_OperationDescription* desc,
TF_Operation* input);
TF_ColocateWith
Request that `desc` be co-located on the device where `op`
is placed.
Use of this is discouraged since the implementation of device placement is
subject to change. Primarily intended for internal libraries
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ColocateWith(TF_OperationDescription* desc,
TF_Operation* op);
TF_SetAttrString
`value` must point to a string of length `length` bytes.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrString(TF_OperationDescription* desc,
const char* attr_name,
const void* value, size_t length);
TF_SetAttrStringList
`values` and `lengths` each must have lengths `num_values`.
`values[i]` must point to a string of length `lengths[i]` bytes.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrStringList(TF_OperationDescription* desc,
const char* attr_name,
const void* const* values,
const size_t* lengths,
int num_values);
TF_SetAttrInt
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrInt(TF_OperationDescription* desc,
const char* attr_name, int64_t value);
TF_SetAttrIntList
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrIntList(TF_OperationDescription* desc,
const char* attr_name,
const int64_t* values,
int num_values);
TF_SetAttrFloat
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrFloat(TF_OperationDescription* desc,
const char* attr_name, float value);
TF_SetAttrFloatList
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrFloatList(TF_OperationDescription* desc,
const char* attr_name,
const float* values,
int num_values);
TF_SetAttrBool
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrBool(TF_OperationDescription* desc,
const char* attr_name,
unsigned char value);
TF_SetAttrBoolList
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrBoolList(TF_OperationDescription* desc,
const char* attr_name,
const unsigned char* values,
int num_values);
TF_SetAttrType
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrType(TF_OperationDescription* desc,
const char* attr_name,
TF_DataType value);
TF_SetAttrTypeList
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrTypeList(TF_OperationDescription* desc,
const char* attr_name,
const TF_DataType* values,
int num_values);
TF_SetAttrPlaceholder
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrPlaceholder(TF_OperationDescription* desc,
const char* attr_name,
const char* placeholder);
TF_SetAttrFuncName
Set a 'func' attribute to the specified name.
`value` must point to a string of length `length` bytes.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrFuncName(TF_OperationDescription* desc,
const char* attr_name,
const char* value, size_t length);
TF_SetAttrShape
Set `num_dims` to -1 to represent "unknown rank". Otherwise,
`dims` points to an array of length `num_dims`. `dims[i]` must be
>= -1, with -1 meaning "unknown dimension".
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrShape(TF_OperationDescription* desc,
const char* attr_name,
const int64_t* dims, int num_dims);
TF_SetAttrShapeList
`dims` and `num_dims` must point to arrays of length `num_shapes`.
Set `num_dims[i]` to -1 to represent "unknown rank". Otherwise,
`dims[i]` points to an array of length `num_dims[i]`. `dims[i][j]`
must be >= -1, with -1 meaning "unknown dimension".
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrShapeList(TF_OperationDescription* desc,
const char* attr_name,
const int64_t* const* dims,
const int* num_dims,
int num_shapes);
TF_SetAttrTensorShapeProto
`proto` must point to an array of `proto_len` bytes representing a
binary-serialized TensorShapeProto.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrTensorShapeProto(
TF_OperationDescription* desc, const char* attr_name, const void* proto,
size_t proto_len, TF_Status* status);
TF_SetAttrTensorShapeProtoList
`protos` and `proto_lens` must point to arrays of length `num_shapes`.
`protos[i]` must point to an array of `proto_lens[i]` bytes
representing a binary-serialized TensorShapeProto.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrTensorShapeProtoList(
TF_OperationDescription* desc, const char* attr_name,
const void* const* protos, const size_t* proto_lens, int num_shapes,
TF_Status* status);
TF_SetAttrTensor
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrTensor(TF_OperationDescription* desc,
const char* attr_name,
TF_Tensor* value,
TF_Status* status);
TF_SetAttrTensorList
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrTensorList(TF_OperationDescription* desc,
const char* attr_name,
TF_Tensor* const* values,
int num_values,
TF_Status* status);
TF_SetAttrValueProto
`proto` should point to a sequence of bytes of length `proto_len`
representing a binary serialization of an AttrValue protocol
buffer.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SetAttrValueProto(TF_OperationDescription* desc,
const char* attr_name,
const void* proto,
size_t proto_len,
TF_Status* status);
TF_FinishOperationLocked
Adds this operation to the graph - see `TF_FinishOperation` for more details.
The lock for `graph` must be held when calling this function.
Unless implementing advanced behavior, like custom gradient functions, you
most likely need to call `TF_FinishOperation` instead.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Operation* TF_FinishOperationLocked(
TF_OperationDescription* desc, TF_Status* status);
TF_FinishOperation
If this function succeeds:
* *status is set to an OK value,
* a TF_Operation is added to the graph,
* a non-null value pointing to the added operation is returned --
this value is valid until the underlying graph is deleted.
Otherwise:
* *status is set to a non-OK value,
* the graph is not modified,
* a null value is returned.
In either case, it deletes `desc`.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Operation* TF_FinishOperation(
TF_OperationDescription* desc, TF_Status* status);
TF_OperationName
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern const char* TF_OperationName(TF_Operation* oper);
TF_OperationOpType
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern const char* TF_OperationOpType(TF_Operation* oper);
TF_OperationDevice
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern const char* TF_OperationDevice(TF_Operation* oper);
TF_OperationNumOutputs
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_OperationNumOutputs(TF_Operation* oper);
TF_OperationOutputType
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_DataType TF_OperationOutputType(TF_Output oper_out);
TF_OperationOutputListLength
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_OperationOutputListLength(TF_Operation* oper,
const char* arg_name,
TF_Status* status);
TF_OperationNumInputs
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_OperationNumInputs(TF_Operation* oper);
TF_OperationInputType
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_DataType TF_OperationInputType(TF_Input oper_in);
TF_OperationInputListLength
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_OperationInputListLength(TF_Operation* oper,
const char* arg_name,
TF_Status* status);
TF_OperationInput
In this code:
TF_Output producer = TF_OperationInput(consumer);
There is an edge from producer.oper's output (given by
producer.index) to consumer.oper's input (given by consumer.index).
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Output TF_OperationInput(TF_Input oper_in);
TF_OperationAllInputs
Get list of all inputs of a specific operation. `inputs` must point to
an array of length at least `max_inputs` (ideally set to
TF_OperationNumInputs(oper)). Beware that a concurrent
modification of the graph can increase the number of inputs of
an operation.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationAllInputs(TF_Operation* oper,
TF_Output* inputs,
int max_inputs);
TF_OperationOutputNumConsumers
Get the number of current consumers of a specific output of an
operation. Note that this number can change when new operations
are added to the graph.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_OperationOutputNumConsumers(TF_Output oper_out);
TF_OperationOutputConsumers
Get list of all current consumers of a specific output of an
operation. `consumers` must point to an array of length at least
`max_consumers` (ideally set to
TF_OperationOutputNumConsumers(oper_out)). Beware that a concurrent
modification of the graph can increase the number of consumers of
an operation. Returns the number of output consumers (should match
TF_OperationOutputNumConsumers(oper_out)).
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_OperationOutputConsumers(TF_Output oper_out,
TF_Input* consumers,
int max_consumers);
TF_OperationNumControlInputs
Get the number of control inputs to an operation.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_OperationNumControlInputs(TF_Operation* oper);
TF_OperationGetControlInputs
Get list of all control inputs to an operation. `control_inputs` must
point to an array of length `max_control_inputs` (ideally set to
TF_OperationNumControlInputs(oper)). Returns the number of control
inputs (should match TF_OperationNumControlInputs(oper)).
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_OperationGetControlInputs(
TF_Operation* oper, TF_Operation** control_inputs, int max_control_inputs);
TF_OperationNumControlOutputs
Get the number of operations that have `*oper` as a control input.
Note that this number can change when new operations are added to
the graph.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_OperationNumControlOutputs(TF_Operation* oper);
TF_OperationGetControlOutputs
Get the list of operations that have `*oper` as a control input.
`control_outputs` must point to an array of length at least
`max_control_outputs` (ideally set to
TF_OperationNumControlOutputs(oper)). Beware that a concurrent
modification of the graph can increase the number of control
outputs. Returns the number of control outputs (should match
TF_OperationNumControlOutputs(oper)).
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_OperationGetControlOutputs(
TF_Operation* oper, TF_Operation** control_outputs,
int max_control_outputs);
TF_OperationGetAttrMetadata
Returns metadata about the value of the attribute `attr_name` of `oper`.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_AttrMetadata TF_OperationGetAttrMetadata(
TF_Operation* oper, const char* attr_name, TF_Status* status);
TF_OperationGetAttrString
Fills in `value` with the value of the attribute `attr_name`. `value` must
point to an array of length at least `max_length` (ideally set to
TF_AttrMetadata.total_size from TF_OperationGetAttrMetadata(oper,
attr_name)).
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrString(TF_Operation* oper,
const char* attr_name,
void* value,
size_t max_length,
TF_Status* status);
TF_OperationGetAttrStringList
Get the list of strings in the value of the attribute `attr_name`. Fills in
`values` and `lengths`, each of which must point to an array of length at
least `max_values`.
The elements of values will point to addresses in `storage` which must be at
least `storage_size` bytes in length. Ideally, max_values would be set to
TF_AttrMetadata.list_size and `storage` would be at least
TF_AttrMetadata.total_size, obtained from TF_OperationGetAttrMetadata(oper,
attr_name).
Fails if storage_size is too small to hold the requested number of strings.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrStringList(
TF_Operation* oper, const char* attr_name, void** values, size_t* lengths,
int max_values, void* storage, size_t storage_size, TF_Status* status);
TF_OperationGetAttrInt
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrInt(TF_Operation* oper,
const char* attr_name,
int64_t* value,
TF_Status* status);
TF_OperationGetAttrIntList
Fills in `values` with the value of the attribute `attr_name` of `oper`.
`values` must point to an array of length at least `max_values` (ideally set
TF_AttrMetadata.list_size from TF_OperationGetAttrMetadata(oper,
attr_name)).
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrIntList(TF_Operation* oper,
const char* attr_name,
int64_t* values,
int max_values,
TF_Status* status);
TF_OperationGetAttrFloat
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrFloat(TF_Operation* oper,
const char* attr_name,
float* value,
TF_Status* status);
TF_OperationGetAttrFloatList
Fills in `values` with the value of the attribute `attr_name` of `oper`.
`values` must point to an array of length at least `max_values` (ideally set
to TF_AttrMetadata.list_size from TF_OperationGetAttrMetadata(oper,
attr_name)).
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrFloatList(TF_Operation* oper,
const char* attr_name,
float* values,
int max_values,
TF_Status* status);
TF_OperationGetAttrBool
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrBool(TF_Operation* oper,
const char* attr_name,
unsigned char* value,
TF_Status* status);
TF_OperationGetAttrBoolList
Fills in `values` with the value of the attribute `attr_name` of `oper`.
`values` must point to an array of length at least `max_values` (ideally set
to TF_AttrMetadata.list_size from TF_OperationGetAttrMetadata(oper,
attr_name)).
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrBoolList(TF_Operation* oper,
const char* attr_name,
unsigned char* values,
int max_values,
TF_Status* status);
TF_OperationGetAttrType
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrType(TF_Operation* oper,
const char* attr_name,
TF_DataType* value,
TF_Status* status);
TF_OperationGetAttrTypeList
Fills in `values` with the value of the attribute `attr_name` of `oper`.
`values` must point to an array of length at least `max_values` (ideally set
to TF_AttrMetadata.list_size from TF_OperationGetAttrMetadata(oper,
attr_name)).
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrTypeList(TF_Operation* oper,
const char* attr_name,
TF_DataType* values,
int max_values,
TF_Status* status);
TF_OperationGetAttrShape
Fills in `value` with the value of the attribute `attr_name` of `oper`.
`values` must point to an array of length at least `num_dims` (ideally set to
TF_Attr_Meta.size from TF_OperationGetAttrMetadata(oper, attr_name)).
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrShape(TF_Operation* oper,
const char* attr_name,
int64_t* value,
int num_dims,
TF_Status* status);
TF_OperationGetAttrShapeList
Fills in `dims` with the list of shapes in the attribute `attr_name` of
`oper` and `num_dims` with the corresponding number of dimensions. On return,
for every i where `num_dims[i]` > 0, `dims[i]` will be an array of
`num_dims[i]` elements. A value of -1 for `num_dims[i]` indicates that the
i-th shape in the list is unknown.
The elements of `dims` will point to addresses in `storage` which must be
large enough to hold at least `storage_size` int64_ts. Ideally, `num_shapes`
would be set to TF_AttrMetadata.list_size and `storage_size` would be set to
TF_AttrMetadata.total_size from TF_OperationGetAttrMetadata(oper,
attr_name).
Fails if storage_size is insufficient to hold the requested shapes.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrShapeList(
TF_Operation* oper, const char* attr_name, int64_t** dims, int* num_dims,
int num_shapes, int64_t* storage, int storage_size, TF_Status* status);
TF_OperationGetAttrTensorShapeProto
Sets `value` to the binary-serialized TensorShapeProto of the value of
`attr_name` attribute of `oper`.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrTensorShapeProto(
TF_Operation* oper, const char* attr_name, TF_Buffer* value,
TF_Status* status);
TF_OperationGetAttrTensorShapeProtoList
Fills in `values` with binary-serialized TensorShapeProto values of the
attribute `attr_name` of `oper`. `values` must point to an array of length at
least `num_values` (ideally set to TF_AttrMetadata.list_size from
TF_OperationGetAttrMetadata(oper, attr_name)).
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrTensorShapeProtoList(
TF_Operation* oper, const char* attr_name, TF_Buffer** values,
int max_values, TF_Status* status);
TF_OperationGetAttrTensor
Gets the TF_Tensor valued attribute of `attr_name` of `oper`.
Allocates a new TF_Tensor which the caller is expected to take
ownership of (and can deallocate using TF_DeleteTensor).
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrTensor(TF_Operation* oper,
const char* attr_name,
TF_Tensor** value,
TF_Status* status);
TF_OperationGetAttrTensorList
Fills in `values` with the TF_Tensor values of the attribute `attr_name` of
`oper`. `values` must point to an array of TF_Tensor* of length at least
`max_values` (ideally set to TF_AttrMetadata.list_size from
TF_OperationGetAttrMetadata(oper, attr_name)).
The caller takes ownership of all the non-null TF_Tensor* entries in `values`
(which can be deleted using TF_DeleteTensor(values[i])).
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrTensorList(TF_Operation* oper,
const char* attr_name,
TF_Tensor** values,
int max_values,
TF_Status* status);
TF_OperationGetAttrValueProto
Sets `output_attr_value` to the binary-serialized AttrValue proto
representation of the value of the `attr_name` attr of `oper`.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrValueProto(
TF_Operation* oper, const char* attr_name, TF_Buffer* output_attr_value,
TF_Status* status);
TF_OperationGetNumAttrs
Get the number of attributes the operation has.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_OperationGetNumAttrs(TF_Operation* oper);
TF_OperationGetAttrNameLength
Get the length of the name of the ith attribute, or -1 if there is not an
ith attribute.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_OperationGetAttrNameLength(TF_Operation* oper,
int i);
TF_OperationGetAttrName
Get the name of the ith attribute. output should have the size of
TF_OperationGetAttrNameLength(oper, i).
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationGetAttrName(TF_Operation* oper, int i,
char* output,
TF_Status* status);
TF_GraphOperationByName
Returns the operation in the graph with `oper_name`. Returns nullptr if
no operation found.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Operation* TF_GraphOperationByName(
TF_Graph* graph, const char* oper_name);
TF_GraphNextOperation
Iterate through the operations of a graph. To use:
size_t pos = 0;
TF_Operation* oper;
while ((oper = TF_GraphNextOperation(graph, &pos)) != nullptr) {
DoSomethingWithOperation(oper);
}
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Operation* TF_GraphNextOperation(TF_Graph* graph,
size_t* pos);
TF_GraphToGraphDef
Write out a serialized representation of `graph` (as a GraphDef protocol
message) to `output_graph_def` (allocated by TF_NewBuffer()).
`output_graph_def`'s underlying buffer will be freed when TF_DeleteBuffer()
is called.
May fail on very large graphs in the future.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_GraphToGraphDef(TF_Graph* graph,
TF_Buffer* output_graph_def,
TF_Status* status);
TF_GraphGetOpDef
Returns the serialized OpDef proto with name `op_name`, or a bad status if no
such op exists. This can return OpDefs of functions copied into the graph.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_GraphGetOpDef(TF_Graph* graph,
const char* op_name,
TF_Buffer* output_op_def,
TF_Status* status);
TF_GraphVersions
Returns the serialized VersionDef proto for this graph.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_GraphVersions(TF_Graph* graph,
TF_Buffer* output_version_def,
TF_Status* status);
TF_NewImportGraphDefOptions
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_ImportGraphDefOptions* TF_NewImportGraphDefOptions(
void);
TF_DeleteImportGraphDefOptions
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_DeleteImportGraphDefOptions(
TF_ImportGraphDefOptions* opts);
TF_ImportGraphDefOptionsSetPrefix
Set the prefix to be prepended to the names of nodes in `graph_def` that will
be imported into `graph`. `prefix` is copied and has no lifetime
requirements.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsSetPrefix(
TF_ImportGraphDefOptions* opts, const char* prefix);
TF_ImportGraphDefOptionsSetDefaultDevice
Set the execution device for nodes in `graph_def`.
Only applies to nodes where a device was not already explicitly specified.
`device` is copied and has no lifetime requirements.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsSetDefaultDevice(
TF_ImportGraphDefOptions* opts, const char* device);
TF_ImportGraphDefOptionsSetUniquifyNames
Set whether to uniquify imported operation names. If true, imported operation
names will be modified if their name already exists in the graph. If false,
conflicting names will be treated as an error. Note that this option has no
effect if a prefix is set, since the prefix will guarantee all names are
unique. Defaults to false.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsSetUniquifyNames(
TF_ImportGraphDefOptions* opts, unsigned char uniquify_names);
TF_ImportGraphDefOptionsSetUniquifyPrefix
If true, the specified prefix will be modified if it already exists as an
operation name or prefix in the graph. If false, a conflicting prefix will be
treated as an error. This option has no effect if no prefix is specified.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsSetUniquifyPrefix(
TF_ImportGraphDefOptions* opts, unsigned char uniquify_prefix);
TF_ImportGraphDefOptionsAddInputMapping
Set any imported nodes with input `src_name:src_index` to have that input
replaced with `dst`. `src_name` refers to a node in the graph to be imported,
`dst` references a node already existing in the graph being imported into.
`src_name` is copied and has no lifetime requirements.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsAddInputMapping(
TF_ImportGraphDefOptions* opts, const char* src_name, int src_index,
TF_Output dst);
TF_ImportGraphDefOptionsRemapControlDependency
Set any imported nodes with control input `src_name` to have that input
replaced with `dst`. `src_name` refers to a node in the graph to be imported,
`dst` references an operation already existing in the graph being imported
into. `src_name` is copied and has no lifetime requirements.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsRemapControlDependency(
TF_ImportGraphDefOptions* opts, const char* src_name, TF_Operation* dst);
TF_ImportGraphDefOptionsAddControlDependency
Cause the imported graph to have a control dependency on `oper`. `oper`
should exist in the graph being imported into.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsAddControlDependency(
TF_ImportGraphDefOptions* opts, TF_Operation* oper);
TF_ImportGraphDefOptionsAddReturnOutput
Add an output in `graph_def` to be returned via the `return_outputs` output
parameter of TF_GraphImportGraphDef(). If the output is remapped via an input
mapping, the corresponding existing tensor in `graph` will be returned.
`oper_name` is copied and has no lifetime requirements.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsAddReturnOutput(
TF_ImportGraphDefOptions* opts, const char* oper_name, int index);
TF_ImportGraphDefOptionsNumReturnOutputs
Returns the number of return outputs added via
TF_ImportGraphDefOptionsAddReturnOutput().
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_ImportGraphDefOptionsNumReturnOutputs(
const TF_ImportGraphDefOptions* opts);
TF_ImportGraphDefOptionsAddReturnOperation
Add an operation in `graph_def` to be returned via the `return_opers` output
parameter of TF_GraphImportGraphDef(). `oper_name` is copied and has no
lifetime requirements.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsAddReturnOperation(
TF_ImportGraphDefOptions* opts, const char* oper_name);
TF_ImportGraphDefOptionsNumReturnOperations
Returns the number of return operations added via
TF_ImportGraphDefOptionsAddReturnOperation().
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_ImportGraphDefOptionsNumReturnOperations(
const TF_ImportGraphDefOptions* opts);
TF_ImportGraphDefResultsReturnOutputs
Fetches the return outputs requested via
TF_ImportGraphDefOptionsAddReturnOutput(). The number of fetched outputs is
returned in `num_outputs`. The array of return outputs is returned in
`outputs`. `*outputs` is owned by and has the lifetime of `results`.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ImportGraphDefResultsReturnOutputs(
TF_ImportGraphDefResults* results, int* num_outputs, TF_Output** outputs);
TF_ImportGraphDefResultsReturnOperations
Fetches the return operations requested via
TF_ImportGraphDefOptionsAddReturnOperation(). The number of fetched
operations is returned in `num_opers`. The array of return operations is
returned in `opers`. `*opers` is owned by and has the lifetime of `results`.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ImportGraphDefResultsReturnOperations(
TF_ImportGraphDefResults* results, int* num_opers, TF_Operation*** opers);
TF_ImportGraphDefResultsMissingUnusedInputMappings
Fetches any input mappings requested via
TF_ImportGraphDefOptionsAddInputMapping() that didn't appear in the GraphDef
and weren't used as input to any node in the imported graph def. The number
of fetched mappings is returned in `num_missing_unused_input_mappings`. The
array of each mapping's source node name is returned in `src_names`, and the
array of each mapping's source index is returned in `src_indexes`.
`*src_names`, `*src_indexes`, and the memory backing each string in
`src_names` are owned by and have the lifetime of `results`.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ImportGraphDefResultsMissingUnusedInputMappings(
TF_ImportGraphDefResults* results, int* num_missing_unused_input_mappings,
const char*** src_names, int** src_indexes);
TF_DeleteImportGraphDefResults
Deletes a results object returned by TF_GraphImportGraphDefWithResults().
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_DeleteImportGraphDefResults(
TF_ImportGraphDefResults* results);
TF_GraphImportGraphDefWithResults
Import the graph serialized in `graph_def` into `graph`. Returns nullptr and
a bad status on error. Otherwise, returns a populated
TF_ImportGraphDefResults instance. The returned instance must be deleted via
TF_DeleteImportGraphDefResults().
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_ImportGraphDefResults*
TF_GraphImportGraphDefWithResults(TF_Graph* graph, const TF_Buffer* graph_def,
const TF_ImportGraphDefOptions* options,
TF_Status* status);
TF_GraphImportGraphDefWithReturnOutputs
Import the graph serialized in `graph_def` into `graph`.
Convenience function for when only return outputs are needed.
`num_return_outputs` must be the number of return outputs added (i.e. the
result of TF_ImportGraphDefOptionsNumReturnOutputs()). If
`num_return_outputs` is non-zero, `return_outputs` must be of length
`num_return_outputs`. Otherwise it can be null.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_GraphImportGraphDefWithReturnOutputs(
TF_Graph* graph, const TF_Buffer* graph_def,
const TF_ImportGraphDefOptions* options, TF_Output* return_outputs,
int num_return_outputs, TF_Status* status);
TF_GraphImportGraphDef
Import the graph serialized in `graph_def` into `graph`.
Convenience function for when no results are needed.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_GraphImportGraphDef(
TF_Graph* graph, const TF_Buffer* graph_def,
const TF_ImportGraphDefOptions* options, TF_Status* status);
TF_GraphCopyFunction
Adds a copy of function `func` and optionally its gradient function `grad`
to `g`. Once `func`/`grad` is added to `g`, it can be called by creating
an operation using the function's name.
Any changes to `func`/`grad` (including deleting it) done after this method
returns, won't affect the copy of `func`/`grad` in `g`.
If `func` or `grad` are already in `g`, TF_GraphCopyFunction has no
effect on them, but can establish the function->gradient relationship
between them if `func` does not already have a gradient. If `func` already
has a gradient different from `grad`, an error is returned.
`func` must not be null.
If `grad` is null and `func` is not in `g`, `func` is added without a
gradient.
If `grad` is null and `func` is in `g`, TF_GraphCopyFunction is a noop.
`grad` must have appropriate signature as described in the doc of
GradientDef in tensorflow/core/framework/function.proto.
If successful, status is set to OK and `func` and `grad` are added to `g`.
Otherwise, status is set to the encountered error and `g` is unmodified.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_GraphCopyFunction(TF_Graph* g,
const TF_Function* func,
const TF_Function* grad,
TF_Status* status);
TF_GraphNumFunctions
Returns the number of TF_Functions registered in `g`.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_GraphNumFunctions(TF_Graph* g);
TF_GraphGetFunctions
Fills in `funcs` with the TF_Function* registered in `g`.
`funcs` must point to an array of TF_Function* of length at least
`max_func`. In usual usage, max_func should be set to the result of
TF_GraphNumFunctions(g). In this case, all the functions registered in
`g` will be returned. Else, an unspecified subset.
If successful, returns the number of TF_Function* successfully set in
`funcs` and sets status to OK. The caller takes ownership of
all the returned TF_Functions. They must be deleted with TF_DeleteFunction.
On error, returns 0, sets status to the encountered error, and the contents
of funcs will be undefined.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_GraphGetFunctions(TF_Graph* g, TF_Function** funcs,
int max_func, TF_Status* status);
TF_OperationToNodeDef
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_OperationToNodeDef(TF_Operation* oper,
TF_Buffer* output_node_def,
TF_Status* status);
TF_NewWhile
Creates a TF_WhileParams for creating a while loop in `g`. `inputs` are
outputs that already exist in `g` used as initial values for the loop
variables.
The returned TF_WhileParams will have all fields initialized except
`cond_output`, `body_outputs`, and `name`. The `body_outputs` buffer will be
allocated to size `ninputs`. The caller should build `cond_graph` and
`body_graph` starting from the inputs, and store the final outputs in
`cond_output` and `body_outputs`.
If `status` is OK, the caller must call either TF_FinishWhile or
TF_AbortWhile on the returned TF_WhileParams. If `status` isn't OK, the
returned TF_WhileParams is not valid, and the caller should not call
TF_FinishWhile() or TF_AbortWhile().
Missing functionality (TODO):
- Gradients
- Reference-type inputs
- Directly referencing external tensors from the cond/body graphs (this is
possible in the Python API)
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_WhileParams TF_NewWhile(TF_Graph* g, TF_Output* inputs,
int ninputs,
TF_Status* status);
TF_FinishWhile
Builds the while loop specified by `params` and returns the output tensors of
the while loop in `outputs`. `outputs` should be allocated to size
`params.ninputs`.
`params` is no longer valid once this returns.
Either this or TF_AbortWhile() must be called after a successful
TF_NewWhile() call.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_FinishWhile(const TF_WhileParams* params,
TF_Status* status,
TF_Output* outputs);
TF_AbortWhile
Frees `params`s resources without building a while loop. `params` is no
longer valid after this returns. Either this or TF_FinishWhile() must be
called after a successful TF_NewWhile() call.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_AbortWhile(const TF_WhileParams* params);
TF_AddGradients
Adds operations to compute the partial derivatives of sum of `y`s w.r.t `x`s,
i.e., d(y_1 + y_2 + ...)/dx_1, d(y_1 + y_2 + ...)/dx_2...
`dx` are used as initial gradients (which represent the symbolic partial
derivatives of some loss function `L` w.r.t. `y`).
`dx` must be nullptr or have size `ny`.
If `dx` is nullptr, the implementation will use dx of `OnesLike` for all
shapes in `y`.
The partial derivatives are returned in `dy`. `dy` should be allocated to
size `nx`.
Gradient nodes are automatically named under the "gradients/" prefix. To
guarantee name uniqueness, subsequent calls to the same graph will
append an incremental tag to the prefix: "gradients_1/", "gradients_2/", ...
See TF_AddGradientsWithPrefix, which provides a means to specify a custom
name prefix for operations added to a graph to compute the gradients.
WARNING: This function does not yet support all the gradients that python
supports. See
https://www.tensorflow.org/code/tensorflow/cc/gradients/README.md
for instructions on how to add C++ more gradients.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT void TF_AddGradients(TF_Graph* g, TF_Output* y, int ny,
TF_Output* x, int nx, TF_Output* dx,
TF_Status* status, TF_Output* dy);
TF_AddGradientsWithPrefix
Adds operations to compute the partial derivatives of sum of `y`s w.r.t `x`s,
i.e., d(y_1 + y_2 + ...)/dx_1, d(y_1 + y_2 + ...)/dx_2...
This is a variant of TF_AddGradients that allows to caller to pass a custom
name prefix to the operations added to a graph to compute the gradients.
`dx` are used as initial gradients (which represent the symbolic partial
derivatives of some loss function `L` w.r.t. `y`).
`dx` must be nullptr or have size `ny`.
If `dx` is nullptr, the implementation will use dx of `OnesLike` for all
shapes in `y`.
The partial derivatives are returned in `dy`. `dy` should be allocated to
size `nx`.
`prefix` names the scope into which all gradients operations are being added.
`prefix` must be unique within the provided graph otherwise this operation
will fail. If `prefix` is nullptr, the default prefixing behaviour takes
place, see TF_AddGradients for more details.
WARNING: This function does not yet support all the gradients that python
supports. See
https://www.tensorflow.org/code/tensorflow/cc/gradients/README.md
for instructions on how to add C++ more gradients.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT void TF_AddGradientsWithPrefix(TF_Graph* g, const char* prefix,
TF_Output* y, int ny,
TF_Output* x, int nx,
TF_Output* dx, TF_Status* status,
TF_Output* dy);
TF_GraphToFunction
Create a TF_Function from a TF_Graph
Params:
fn_body - the graph whose operations (or subset of whose operations) will be
converted to TF_Function.
fn_name - the name of the new TF_Function. Should match the operation
name (OpDef.name) regexp [A-Z][A-Za-z0-9_.\\-/]*.
If `append_hash_to_fn_name` is false, `fn_name` must be distinct
from other function and operation names (at least those
registered in graphs where this function will be used).
append_hash_to_fn_name - Must be 0 or 1. If set to 1, the actual name
of the function will be `fn_name` appended with
'_<hash_of_this_function's_definition>'.
If set to 0, the function's name will be `fn_name`.
num_opers - `num_opers` contains the number of elements in the `opers` array
or a special value of -1 meaning that no array is given.
The distinction between an empty array of operations and no
array of operations is necessary to distinguish the case of
creating a function with no body (e.g. identity or permutation)
and the case of creating a function whose body contains all
the nodes in the graph (except for the automatic skipping, see
below).
opers - Array of operations to become the body of the function or null.
- If no array is given (`num_opers` = -1), all the
operations in `fn_body` will become part of the function
except operations referenced in `inputs`. These operations
must have a single output (these operations are typically
placeholders created for the sole purpose of representing
an input. We can relax this constraint if there are
compelling use cases).
- If an array is given (`num_opers` >= 0), all operations
in it will become part of the function. In particular, no
automatic skipping of dummy input operations is performed.
ninputs - number of elements in `inputs` array
inputs - array of TF_Outputs that specify the inputs to the function.
If `ninputs` is zero (the function takes no inputs), `inputs`
can be null. The names used for function inputs are normalized
names of the operations (usually placeholders) pointed to by
`inputs`. These operation names should start with a letter.
Normalization will convert all letters to lowercase and
non-alphanumeric characters to '_' to make resulting names match
the "[a-z][a-z0-9_]*" pattern for operation argument names.
`inputs` cannot contain the same tensor twice.
noutputs - number of elements in `outputs` array
outputs - array of TF_Outputs that specify the outputs of the function.
If `noutputs` is zero (the function returns no outputs), `outputs`
can be null. `outputs` can contain the same tensor more than once.
output_names - The names of the function's outputs. `output_names` array
must either have the same length as `outputs`
(i.e. `noutputs`) or be null. In the former case,
the names should match the regular expression for ArgDef
names - "[a-z][a-z0-9_]*". In the latter case,
names for outputs will be generated automatically.
opts - various options for the function, e.g. XLA's inlining control.
description - optional human-readable description of this function.
status - Set to OK on success and an appropriate error on failure.
Note that when the same TF_Output is listed as both an input and an output,
the corresponding function's output will equal to this input,
instead of the original node's output.
Callers must also satisfy the following constraints:
- `inputs` cannot refer to TF_Outputs within a control flow context. For
example, one cannot use the output of "switch" node as input.
- `inputs` and `outputs` cannot have reference types. Reference types are
not exposed through C API and are being replaced with Resources. We support
reference types inside function's body to support legacy code. Do not
use them in new code.
- Every node in the function's body must have all of its inputs (including
control inputs). In other words, for every node in the body, each input
must be either listed in `inputs` or must come from another node in
the body. In particular, it is an error to have a control edge going from
a node outside of the body into a node in the body. This applies to control
edges going from nodes referenced in `inputs` to nodes in the body when
the former nodes are not in the body (automatically skipped or not
included in explicitly specified body).
Returns:
On success, a newly created TF_Function instance. It must be deleted by
calling TF_DeleteFunction.
On failure, null.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Function* TF_GraphToFunction(
const TF_Graph* fn_body, const char* fn_name,
unsigned char append_hash_to_fn_name, int num_opers,
const TF_Operation* const* opers, int ninputs, const TF_Output* inputs,
int noutputs, const TF_Output* outputs, const char* const* output_names,
const TF_FunctionOptions* opts, const char* description, TF_Status* status);
TF_GraphToFunctionWithControlOutputs
Similar to TF_GraphToFunction but allows specifying control outputs of the
function.
The arguments of TF_GraphToFunction have the same meaning, but the new
arguments are as follows:
ncontrol_outputs: Number of control outputs of the function.
control_outputs: vector of TF_Operation objects to be marked as control
outputs of the function. Operations marked as control outputs are
guaranteed to execute.
control_output_names: Optional. If not nullptr, vector of strings, one
per control output, with their names to be added to the function's
OpDef.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Function* TF_GraphToFunctionWithControlOutputs(
const TF_Graph* fn_body, const char* fn_name,
unsigned char append_hash_to_fn_name, int num_opers,
const TF_Operation* const* opers, int ninputs, const TF_Output* inputs,
int noutputs, const TF_Output* outputs, const char* const* output_names,
int ncontrol_outputs, const TF_Operation* const* control_outputs,
const char* const* control_output_names, const TF_FunctionOptions* opts,
const char* description, TF_Status* status);
TF_FunctionName
Returns the name of the graph function.
The return value points to memory that is only usable until the next
mutation to *func.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern const char* TF_FunctionName(TF_Function* func);
TF_FunctionToFunctionDef
Write out a serialized representation of `func` (as a FunctionDef protocol
message) to `output_func_def` (allocated by TF_NewBuffer()).
`output_func_def`'s underlying buffer will be freed when TF_DeleteBuffer()
is called.
May fail on very large graphs in the future.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_FunctionToFunctionDef(TF_Function* func,
TF_Buffer* output_func_def,
TF_Status* status);
TF_FunctionImportFunctionDef
Construct and return the function whose FunctionDef representation is
serialized in `proto`. `proto_len` must equal the number of bytes
pointed to by `proto`.
Returns:
On success, a newly created TF_Function instance. It must be deleted by
calling TF_DeleteFunction.
On failure, null.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Function* TF_FunctionImportFunctionDef(
const void* proto, size_t proto_len, TF_Status* status);
TF_FunctionSetAttrValueProto
Sets function attribute named `attr_name` to value stored in `proto`.
If this attribute is already set to another value, it is overridden.
`proto` should point to a sequence of bytes of length `proto_len`
representing a binary serialization of an AttrValue protocol
buffer.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_FunctionSetAttrValueProto(TF_Function* func,
const char* attr_name,
const void* proto,
size_t proto_len,
TF_Status* status);
TF_FunctionGetAttrValueProto
Sets `output_attr_value` to the binary-serialized AttrValue proto
representation of the value of the `attr_name` attr of `func`.
If `attr_name` attribute is not present, status is set to an error.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_FunctionGetAttrValueProto(
TF_Function* func, const char* attr_name, TF_Buffer* output_attr_value,
TF_Status* status);
TF_DeleteFunction
Frees the memory used by the `func` struct.
TF_DeleteFunction is a noop if `func` is null.
Deleting a function does not remove it from any graphs it was copied to.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_DeleteFunction(TF_Function* func);
TF_TryEvaluateConstant
Attempts to evaluate `output`. This will only be possible if `output` doesn't
depend on any graph inputs (this function is safe to call if this isn't the
case though).
If the evaluation is successful, this function returns true and `output`s
value is returned in `result`. Otherwise returns false. An error status is
returned if something is wrong with the graph or input. Note that this may
return false even if no error status is set.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern unsigned char TF_TryEvaluateConstant(TF_Graph* graph,
TF_Output output,
TF_Tensor** result,
TF_Status* status);
TF_NewSession
Return a new execution session with the associated graph, or NULL on
error. Does not take ownership of any input parameters.
*`graph` must be a valid graph (not deleted or nullptr). `graph` will be
kept alive for the lifetime of the returned TF_Session. New nodes can still
be added to `graph` after this call.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Session* TF_NewSession(TF_Graph* graph,
const TF_SessionOptions* opts,
TF_Status* status);
TF_LoadSessionFromSavedModel
This function creates a new TF_Session (which is created on success) using
`session_options`, and then initializes state (restoring tensors and other
assets) using `run_options`.
Any NULL and non-NULL value combinations for (`run_options, `meta_graph_def`)
are valid.
- `export_dir` must be set to the path of the exported SavedModel.
- `tags` must include the set of tags used to identify one MetaGraphDef in
the SavedModel.
- `graph` must be a graph newly allocated with TF_NewGraph().
If successful, populates `graph` with the contents of the Graph and
`meta_graph_def` with the MetaGraphDef of the loaded model.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Session* TF_LoadSessionFromSavedModel(
const TF_SessionOptions* session_options, const TF_Buffer* run_options,
const char* export_dir, const char* const* tags, int tags_len,
TF_Graph* graph, TF_Buffer* meta_graph_def, TF_Status* status);
TF_CloseSession
Close a session.
Contacts any other processes associated with the session, if applicable.
May not be called after TF_DeleteSession().
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_CloseSession(TF_Session*, TF_Status* status);
TF_DeleteSession
Destroy a session object.
Even if error information is recorded in *status, this call discards all
local resources associated with the session. The session may not be used
during or after this call (and the session drops its reference to the
corresponding graph).
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_DeleteSession(TF_Session*, TF_Status* status);
TF_SessionRun
Run the graph associated with the session starting with the supplied inputs
(inputs[0,ninputs-1] with corresponding values in input_values[0,ninputs-1]).
Any NULL and non-NULL value combinations for (`run_options`,
`run_metadata`) are valid.
- `run_options` may be NULL, in which case it will be ignored; or
non-NULL, in which case it must point to a `TF_Buffer` containing the
serialized representation of a `RunOptions` protocol buffer.
- `run_metadata` may be NULL, in which case it will be ignored; or
non-NULL, in which case it must point to an empty, freshly allocated
`TF_Buffer` that may be updated to contain the serialized representation
of a `RunMetadata` protocol buffer.
The caller retains ownership of `input_values` (which can be deleted using
TF_DeleteTensor). The caller also retains ownership of `run_options` and/or
`run_metadata` (when not NULL) and should manually call TF_DeleteBuffer on
them.
On success, the tensors corresponding to outputs[0,noutputs-1] are placed in
output_values[]. Ownership of the elements of output_values[] is transferred
to the caller, which must eventually call TF_DeleteTensor on them.
On failure, output_values[] contains NULLs.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SessionRun(
TF_Session* session,
// RunOptions
const TF_Buffer* run_options,
// Input tensors
const TF_Output* inputs, TF_Tensor* const* input_values, int ninputs,
// Output tensors
const TF_Output* outputs, TF_Tensor** output_values, int noutputs,
// Target operations
const TF_Operation* const* target_opers, int ntargets,
// RunMetadata
TF_Buffer* run_metadata,
// Output status
TF_Status*);
TF_SessionPRunSetup
Set up the graph with the intended feeds (inputs) and fetches (outputs) for a
sequence of partial run calls.
On success, returns a handle that is used for subsequent PRun calls. The
handle should be deleted with TF_DeletePRunHandle when it is no longer
needed.
On failure, out_status contains a tensorflow::Status with an error
message. *handle is set to nullptr.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SessionPRunSetup(
TF_Session*,
// Input names
const TF_Output* inputs, int ninputs,
// Output names
const TF_Output* outputs, int noutputs,
// Target operations
const TF_Operation* const* target_opers, int ntargets,
// Output handle
const char** handle,
// Output status
TF_Status*);
TF_SessionPRun
Continue to run the graph with additional feeds and fetches. The
execution state is uniquely identified by the handle.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_SessionPRun(
TF_Session*, const char* handle,
// Input tensors
const TF_Output* inputs, TF_Tensor* const* input_values, int ninputs,
// Output tensors
const TF_Output* outputs, TF_Tensor** output_values, int noutputs,
// Target operations
const TF_Operation* const* target_opers, int ntargets,
// Output status
TF_Status*);
TF_DeletePRunHandle
Deletes a handle allocated by TF_SessionPRunSetup.
Once called, no more calls to TF_SessionPRun should be made.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_DeletePRunHandle(const char* handle);
TF_NewDeprecatedSession
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_DeprecatedSession* TF_NewDeprecatedSession(
const TF_SessionOptions*, TF_Status* status);
TF_CloseDeprecatedSession
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_CloseDeprecatedSession(TF_DeprecatedSession*,
TF_Status* status);
TF_DeleteDeprecatedSession
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_DeleteDeprecatedSession(TF_DeprecatedSession*,
TF_Status* status);
TF_Reset
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_Reset(const TF_SessionOptions* opt,
const char** containers, int ncontainers,
TF_Status* status);
TF_ExtendGraph
Treat the bytes proto[0,proto_len-1] as a serialized GraphDef and
add the nodes in that GraphDef to the graph for the session.
Prefer use of TF_Session and TF_GraphImportGraphDef over this.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ExtendGraph(TF_DeprecatedSession*,
const void* proto, size_t proto_len,
TF_Status*);
TF_Run
See TF_SessionRun() above.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_Run(TF_DeprecatedSession*,
const TF_Buffer* run_options,
const char** input_names, TF_Tensor** inputs,
int ninputs, const char** output_names,
TF_Tensor** outputs, int noutputs,
const char** target_oper_names, int ntargets,
TF_Buffer* run_metadata, TF_Status*);
TF_PRunSetup
See TF_SessionPRunSetup() above.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_PRunSetup(TF_DeprecatedSession*,
const char** input_names, int ninputs,
const char** output_names, int noutputs,
const char** target_oper_names,
int ntargets, const char** handle,
TF_Status*);
TF_PRun
See TF_SessionPRun above.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_PRun(TF_DeprecatedSession*, const char* handle,
const char** input_names, TF_Tensor** inputs,
int ninputs, const char** output_names,
TF_Tensor** outputs, int noutputs,
const char** target_oper_names, int ntargets,
TF_Status*);
TF_SessionListDevices
Lists all devices in a TF_Session.
Caller takes ownership of the returned TF_DeviceList* which must eventually
be freed with a call to TF_DeleteDeviceList.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_DeviceList* TF_SessionListDevices(TF_Session* session,
TF_Status* status);
TF_DeprecatedSessionListDevices
Lists all devices in a TF_Session.
Caller takes ownership of the returned TF_DeviceList* which must eventually
be freed with a call to TF_DeleteDeviceList.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_DeviceList* TF_DeprecatedSessionListDevices(
TF_DeprecatedSession* session, TF_Status* status);
TF_DeleteDeviceList
Deallocates the device list.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_DeleteDeviceList(TF_DeviceList* list);
TF_DeviceListCount
Counts the number of elements in the device list.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int TF_DeviceListCount(const TF_DeviceList* list);
TF_DeviceListName
Retrieves the full name of the device (e.g. /job:worker/replica:0/...)
The return value will be a pointer to a null terminated string. The caller
must not modify or delete the string. It will be deallocated upon a call to
TF_DeleteDeviceList.
If index is out of bounds, an error code will be set in the status object,
and a null pointer will be returned.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern const char* TF_DeviceListName(const TF_DeviceList* list,
int index,
TF_Status* status);
TF_DeviceListType
Retrieves the type of the device at the given index.
The caller must not modify or delete the string. It will be deallocated upon
a call to TF_DeleteDeviceList.
If index is out of bounds, an error code will be set in the status object,
and a null pointer will be returned.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern const char* TF_DeviceListType(const TF_DeviceList* list,
int index,
TF_Status* status);
TF_DeviceListMemoryBytes
Retrieve the amount of memory associated with a given device.
If index is out of bounds, an error code will be set in the status object,
and -1 will be returned.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern int64_t TF_DeviceListMemoryBytes(
const TF_DeviceList* list, int index, TF_Status* status);
TF_DeviceListIncarnation
Retrieve the incarnation number of a given device.
If index is out of bounds, an error code will be set in the status object,
and 0 will be returned.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern uint64_t TF_DeviceListIncarnation(
const TF_DeviceList* list, int index, TF_Status* status);
TF_LoadLibrary
Load the library specified by library_filename and register the ops and
kernels present in that library.
Pass "library_filename" to a platform-specific mechanism for dynamically
loading a library. The rules for determining the exact location of the
library are platform-specific and are not documented here.
On success, place OK in status and return the newly created library handle.
The caller owns the library handle.
On failure, place an error status in status and return NULL.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Library* TF_LoadLibrary(const char* library_filename,
TF_Status* status);
TF_GetOpList
Get the OpList of OpDefs defined in the library pointed by lib_handle.
Returns a TF_Buffer. The memory pointed to by the result is owned by
lib_handle. The data in the buffer will be the serialized OpList proto for
ops defined in the library.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Buffer TF_GetOpList(TF_Library* lib_handle);
TF_DeleteLibraryHandle
Frees the memory associated with the library handle.
Does NOT unload the library.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_DeleteLibraryHandle(TF_Library* lib_handle);
TF_GetAllOpList
Get the OpList of all OpDefs defined in this address space.
Returns a TF_Buffer, ownership of which is transferred to the caller
(and can be freed using TF_DeleteBuffer).
The data in the buffer will be the serialized OpList proto for ops registered
in this address space.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Buffer* TF_GetAllOpList(void);
TF_NewApiDefMap
Creates a new TF_ApiDefMap instance.
Params:
op_list_buffer - TF_Buffer instance containing serialized OpList
protocol buffer. (See
https://www.tensorflow.org/code/tensorflow/core/framework/op_def.proto
for the OpList proto definition).
status - Set to OK on success and an appropriate error on failure.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_ApiDefMap* TF_NewApiDefMap(TF_Buffer* op_list_buffer,
TF_Status* status);
TF_DeleteApiDefMap
Deallocates a TF_ApiDefMap.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_DeleteApiDefMap(TF_ApiDefMap* apimap);
TF_ApiDefMapPut
Add ApiDefs to the map.
`text` corresponds to a text representation of an ApiDefs protocol message.
(https://www.tensorflow.org/code/tensorflow/core/framework/api_def.proto).
The provided ApiDefs will be merged with existing ones in the map, with
precedence given to the newly added version in case of conflicts with
previous calls to TF_ApiDefMapPut.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ApiDefMapPut(TF_ApiDefMap* api_def_map,
const char* text, size_t text_len,
TF_Status* status);
TF_ApiDefMapGet
Returns a serialized ApiDef protocol buffer for the TensorFlow operation
named `name`.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Buffer* TF_ApiDefMapGet(TF_ApiDefMap* api_def_map,
const char* name,
size_t name_len,
TF_Status* status);
TF_GetAllRegisteredKernels
Returns a serialized KernelList protocol buffer containing KernelDefs for all
registered kernels.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Buffer* TF_GetAllRegisteredKernels(TF_Status* status);
TF_GetRegisteredKernelsForOp
Returns a serialized KernelList protocol buffer containing KernelDefs for all
kernels registered for the operation named `name`.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Buffer* TF_GetRegisteredKernelsForOp(
const char* name, TF_Status* status);
TF_UpdateEdge
Update edge, switch input/ output in a node
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_UpdateEdge(TF_Graph* graph, TF_Output new_src,
TF_Input dst, TF_Status* status);
TF_NewServer
Creates a new in-process TensorFlow server configured using a serialized
ServerDef protocol buffer provided via `proto` and `proto_len`.
The server will not serve any requests until TF_ServerStart is invoked.
The server will stop serving requests once TF_ServerStop or
TF_DeleteServer is invoked.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern TF_Server* TF_NewServer(const void* proto,
size_t proto_len,
TF_Status* status);
TF_ServerStart
Starts an in-process TensorFlow server.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ServerStart(TF_Server* server, TF_Status* status);
TF_ServerStop
Stops an in-process TensorFlow server.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ServerStop(TF_Server* server, TF_Status* status);
TF_ServerJoin
Blocks until the server has been successfully stopped (via TF_ServerStop or
TF_ServerClose).
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_ServerJoin(TF_Server* server, TF_Status* status);
TF_ServerTarget
Returns the target string that can be provided to TF_SetTarget() to connect
a TF_Session to `server`.
The returned string is valid only until TF_DeleteServer is invoked.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern const char* TF_ServerTarget(TF_Server* server);
TF_DeleteServer
Destroy an in-process TensorFlow server, frees memory. If server is running
it will be stopped and joined.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_DeleteServer(TF_Server* server);
TF_RegisterLogListener
Register a listener method that processes printed messages.
If any listeners are registered, the print operator will call all listeners
with the printed messages and immediately return without writing to the
logs.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_RegisterLogListener(
void (*listener)(const char*));
TF_RegisterFilesystemPlugin
Register a FileSystem plugin from filename `plugin_filename`.
On success, place OK in status.
On failure, place an error status in status.
/* From <tensorflow/c/c_api.h> */
TF_CAPI_EXPORT extern void TF_RegisterFilesystemPlugin(
const char* plugin_filename, TF_Status* status);
TF_NewShape
Return a new, unknown rank shape object. The caller is responsible for
calling TF_DeleteShape to deallocate and destroy the returned shape.
/* From <tensorflow/c/tf_shape.h> */
TF_CAPI_EXPORT extern TF_Shape* TF_NewShape();
TF_ShapeDims
Returns the rank of `shape`. If `shape` has unknown rank, returns -1.
/* From <tensorflow/c/tf_shape.h> */
TF_CAPI_EXPORT extern int TF_ShapeDims(const TF_Shape* shape);
TF_ShapeDimSize
Returns the `d`th dimension of `shape`. If `shape` has unknown rank,
invoking this function is undefined behavior. Returns -1 if dimension is
unknown.
/* From <tensorflow/c/tf_shape.h> */
TF_CAPI_EXPORT extern int64_t TF_ShapeDimSize(const TF_Shape* shape, int d);
TF_DeleteShape
Deletes `shape`.
/* From <tensorflow/c/tf_shape.h> */
TF_CAPI_EXPORT extern void TF_DeleteShape(TF_Shape* shape);
TF_NewTensor
Return a new tensor that holds the bytes data[0,len-1].
The data will be deallocated by a subsequent call to TF_DeleteTensor via:
(*deallocator)(data, len, deallocator_arg)
Clients must provide a custom deallocator function so they can pass in
memory managed by something like numpy.
May return NULL (and invoke the deallocator) if the provided data buffer
(data, len) is inconsistent with a tensor of the given TF_DataType
and the shape specified by (dima, num_dims).
/* From <tensorflow/c/tf_tensor.h> */
TF_CAPI_EXPORT extern TF_Tensor* TF_NewTensor(
TF_DataType, const int64_t* dims, int num_dims, void* data, size_t len,
void (*deallocator)(void* data, size_t len, void* arg),
void* deallocator_arg);
TF_AllocateTensor
Allocate and return a new Tensor.
This function is an alternative to TF_NewTensor and should be used when
memory is allocated to pass the Tensor to the C API. The allocated memory
satisfies TensorFlow's memory alignment preferences and should be preferred
over calling malloc and free.
The caller must set the Tensor values by writing them to the pointer returned
by TF_TensorData with length TF_TensorByteSize.
/* From <tensorflow/c/tf_tensor.h> */
TF_CAPI_EXPORT extern TF_Tensor* TF_AllocateTensor(TF_DataType,
const int64_t* dims,
int num_dims, size_t len);
TF_TensorMaybeMove
Deletes `tensor` and returns a new TF_Tensor with the same content if
possible. Returns nullptr and leaves `tensor` untouched if not.
/* From <tensorflow/c/tf_tensor.h> */
TF_CAPI_EXPORT extern TF_Tensor* TF_TensorMaybeMove(TF_Tensor* tensor);
TF_DeleteTensor
Destroy a tensor.
/* From <tensorflow/c/tf_tensor.h> */
TF_CAPI_EXPORT extern void TF_DeleteTensor(TF_Tensor*);
TF_TensorType
Return the type of a tensor element.
/* From <tensorflow/c/tf_tensor.h> */
TF_CAPI_EXPORT extern TF_DataType TF_TensorType(const TF_Tensor*);
TF_SetShape
Set a new shape for the Tensor.
/* From <tensorflow/c/tf_tensor.h> */
TF_CAPI_EXPORT extern void TF_SetShape(TF_Tensor* tensor, const int64_t* dims,
int num_dims);
TF_NumDims
Return the number of dimensions that the tensor has.
/* From <tensorflow/c/tf_tensor.h> */
TF_CAPI_EXPORT extern int TF_NumDims(const TF_Tensor*);
TF_Dim
Return the length of the tensor in the "dim_index" dimension.
REQUIRES: 0 <= dim_index < TF_NumDims(tensor)
/* From <tensorflow/c/tf_tensor.h> */
TF_CAPI_EXPORT extern int64_t TF_Dim(const TF_Tensor* tensor, int dim_index);
TF_TensorByteSize
Return the size of the underlying data in bytes.
/* From <tensorflow/c/tf_tensor.h> */
TF_CAPI_EXPORT extern size_t TF_TensorByteSize(const TF_Tensor*);
TF_TensorData
Return a pointer to the underlying data buffer.
/* From <tensorflow/c/tf_tensor.h> */
TF_CAPI_EXPORT extern void* TF_TensorData(const TF_Tensor*);
TF_TensorElementCount
Returns the number of elements in the tensor.
/* From <tensorflow/c/tf_tensor.h> */
TF_CAPI_EXPORT extern int64_t TF_TensorElementCount(const TF_Tensor* tensor);
TF_TensorBitcastFrom
Copy the internal data representation of `from` to `to`. `new_dims` and
`num_new_dims` specify the new shape of the `to` tensor, `type` specifies its
data type. On success, *status is set to TF_OK and the two tensors share the
same data buffer.
This call requires that the `from` tensor and the given type and shape (dims
and num_dims) are "compatible" (i.e. they occupy the same number of bytes).
Specifically, given from_type_size = TF_DataTypeSize(TF_TensorType(from)):
ShapeElementCount(dims, num_dims) * TF_DataTypeSize(type)
must equal
TF_TensorElementCount(from) * from_type_size
where TF_ShapeElementCount would be the number of elements in a tensor with
the given shape.
In addition, this function requires:
* TF_DataTypeSize(TF_TensorType(from)) != 0
* TF_DataTypeSize(type) != 0
If any of the requirements are not met, *status is set to
TF_INVALID_ARGUMENT.
/* From <tensorflow/c/tf_tensor.h> */
TF_CAPI_EXPORT extern void TF_TensorBitcastFrom(const TF_Tensor* from,
TF_DataType type, TF_Tensor* to,
const int64_t* new_dims,
int num_new_dims,
TF_Status* status);
TF_TensorIsAligned
Returns bool iff this tensor is aligned.
/* From <tensorflow/c/tf_tensor.h> */
TF_CAPI_EXPORT extern bool TF_TensorIsAligned(const TF_Tensor*);
TF_NewStatus
Return a new status object.
/* From <tensorflow/c/tf_status.h> */
TF_CAPI_EXPORT extern TF_Status* TF_NewStatus(void);
TF_DeleteStatus
Delete a previously created status object.
/* From <tensorflow/c/tf_status.h> */
TF_CAPI_EXPORT extern void TF_DeleteStatus(TF_Status*);
TF_SetStatus
Record <code, msg> in *s. Any previous information is lost.
A common use is to clear a status: TF_SetStatus(s, TF_OK, "");
/* From <tensorflow/c/tf_status.h> */
TF_CAPI_EXPORT extern void TF_SetStatus(TF_Status* s, TF_Code code,
const char* msg);
TF_SetPayload
Record <key, value> as a payload in *s. The previous payload having the
same key (if any) is overwritten. Payload will not be added if the Status
is OK.
/* From <tensorflow/c/tf_status.h> */
TF_CAPI_EXPORT void TF_SetPayload(TF_Status* s, const char* key,
const char* value);
TF_SetStatusFromIOError
Convert from an I/O error code (e.g., errno) to a TF_Status value.
Any previous information is lost. Prefer to use this instead of TF_SetStatus
when the error comes from I/O operations.
/* From <tensorflow/c/tf_status.h> */
TF_CAPI_EXPORT extern void TF_SetStatusFromIOError(TF_Status* s, int error_code,
const char* context);
TF_GetCode
Return the code record in *s.
/* From <tensorflow/c/tf_status.h> */
TF_CAPI_EXPORT extern TF_Code TF_GetCode(const TF_Status* s);
TF_Message
Return a pointer to the (null-terminated) error message in *s. The
return value points to memory that is only usable until the next
mutation to *s. Always returns an empty string if TF_GetCode(s) is
TF_OK.
/* From <tensorflow/c/tf_status.h> */
TF_CAPI_EXPORT extern const char* TF_Message(const TF_Status* s);
TF_NewBufferFromString
Makes a copy of the input and sets an appropriate deallocator. Useful for
passing in read-only, input protobufs.
/* From <tensorflow/c/tf_buffer.h> */
TF_CAPI_EXPORT extern TF_Buffer* TF_NewBufferFromString(const void* proto,
size_t proto_len);
TF_NewBuffer
Useful for passing *out* a protobuf.
/* From <tensorflow/c/tf_buffer.h> */
TF_CAPI_EXPORT extern TF_Buffer* TF_NewBuffer(void);
TF_DeleteBuffer
/* From <tensorflow/c/tf_buffer.h> */
TF_CAPI_EXPORT extern void TF_DeleteBuffer(TF_Buffer*);
TF_GetBuffer
/* From <tensorflow/c/tf_buffer.h> */
TF_CAPI_EXPORT extern TF_Buffer TF_GetBuffer(TF_Buffer* buffer);
TF_StringInit
/* From <tensorflow/c/tf_tstring.h> */
TF_CAPI_EXPORT extern void TF_StringInit(TF_TString *t);
TF_StringCopy
/* From <tensorflow/c/tf_tstring.h> */
TF_CAPI_EXPORT extern void TF_StringCopy(TF_TString *dst, const char *src,
size_t size);
TF_StringAssignView
/* From <tensorflow/c/tf_tstring.h> */
TF_CAPI_EXPORT extern void TF_StringAssignView(TF_TString *dst, const char *src,
size_t size);
TF_StringGetDataPointer
/* From <tensorflow/c/tf_tstring.h> */
TF_CAPI_EXPORT extern const char *TF_StringGetDataPointer(
const TF_TString *tstr);
TF_StringGetType
/* From <tensorflow/c/tf_tstring.h> */
TF_CAPI_EXPORT extern TF_TString_Type TF_StringGetType(const TF_TString *str);
TF_StringGetSize
/* From <tensorflow/c/tf_tstring.h> */
TF_CAPI_EXPORT extern size_t TF_StringGetSize(const TF_TString *tstr);
TF_StringGetCapacity
/* From <tensorflow/c/tf_tstring.h> */
TF_CAPI_EXPORT extern size_t TF_StringGetCapacity(const TF_TString *str);
TF_StringDealloc
/* From <tensorflow/c/tf_tstring.h> */
TF_CAPI_EXPORT extern void TF_StringDealloc(TF_TString *tstr);
TF_DataTypeSize
TF_DataTypeSize returns the sizeof() for the underlying type corresponding
to the given TF_DataType enum value. Returns 0 for variable length types
(eg. TF_STRING) or on failure.
/* From <tensorflow/c/tf_datatype.h> */
TF_CAPI_EXPORT extern size_t TF_DataTypeSize(TF_DataType dt);
TF_NewOpDefinitionBuilder
Returns a newly allocated op definition builder for the given op name. The
returned builder may be customized with the `TF_OpDefinitionBuilder...`
functions and then registered with TensorFlow with TF_RegisterOpDefinition.
The returned pointer is either freed by a call to TF_RegisterOpDefinition, or
can be manually deleted by TF_DeleteOpDefinitionBuilder if it is never
registered.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern TF_OpDefinitionBuilder* TF_NewOpDefinitionBuilder(
const char* op_name);
TF_RegisterOpDefinition
Registers the given op builder with TensorFlow. Indicates success or
otherwise in the given status.
`builder` is freed whether the op was successfully registered or not. You
must call either this function or TF_DeleteOpDefinitionBuilder to free the
builder, but never both.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_RegisterOpDefinition(
TF_OpDefinitionBuilder* builder, TF_Status* status);
TF_DeleteOpDefinitionBuilder
Frees the given op definition builder. You must call either this function or
TF_RegisterOpDefinition to free the builder, but never both.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_DeleteOpDefinitionBuilder(
TF_OpDefinitionBuilder* builder);
TF_OpDefinitionBuilderAddAttr
Adds an attr to the given TF_OpDefinitionBuilder. The spec has
format "<name>:<type>" or "<name>:<type>=<default>"
where <name> matches regexp [a-zA-Z][a-zA-Z0-9_]*.
By convention, names containing only capital letters are reserved for
attributes whose values can be inferred by the operator implementation if not
supplied by the user. If the attribute name contains characters other than
capital letters, the operator expects the user to provide the attribute value
at operation runtime.
<type> can be:
"string", "int", "float", "bool", "type", "shape", or "tensor"
"numbertype", "realnumbertype", "quantizedtype"
(meaning "type" with a restriction on valid values)
"{int32,int64}" or {realnumbertype,quantizedtype,string}"
(meaning "type" with a restriction containing unions of value types)
"{\"foo\", \"bar\n baz\"}", or "{'foo', 'bar\n baz'}"
(meaning "string" with a restriction on valid values)
"list(string)", ..., "list(tensor)", "list(numbertype)", ...
(meaning lists of the above types)
"int >= 2" (meaning "int" with a restriction on valid values)
"list(string) >= 2", "list(int) >= 2"
(meaning "list(string)" / "list(int)" with length at least 2)
<default>, if included, should use the Proto text format
of <type>. For lists use [a, b, c] format.
Note that any attr specifying the length of an input or output will
get a default minimum of 1 unless the >= # syntax is used.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_OpDefinitionBuilderAddAttr(
TF_OpDefinitionBuilder* builder, const char* attr_spec);
TF_OpDefinitionBuilderAddInput
Adds an input to this TF_OpDefinitionBuilder.
The spec has form "<name>:<type-expr>" or "<name>:Ref(<type-expr>)"
where <name> matches regexp [a-z][a-z0-9_]* and <type-expr> can be:
* For a single tensor: <type>
* For a sequence of tensors with the same type: <number>*<type>
* For a sequence of tensors with different types: <type-list>
Where:
<type> is either one of "float", "int32", "string", ...
or the name of an attr (see TF_OpDefinitionBuilderAddAttr)
with type "type".
<number> is the name of an attr with type "int".
<type-list> is the name of an attr with type "list(type)".
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_OpDefinitionBuilderAddInput(
TF_OpDefinitionBuilder* builder, const char* input_spec);
TF_OpDefinitionBuilderAddOutput
Adds an output to this TF_OpDefinitionBuilder.
The spec has form "<name>:<type-expr>" or "<name>:Ref(<type-expr>)"
where <name> matches regexp [a-z][a-z0-9_]* and <type-expr> can be:
* For a single tensor: <type>
* For a sequence of tensors with the same type: <number>*<type>
* For a sequence of tensors with different types: <type-list>
Where:
<type> is either one of "float", "int32", "string", ...
or the name of an attr (see TF_OpDefinitionBuilderAddAttr)
with type "type".
<number> is the name of an attr with type "int".
<type-list> is the name of an attr with type "list(type)".
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_OpDefinitionBuilderAddOutput(
TF_OpDefinitionBuilder* builder, const char* output_spec);
TF_OpDefinitionBuilderSetIsCommutative
Sets the commutative property for the op built by the given builder.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_OpDefinitionBuilderSetIsCommutative(
TF_OpDefinitionBuilder* builder, bool is_commutative);
TF_OpDefinitionBuilderSetIsAggregate
Sets the is_aggregate property of the builder to the given value.
If is_aggregate is true, then the operation produced by this builder accepts
N >= 2 inputs and produces 1 output all of the same type. Should be
associative and commutative, and produce output with the same shape as the
input. The optimizer may replace an aggregate op taking input from multiple
devices with a tree of aggregate ops that aggregate locally within each
device (and possibly within groups of nearby devices) before communicating.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_OpDefinitionBuilderSetIsAggregate(
TF_OpDefinitionBuilder* builder, bool is_aggregate);
TF_OpDefinitionBuilderSetIsStateful
Sets the is_stateful property of the builder to the given value.
The op built by this builder is stateful if its behavior depends on some
state beyond its input tensors (e.g. variable reading op) or if it has a
side-effect (e.g. printing or asserting ops). Equivalently, stateless ops
must always produce the same output for the same input and have no
side-effects.
By default Ops may be moved between devices. Stateful ops should either not
be moved, or should only be moved if that state can also be moved (e.g. via
some sort of save / restore). Stateful ops are guaranteed to never be
optimized away by Common Subexpression Elimination (CSE).
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_OpDefinitionBuilderSetIsStateful(
TF_OpDefinitionBuilder* builder, bool is_stateful);
TF_OpDefinitionBuilderSetAllowsUninitializedInput
Sets the allows_uninitialized_input property of the operation built by this
builder.
By default, all inputs to an Op must be initialized Tensors. Ops that may
initialize tensors for the first time should set this field to true, to allow
the Op to take an uninitialized Tensor as input.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_OpDefinitionBuilderSetAllowsUninitializedInput(
TF_OpDefinitionBuilder* builder, bool allows_uninitialized_input);
TF_OpDefinitionBuilderDeprecated
Adds a deprecation warning for the given op. This indicates to the user that
`version` is the first TensorFlow GraphDef version for which the operation is
deprecated. `explanation` should contain the reason for the deprecation and
what to use instead.
This function is only an indicator that the operation may disappear in a
version of TensorFlow after `version`. It does not affect op registration.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_OpDefinitionBuilderDeprecated(
TF_OpDefinitionBuilder* builder, int version, const char* explanation);
TF_OpDefinitionBuilderSetShapeInferenceFunction
Sets the shape inference function for the op.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_OpDefinitionBuilderSetShapeInferenceFunction(
TF_OpDefinitionBuilder* builder,
void (*shape_inference_func)(TF_ShapeInferenceContext* ctx,
TF_Status* status));
TF_ShapeInferenceContextNumInputs
Returns the number of inputs in the given shape inference context.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern int64_t TF_ShapeInferenceContextNumInputs(
TF_ShapeInferenceContext* ctx);
TF_NewShapeHandle
Returns a newly allocated shape handle. The shapes represented by these
handles may be queried or mutated with the corresponding
TF_ShapeInferenceContext... functions.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern TF_ShapeHandle* TF_NewShapeHandle();
TF_ShapeInferenceContextGetInput
Places the ith input of the given shape inference context into the given
shape handle, or returns a status other than TF_OK indicating why the input
could not be retrieved
(for example, if i < 0 || i >= TF_ShapeInferenceContextNumInputs(ctx)).
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_ShapeInferenceContextGetInput(
TF_ShapeInferenceContext* ctx, int i, TF_ShapeHandle* handle,
TF_Status* status);
TF_ShapeInferenceContextSetOutput
Places the given shape handle into the `i`th output position of the given
context. Internally, the shape handle is copied; the caller may subsequently
delete `handle`.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT
extern void TF_ShapeInferenceContextSetOutput(TF_ShapeInferenceContext* ctx,
int i, TF_ShapeHandle* handle,
TF_Status* status);
TF_ShapeInferenceContextScalar
Returns a newly-allocated scalar shape handle. The returned handle should
be freed with TF_DeleteShapeHandle.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern TF_ShapeHandle* TF_ShapeInferenceContextScalar(
TF_ShapeInferenceContext* ctx);
TF_ShapeInferenceContextVectorFromSize
Returns a newly-allocate shape handle representing a vector of the given
size. The returned handle should be freed with TF_DeleteShapeHandle.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern TF_ShapeHandle* TF_ShapeInferenceContextVectorFromSize(
TF_ShapeInferenceContext* ctx, size_t size);
TF_NewDimensionHandle
Returns a newly allocated dimension handle. It must be freed with
TF_DeleteDimensionHandle.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern TF_DimensionHandle* TF_NewDimensionHandle();
TF_ShapeInferenceContext_GetAttrType
Interprets the named shape inference context attribute as a TF_DataType and
places it into *val. *status is set to TF_OK.
If the attribute could not be found or could not be interpreted as
TF_DataType, *status is populated with an error.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_ShapeInferenceContext_GetAttrType(
TF_ShapeInferenceContext* ctx, const char* attr_name, TF_DataType* val,
TF_Status* status);
TF_ShapeInferenceContextRank
Returns the rank of the shape represented by the given handle.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern int64_t TF_ShapeInferenceContextRank(
TF_ShapeInferenceContext* ctx, TF_ShapeHandle* handle);
TF_ShapeInferenceContextRankKnown
Returns 1 if `handle` has a known rank, 0 otherwise.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern int TF_ShapeInferenceContextRankKnown(
TF_ShapeInferenceContext* ctx, TF_ShapeHandle* handle);
TF_ShapeInferenceContextWithRank
If <handle> has rank <rank>, or its rank is unknown, return OK and return the
shape with asserted rank in <*result>. Otherwise an error is placed into
`status`.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_ShapeInferenceContextWithRank(
TF_ShapeInferenceContext* ctx, TF_ShapeHandle* handle, int64_t rank,
TF_ShapeHandle* result, TF_Status* status);
TF_ShapeInferenceContextWithRankAtLeast
If <handle> has rank at least <rank>, or its rank is unknown, return OK and
return the shape with asserted rank in <*result>. Otherwise an error is
placed into `status`.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_ShapeInferenceContextWithRankAtLeast(
TF_ShapeInferenceContext* ctx, TF_ShapeHandle* handle, int64_t rank,
TF_ShapeHandle* result, TF_Status* status);
TF_ShapeInferenceContextWithRankAtMost
If <handle> has rank at most <rank>, or its rank is unknown, return OK and
return the shape with asserted rank in <*result>. Otherwise an error is
placed into `status`.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_ShapeInferenceContextWithRankAtMost(
TF_ShapeInferenceContext* ctx, TF_ShapeHandle* handle, int64_t rank,
TF_ShapeHandle* result, TF_Status* status);
TF_ShapeInferenceContextDim
Places a handle to the ith dimension of the given shape into *result.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_ShapeInferenceContextDim(
TF_ShapeInferenceContext* ctx, TF_ShapeHandle* shape_handle, int64_t i,
TF_DimensionHandle* result);
TF_ShapeInferenceContextSubshape
Returns in <*result> a sub-shape of <shape_handle>, with dimensions
[start:end]. <start> and <end> can be negative, to index from the end of the
shape. <start> and <end> are set to the rank of <shape_handle> if > rank of
<shape_handle>.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_ShapeInferenceContextSubshape(
TF_ShapeInferenceContext* ctx, TF_ShapeHandle* shape_handle, int64_t start,
int64_t end, TF_ShapeHandle* result, TF_Status* status);
TF_ShapeInferenceContextSetUnknownShape
Places an unknown shape in all outputs for the given inference context. Used
for shape inference functions with ops whose output shapes are unknown.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_ShapeInferenceContextSetUnknownShape(
TF_ShapeInferenceContext* ctx, TF_Status* status);
TF_DimensionHandleValueKnown
Returns whether the given handle represents a known dimension.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern int TF_DimensionHandleValueKnown(
TF_DimensionHandle* dim_handle);
TF_DimensionHandleValue
Returns the value of the given dimension.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern int64_t TF_DimensionHandleValue(
TF_DimensionHandle* dim_handle);
TF_ShapeInferenceContextConcatenateShapes
Returns in <*result> the result of appending the dimensions of <second> to
those of <first>.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_ShapeInferenceContextConcatenateShapes(
TF_ShapeInferenceContext* ctx, TF_ShapeHandle* first,
TF_ShapeHandle* second, TF_ShapeHandle* result, TF_Status* status);
TF_DeleteShapeHandle
Frees the given shape handle.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_DeleteShapeHandle(TF_ShapeHandle* handle);
TF_DeleteDimensionHandle
Frees the given dimension handle.
/* From <tensorflow/c/ops.h> */
TF_CAPI_EXPORT extern void TF_DeleteDimensionHandle(TF_DimensionHandle* handle);
TF_CreateDir
Creates the specified directory. Typical status code are:
* TF_OK - successfully created the directory
* TF_ALREADY_EXISTS - directory already exists
* TF_PERMISSION_DENIED - dirname is not writable
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern void TF_CreateDir(const char* dirname, TF_Status* status);
TF_DeleteDir
Deletes the specified directory. Typical status codes are:
* TF_OK - successfully deleted the directory
* TF_FAILED_PRECONDITION - the directory is not empty
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern void TF_DeleteDir(const char* dirname, TF_Status* status);
TF_DeleteRecursively
Deletes the specified directory and all subdirectories and files underneath
it. This is accomplished by traversing the directory tree rooted at dirname
and deleting entries as they are encountered.
If dirname itself is not readable or does not exist, *undeleted_dir_count is
set to 1, *undeleted_file_count is set to 0 and an appropriate status (e.g.
TF_NOT_FOUND) is returned.
If dirname and all its descendants were successfully deleted, TF_OK is
returned and both error counters are set to zero.
Otherwise, while traversing the tree, undeleted_file_count and
undeleted_dir_count are updated if an entry of the corresponding type could
not be deleted. The returned error status represents the reason that any one
of these entries could not be deleted.
Typical status codes:
* TF_OK - dirname exists and we were able to delete everything underneath
* TF_NOT_FOUND - dirname doesn't exist
* TF_PERMISSION_DENIED - dirname or some descendant is not writable
* TF_UNIMPLEMENTED - some underlying functions (like Delete) are not
implemented
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern void TF_DeleteRecursively(const char* dirname,
int64_t* undeleted_file_count,
int64_t* undeleted_dir_count,
TF_Status* status);
TF_FileStat
Obtains statistics for the given path. If status is TF_OK, *stats is
updated, otherwise it is not touched.
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern void TF_FileStat(const char* filename,
TF_FileStatistics* stats,
TF_Status* status);
TF_NewWritableFile
Creates or truncates the given filename and returns a handle to be used for
appending data to the file. If status is TF_OK, *handle is updated and the
caller is responsible for freeing it (see TF_CloseWritableFile).
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern void TF_NewWritableFile(const char* filename,
TF_WritableFileHandle** handle,
TF_Status* status);
TF_CloseWritableFile
Closes the given handle and frees its memory. If there was a problem closing
the file, it is indicated by status. Memory is freed in any case.
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern void TF_CloseWritableFile(TF_WritableFileHandle* handle,
TF_Status* status);
TF_SyncWritableFile
Syncs content of the handle to the filesystem. Blocks waiting for the
filesystem to indicate that the content has been persisted.
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern void TF_SyncWritableFile(TF_WritableFileHandle* handle,
TF_Status* status);
TF_FlushWritableFile
Flush local buffers to the filesystem. If the process terminates after a
successful flush, the contents may still be persisted, since the underlying
filesystem may eventually flush the contents. If the OS or machine crashes
after a successful flush, the contents may or may not be persisted, depending
on the implementation.
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern void TF_FlushWritableFile(TF_WritableFileHandle* handle,
TF_Status* status);
TF_AppendWritableFile
Appends the given bytes to the file. Any failure to do so is indicated in
status.
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern void TF_AppendWritableFile(TF_WritableFileHandle* handle,
const char* data,
size_t length,
TF_Status* status);
TF_DeleteFile
Deletes the named file and indicates whether successful in *status.
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern void TF_DeleteFile(const char* filename,
TF_Status* status);
TF_StringStreamNext
Retrieves the next item from the given TF_StringStream and places a pointer
to it in *result. If no more items are in the list, *result is set to NULL
and false is returned.
Ownership of the items retrieved with this function remains with the library.
Item points are invalidated after a call to TF_StringStreamDone.
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern bool TF_StringStreamNext(TF_StringStream* list,
const char** result);
TF_StringStreamDone
Frees the resources associated with given string list. All pointers returned
by TF_StringStreamNext are invalid after this call.
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern void TF_StringStreamDone(TF_StringStream* list);
TF_GetChildren
Retrieves the list of children of the given directory. You can iterate
through the list with TF_StringStreamNext. The caller is responsible for
freeing the list (see TF_StringStreamDone).
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern TF_StringStream* TF_GetChildren(const char* filename,
TF_Status* status);
TF_GetLocalTempDirectories
Retrieves a list of directory names on the local machine that may be used for
temporary storage. You can iterate through the list with TF_StringStreamNext.
The caller is responsible for freeing the list (see TF_StringStreamDone).
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern TF_StringStream* TF_GetLocalTempDirectories(void);
TF_GetTempFileName
Creates a temporary file name with an extension.
The caller is responsible for freeing the returned pointer.
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern char* TF_GetTempFileName(const char* extension);
TF_NowNanos
Returns the number of nanoseconds since the Unix epoch.
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern uint64_t TF_NowNanos(void);
TF_NowMicros
Returns the number of microseconds since the Unix epoch.
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern uint64_t TF_NowMicros(void);
TF_NowSeconds
Returns the number of seconds since the Unix epoch.
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern uint64_t TF_NowSeconds(void);
TF_DefaultThreadOptions
Populates a TF_ThreadOptions struct with system-default values.
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern void TF_DefaultThreadOptions(TF_ThreadOptions* options);
TF_StartThread
Returns a new thread that is running work_func and is identified
(for debugging/performance-analysis) by thread_name.
The given param (which may be null) is passed to work_func when the thread
starts. In this way, data may be passed from the thread back to the caller.
Caller takes ownership of the result and must call TF_JoinThread on it
eventually.
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern TF_Thread* TF_StartThread(const TF_ThreadOptions* options,
const char* thread_name,
void (*work_func)(void*),
void* param);
TF_JoinThread
Waits for the given thread to finish execution, then deletes it.
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern void TF_JoinThread(TF_Thread* thread);
TF_LoadSharedLibrary
\brief Load a dynamic library.
Pass "library_filename" to a platform-specific mechanism for dynamically
loading a library. The rules for determining the exact location of the
library are platform-specific and are not documented here.
On success, place OK in status and return the newly created library handle.
Otherwise returns nullptr and set error status.
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern void* TF_LoadSharedLibrary(const char* library_filename,
TF_Status* status);
TF_GetSymbolFromLibrary
\brief Get a pointer to a symbol from a dynamic library.
"handle" should be a pointer returned from a previous call to
TF_LoadLibraryFromEnv. On success, place OK in status and return a pointer to
the located symbol. Otherwise returns nullptr and set error status.
/* From <tensorflow/c/env.h> */
TF_CAPI_EXPORT extern void* TF_GetSymbolFromLibrary(void* handle,
const char* symbol_name,
TF_Status* status);
TF_Log
/* From <tensorflow/c/logging.h> */
TF_CAPI_EXPORT extern void TF_Log(TF_LogLevel level, const char* fmt, ...);
TF_VLog
/* From <tensorflow/c/logging.h> */
TF_CAPI_EXPORT extern void TF_VLog(int level, const char* fmt, ...);
TF_DVLog
/* From <tensorflow/c/logging.h> */
TF_CAPI_EXPORT extern void TF_DVLog(int level, const char* fmt, ...);
TF_NewKernelBuilder
Allocates a new kernel builder and returns a pointer to it.
If non-null, TensorFlow will call create_func when it needs to instantiate
the kernel. The pointer returned by create_func will be passed to
compute_func and delete_func, thereby functioning as a "this" pointer for
referring to kernel instances.
The TF_OpKernelConstruction pointer passed to create_func is owned by
TensorFlow and will be deleted once create_func returns. It must not be used
after this.
When TensorFlow needs to perform a computation with this kernel, it will
call compute_func. This function will receive the pointer returned by
create_func (or null if no create_func was provided), along with the inputs
to the computation.
The TF_OpKernelContext pointer received by compute_func is owned by
TensorFlow and will be deleted once compute_func returns. It must not be used
after this.
Finally, when TensorFlow no longer needs the kernel, it will call
delete_func if one is provided. This function will receive the pointer
returned in `create_func` or nullptr if no `create_func` was provided.
The caller should pass the result of this function to
TF_RegisterKernelBuilder, which will take ownership of the pointer. If, for
some reason, the kernel builder will not be registered, the caller should
delete it with TF_DeleteKernelBuilder.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern TF_KernelBuilder* TF_NewKernelBuilder(
const char* op_name, const char* device_name,
void* (*create_func)(TF_OpKernelConstruction*),
void (*compute_func)(void*, TF_OpKernelContext*),
void (*delete_func)(void*));
TF_KernelBuilder_TypeConstraint
Specifies that this kernel's attribute only supports the given type.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_KernelBuilder_TypeConstraint(
TF_KernelBuilder* kernel_builder, const char* attr_name,
const TF_DataType type, TF_Status* status);
TF_KernelBuilder_HostMemory
Specify that this kernel requires/provides an input/output arg
in host memory (instead of the default, device memory).
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_KernelBuilder_HostMemory(
TF_KernelBuilder* kernel_builder, const char* arg_name);
TF_KernelBuilder_Priority
Specify a priority number for this kernel.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_KernelBuilder_Priority(
TF_KernelBuilder* kernel_builder, int32_t priority_number);
TF_KernelBuilder_Label
Specify a label for this kernel.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_KernelBuilder_Label(
TF_KernelBuilder* kernel_builder, const char* label);
TF_RegisterKernelBuilder
Register the given kernel builder with the TensorFlow runtime. If
registration fails, the given status will be populated.
This call takes ownership of the `builder` pointer.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_RegisterKernelBuilder(const char* kernel_name,
TF_KernelBuilder* builder,
TF_Status* status);
TF_RegisterKernelBuilderWithKernelDef
Register the given kernel builder with the TensorFlow runtime. If
registration fails, the given status will be populated.
This method is the same as TF_RegisterKernelBuilder except it takes in a
serialized KernelDef, and uses it for registration, instead of building a new
one. Users can choose to not provide a serialized KernelDef and in that case
it's identical to TF_RegisterKernelBuilder.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_RegisterKernelBuilderWithKernelDef(
const char* serialized_kernel_def, const char* name,
TF_KernelBuilder* builder, TF_Status* status);
TF_DeleteKernelBuilder
Deletes the given TF_KernelBuilder. This should be called only if the kernel
builder is not registered with TensorFlow via TF_RegisterKernelBuilder.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_DeleteKernelBuilder(TF_KernelBuilder* builder);
TF_GetStream
TF_GetStream returns the SP_Stream available in ctx.
This function returns a stream only for devices registered using the
StreamExecutor C API
(tensorflow/c/experimental/stream_executor/stream_executor.h). It will return
nullptr and set error status in all other cases.
Experimental: this function doesn't have compatibility guarantees and subject
to change at any time.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern SP_Stream TF_GetStream(TF_OpKernelContext* ctx,
TF_Status* status);
TF_NumInputs
TF_NumInputs returns the number of inputs available in ctx.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern int TF_NumInputs(TF_OpKernelContext* ctx);
TF_NumOutputs
TF_NumOutputs returns the number of outputs to be placed in *ctx by the
kernel.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern int TF_NumOutputs(TF_OpKernelContext* ctx);
TF_GetInput
Retrieves the ith input from ctx. If TF_GetCode(status) is TF_OK, *tensor is
populated and its ownership is passed to the caller. In any other case,
*tensor is not modified.
If i < 0 or i >= TF_NumInputs(ctx), *status is set to TF_OUT_OF_RANGE.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_GetInput(TF_OpKernelContext* ctx, int i,
TF_Tensor** tensor, TF_Status* status);
TF_InputRange
Retrieves the start and stop indices, given the input name. Equivalent to
OpKernel::InputRange(). `args` will contain the result indices and status.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_InputRange(TF_OpKernelContext* ctx,
const char* name,
TF_InputRange_Args* args);
TF_SetOutput
Sets the ith output of ctx to tensor. If TF_GetCode(status) is anything but
TF_OK, ctx is left unmodified.
If i < 0 or i >= TF_NumOutputs(ctx), *status is set to TF_OUT_OF_RANGE.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_SetOutput(TF_OpKernelContext* ctx, int i,
const TF_Tensor* tensor,
TF_Status* status);
TF_GetMutableOutput
Retrieves the ith output from ctx. If TF_GetCode(status) is TF_OK, *tensor is
populated and its ownership is passed to the caller. In any other case,
*tensor is not modified.
If i < 0 or i >= TF_NumOutputs(ctx), *status is set to TF_OUT_OF_RANGE.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern TF_Tensor* TF_GetMutableOutput(TF_OpKernelContext* ctx,
int i, TF_Status* status);
TF_GetSerializedFunctionDefLibrary
Retrieves a serialized FunctionDefLibrary. Status will be set.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_GetSerializedFunctionDefLibrary(
TF_OpKernelContext* ctx, TF_Buffer* serialized_function_def_library,
TF_Status* status);
TF_GetSerializedConfigProto
Retrieves a serialized ConfigProto. Status will be set.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_GetSerializedConfigProto(
TF_OpKernelContext* ctx, TF_Buffer* serialized_config_proto,
TF_Status* status);
TF_OpKernelConstruction_Failure
Notifies the given OpKernelConstruction that kernel construction has failed.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_OpKernelConstruction_Failure(
TF_OpKernelConstruction* ctx, TF_Status* status);
TF_OpKernelContext_Failure
Notifies the given OpKernelContext that the kernel's compute function has
failed.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_OpKernelContext_Failure(TF_OpKernelContext* ctx,
TF_Status* status);
TF_ExpectedOutputDataType
Returns the expected output data type of the ith output. If i < 0 or
i >= TF_NumOutputs(ctx), the program aborts.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern TF_DataType TF_ExpectedOutputDataType(
TF_OpKernelContext* ctx, int i);
TF_IsHostMemoryInput
Returns true if the ith input is allocated in host memory. If i < 0 or i >=
TF_NumInputs(ctx), the program aborts.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern bool TF_IsHostMemoryInput(TF_OpKernelContext* ctx, int i,
TF_Status* status);
TF_IsHostMemoryOutput
Returns true if the ith output is allocated in host memory. If i < 0 or i >=
TF_NumOutputs(ctx), the program aborts.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern bool TF_IsHostMemoryOutput(TF_OpKernelContext* ctx, int i,
TF_Status* status);
TF_StepId
Returns the step ID of the given context.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern int64_t TF_StepId(TF_OpKernelContext* ctx);
TF_OpKernelConstruction_GetNodeDef
Returns the serialized NodeDef protocol buffer for the kernel
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern TF_Buffer* TF_OpKernelConstruction_GetNodeDef(
TF_OpKernelConstruction* ctx, TF_Status* status);
TF_GetFrameId
Returns the frame ID of the given context.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern uint64_t TF_GetFrameId(TF_OpKernelContext* ctx);
TF_GetIterId
Returns the Iter ID of the given context.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern int64_t TF_GetIterId(TF_OpKernelContext* ctx);
TF_GetGraphDefVersion
Returns the graph def version of the given context.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern int TF_GetGraphDefVersion(TF_OpKernelContext* ctx);
TF_GetOpKernelName
Returns the name of the OpKernel.
The returned TF_StringView's underlying string is owned by the OpKernel and
has the same lifetime as the OpKernel.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern TF_StringView TF_GetOpKernelName(TF_OpKernelContext* ctx);
TF_GetResourceMgrDefaultContainerName
Returns the default container of the resource manager in OpKernelContext.
The returned TF_StringView's underlying string is owned by the OpKernel and
has the same lifetime as the OpKernel.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern TF_StringView TF_GetResourceMgrDefaultContainerName(
TF_OpKernelContext* ctx);
TF_GetOpKernelRequestedInput
Returns the name of the requested input at `index` from the OpKernel.
The returned TF_StringView's underlying string is owned by the OpKernel and
has the same lifetime as the OpKernel.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern TF_StringView TF_GetOpKernelRequestedInput(
TF_OpKernelContext* ctx, size_t index);
TF_OpKernelConstruction_GetAttrSize
Get the list_size and total_size of the attribute `attr_name` of `oper`.
list_size - the length of the list.
total_size - total size of the list.
(1) If attr_type == TF_ATTR_STRING
then total_size is the cumulative byte size
of all the strings in the list.
(3) If attr_type == TF_ATTR_SHAPE
then total_size is the number of dimensions
of the shape valued attribute, or -1
if its rank is unknown.
(4) If attr_type == TF_ATTR_SHAPE
then total_size is the cumulative number
of dimensions of all shapes in the list.
(5) Otherwise, total_size is undefined.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_OpKernelConstruction_GetAttrSize(
TF_OpKernelConstruction* ctx, const char* attr_name, int32_t* list_size,
int32_t* total_size, TF_Status* status);
TF_OpKernelConstruction_GetAttrType
Interprets the named kernel construction attribute as a TF_DataType and
places it into *val. *status is set to TF_OK.
If the attribute could not be found or could not be interpreted as
TF_DataType, *status is populated with an error.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_OpKernelConstruction_GetAttrType(
TF_OpKernelConstruction* ctx, const char* attr_name, TF_DataType* val,
TF_Status* status);
TF_OpKernelConstruction_GetAttrInt32
Interprets the named kernel construction attribute as int32_t and
places it into *val. *status is set to TF_OK.
If the attribute could not be found or could not be interpreted as
int32, *status is populated with an error.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_OpKernelConstruction_GetAttrInt32(
TF_OpKernelConstruction* ctx, const char* attr_name, int32_t* val,
TF_Status* status);
TF_OpKernelConstruction_GetAttrInt64
Interprets the named kernel construction attribute as int64_t and
places it into *val. *status is set to TF_OK.
If the attribute could not be found or could not be interpreted as
int64, *status is populated with an error.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_OpKernelConstruction_GetAttrInt64(
TF_OpKernelConstruction* ctx, const char* attr_name, int64_t* val,
TF_Status* status);
TF_OpKernelConstruction_GetAttrFloat
Interprets the named kernel construction attribute as float and
places it into *val. *status is set to TF_OK.
If the attribute could not be found or could not be interpreted as
float, *status is populated with an error.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_OpKernelConstruction_GetAttrFloat(
TF_OpKernelConstruction* ctx, const char* attr_name, float* val,
TF_Status* status);
TF_OpKernelConstruction_GetAttrBool
Interprets the named kernel construction attribute as bool and
places it into *val. *status is set to TF_OK.
If the attribute could not be found or could not be interpreted as
bool, *status is populated with an error.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_OpKernelConstruction_GetAttrBool(
TF_OpKernelConstruction* ctx, const char* attr_name, TF_Bool* val,
TF_Status* status);
TF_OpKernelConstruction_GetAttrString
Interprets the named kernel construction attribute as string and
places it into *val. `val` must
point to an array of length at least `max_length` (ideally set to
total_size from TF_OpKernelConstruction_GetAttrSize(ctx,
attr_name, list_size, total_size)). *status is set to TF_OK.
If the attribute could not be found or could not be interpreted as
string, *status is populated with an error.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_OpKernelConstruction_GetAttrString(
TF_OpKernelConstruction* ctx, const char* attr_name, char* val,
size_t max_length, TF_Status* status);
TF_OpKernelConstruction_GetAttrTensor
Interprets the named kernel construction attribute as tensor and places it
into *val. Allocates a new TF_Tensor which the caller is expected to take
ownership of (and can deallocate using TF_DeleteTensor). *status is set to
TF_OK.
If the attribute could not be found or could not be interpreted as
tensor, *status is populated with an error.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_OpKernelConstruction_GetAttrTensor(
TF_OpKernelConstruction* ctx, const char* attr_name, TF_Tensor** val,
TF_Status* status);
TF_OpKernelConstruction_GetAttrTypeList
Interprets the named kernel construction attribute as a TF_DataType array and
places it into *vals. *status is set to TF_OK.
`vals` must point to an array of length at least `max_values` (ideally set
to list_size from
TF_OpKernelConstruction_GetAttrSize(ctx, attr_name, list_size,
total_size)).
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_OpKernelConstruction_GetAttrTypeList(
TF_OpKernelConstruction* ctx, const char* attr_name, TF_DataType* vals,
int max_vals, TF_Status* status);
TF_OpKernelConstruction_GetAttrInt32List
Interprets the named kernel construction attribute as int32_t array and
places it into *vals. *status is set to TF_OK.
`vals` must point to an array of length at least `max_values` (ideally set
to list_size from
TF_OpKernelConstruction_GetAttrSize(ctx, attr_name, list_size,
total_size)).
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_OpKernelConstruction_GetAttrInt32List(
TF_OpKernelConstruction* ctx, const char* attr_name, int32_t* vals,
int max_vals, TF_Status* status);
TF_OpKernelConstruction_GetAttrInt64List
Interprets the named kernel construction attribute as int64_t array and
places it into *vals. *status is set to TF_OK.
`vals` must point to an array of length at least `max_values` (ideally set
to list_size from
TF_OpKernelConstruction_GetAttrSize(ctx, attr_name, list_size,
total_size)).
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_OpKernelConstruction_GetAttrInt64List(
TF_OpKernelConstruction* ctx, const char* attr_name, int64_t* vals,
int max_vals, TF_Status* status);
TF_OpKernelConstruction_GetAttrFloatList
Interprets the named kernel construction attribute as float array and
places it into *vals. *status is set to TF_OK.
`vals` must point to an array of length at least `max_values` (ideally set
to list_size from
TF_OpKernelConstruction_GetAttrSize(ctx, attr_name, list_size,
total_size)).
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_OpKernelConstruction_GetAttrFloatList(
TF_OpKernelConstruction* ctx, const char* attr_name, float* vals,
int max_vals, TF_Status* status);
TF_OpKernelConstruction_GetAttrBoolList
Interprets the named kernel construction attribute as bool array and
places it into *vals. *status is set to TF_OK.
`vals` must point to an array of length at least `max_values` (ideally set
to list_size from
TF_OpKernelConstruction_GetAttrSize(ctx, attr_name, list_size,
total_size)).
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_OpKernelConstruction_GetAttrBoolList(
TF_OpKernelConstruction* ctx, const char* attr_name, TF_Bool* vals,
int max_vals, TF_Status* status);
TF_OpKernelConstruction_GetAttrStringList
Interprets the named kernel construction attribute as string array and fills
in `vals` and `lengths`, each of which must point to an array of length at
least `max_values`. *status is set to TF_OK. The elements of values will
point to addresses in `storage` which must be at least `storage_size` bytes
in length. Ideally, max_values would be set to list_size and `storage` would
be at least total_size, obtained from
TF_OpKernelConstruction_GetAttrSize(ctx, attr_name, list_size,
total_size).
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_OpKernelConstruction_GetAttrStringList(
TF_OpKernelConstruction* ctx, const char* attr_name, char** vals,
size_t* lengths, int max_values, void* storage, size_t storage_size,
TF_Status* status);
TF_OpKernelConstruction_GetAttrTensorList
Interprets the named kernel construction attribute as tensor array and places
it into *vals. *status is set to TF_OK.
`vals` must point to an array of length at least `max_values`
(ideally set to list_size from TF_OpKernelConstruction_GetAttrSize(ctx,
attr_name, list_size, total_size)).
The caller takes ownership of all the non-null TF_Tensor* entries in `vals`
(which can be deleted using TF_DeleteTensor(vals[i])).
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern void TF_OpKernelConstruction_GetAttrTensorList(
TF_OpKernelConstruction* ctx, const char* attr_name, TF_Tensor** vals,
int max_values, TF_Status* status);
TF_OpKernelConstruction_GetAttrFunction
Interprets the named kernel construction attribute as a
tensorflow::NameAttrList and returns the serialized proto as TF_Buffer.
`status` will be set. The caller takes ownership of the returned TF_Buffer
(if not null) and is responsible for managing its lifetime.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern TF_Buffer* TF_OpKernelConstruction_GetAttrFunction(
TF_OpKernelConstruction* ctx, const char* attr_name, TF_Status* status);
TF_OpKernelConstruction_HasAttr
Return true if the kernel construction has the attr_name
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern bool TF_OpKernelConstruction_HasAttr(
TF_OpKernelConstruction* ctx, const char* attr_name, TF_Status* status);
TF_OpKernelConstruction_GetName
Returns the unique operation name for this OpKernel.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern TF_StringView TF_OpKernelConstruction_GetName(
TF_OpKernelConstruction* ctx);
TF_AllocateOutput
Allocates Tensor for output at given index. Caller takes ownership of
returned TF_Tensor and should deallocate it using TF_DeleteTensor(tensor).
This function should be used to allocate outputs inside kernel
compute function.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT TF_Tensor* TF_AllocateOutput(TF_OpKernelContext* context,
int index, TF_DataType dtype,
const int64_t* dims, int num_dims,
size_t len, TF_Status* status);
TF_ForwardInputOrAllocateOutput
Tries to forward one of the inputs given in input_indices to
output[output_index]. If none of the given inputs can be forwarded, calls
allocate_output() to allocate a new output buffer. The index of the
forwarded input will be assign to output argument forwarded_input (if it's
not nullptr). If no inputs are forwarded, forwarded_input will be assigned
-1.
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT TF_Tensor* TF_ForwardInputOrAllocateOutput(
TF_OpKernelContext* context, const int* candidate_input_indices,
int num_candidate_input_indices, int output_index,
const int64_t* output_dims, int output_num_dims, int* forwarded_input,
TF_Status* status);
TF_AllocateTemp
Allocates a temporary Tensor of the specified type and shape. The
Tensor must not be used after kernel construction is
complete.
num_dims must equal the size of array dims
/* From <tensorflow/c/kernels.h> */
TF_CAPI_EXPORT extern TF_Tensor* TF_AllocateTemp(
TF_OpKernelContext* context, TF_DataType dtype, const int64_t* dims,
int num_dims, TF_AllocatorAttributes* alloc_attrs, TF_Status* status);
TF_AssignVariable
Expose higher level Assignment operation for Pluggable vendors to implement
in the plugin for Training. The API takes in the context with indices for
the input and value tensors. It also accepts the copy callback provided by
pluggable vendor to do the copying of the tensors. The caller takes ownership
of the `source` and `dest` tensors and is responsible for freeing them with
TF_DeleteTensor. This function will return an error when the following
conditions are met:
1. `validate_shape` is set to `true`
2. The variable is initialized
3. The shape of the value tensor doesn't match the shape of the variable
tensor.
/* From <tensorflow/c/kernels_experimental.h> */
TF_CAPI_EXPORT extern void TF_AssignVariable(
TF_OpKernelContext* ctx, int input_index, int value_index,
bool validate_shape,
void (*copyFunc)(TF_OpKernelContext* ctx, TF_Tensor* source,
TF_Tensor* dest),
TF_Status* status);
TF_AssignRefVariable
Expose higher level Assignment operation for Pluggable vendors to implement
in the plugin for Training on ref variables. The API takes in the context
with indices for the input and value tensors. It also accepts the copy
callback provided by pluggable vendor to do the copying of the tensors. The
caller takes ownership of the `source` and `dest` tensors and is responsible
for freeing them with TF_DeleteTensor.
/* From <tensorflow/c/kernels_experimental.h> */
TF_CAPI_EXPORT extern void TF_AssignRefVariable(
TF_OpKernelContext* ctx, int input_ref_index, int output_ref_index,
int value_index, bool use_locking, bool validate_shape,
void (*copyFunc)(TF_OpKernelContext* ctx, TF_Tensor* source,
TF_Tensor* dest),
TF_Status* status);
TF_AssignUpdateVariable
Expose higher level AssignUpdate operation for Pluggable vendors to implement
in the plugin for Training. The API takes in the context with indices for the
input and value tensors. It also accepts the copy callback provided by
pluggable vendor to do the copying of the tensors and the update callback to
apply the arithmetic operation. The caller takes ownership of the `source`,
`dest`, `tensor` and `value` tensors and is responsible for freeing them with
TF_DeleteTensor.
/* From <tensorflow/c/kernels_experimental.h> */
TF_CAPI_EXPORT extern void TF_AssignUpdateVariable(
TF_OpKernelContext* ctx, int input_index, int value_index, int Op,
int isVariantType,
void (*copyFunc)(TF_OpKernelContext* ctx, TF_Tensor* source,
TF_Tensor* dest),
void (*updateFunc)(TF_OpKernelContext* ctx, TF_Tensor* tensor,
TF_Tensor* value, int Op),
TF_Status* status);
TF_MaybeLockVariableInputMutexesInOrder
This is a helper function which acquires mutexes in-order to provide
thread-safe way of performing weights update during the optimizer op. It
returns an opaque LockHolder handle back to plugin. This handle is passed to
the Release API for releasing the locks when the weight update is done. The
caller takes ownership of the `source` and `dest` tensors and is responsible
for freeing them with TF_DeleteTensor.
/* From <tensorflow/c/kernels_experimental.h> */
TF_CAPI_EXPORT extern void TF_MaybeLockVariableInputMutexesInOrder(
TF_OpKernelContext* ctx, bool do_lock, bool sparse, const int* const inputs,
size_t len,
void (*copyFunc)(TF_OpKernelContext* ctx, TF_Tensor* source,
TF_Tensor* dest),
TF_VariableInputLockHolder** lockHolder, TF_Status* status);
TF_GetInputTensorFromVariable
This interface returns `out` tensor which is updated corresponding to the
variable passed with input index. The caller takes ownership of the `source`
and `dest` tensors and is responsible for freeing them with TF_DeleteTensor.
/* From <tensorflow/c/kernels_experimental.h> */
TF_CAPI_EXPORT extern void TF_GetInputTensorFromVariable(
TF_OpKernelContext* ctx, int input, bool lock_held, bool isVariantType,
bool sparse,
void (*copyFunc)(TF_OpKernelContext* ctx, TF_Tensor* source,
TF_Tensor* dest),
TF_Tensor** out, TF_Status* status);
TF_OpKernelContext_ForwardRefInputToRefOutput
This interface forwards the reference from input to the output tensors
corresponding to the indices provided with `input_index` and `output_index`
/* From <tensorflow/c/kernels_experimental.h> */
TF_CAPI_EXPORT extern void TF_OpKernelContext_ForwardRefInputToRefOutput(
TF_OpKernelContext* ctx, int32_t input_index, int32_t output_index);
TF_ReleaseVariableInputLockHolder
The API releases the opaque lock handle returned with
`TF_MaybeLockVariableInputMutexesInOrder` API
/* From <tensorflow/c/kernels_experimental.h> */
TF_CAPI_EXPORT extern void TF_ReleaseVariableInputLockHolder(
TF_VariableInputLockHolder* lockHolder);
TF_GetInputByName
Allows plugin to get TF_Tensor when passed its input_name
/* From <tensorflow/c/kernels_experimental.h> */
TF_CAPI_EXPORT extern void TF_GetInputByName(TF_OpKernelContext* ctx,
const char* inputName,
TF_Tensor** tensor,
TF_Status* status);
TF_OpKernelConstruction_GetAttrTensorShape
Interprets the named kernel construction attribute as a shape attribute and
fills in `vals` with the size of each dimension. `vals` must point to an
array of length at least `max_values` (ideally set to total_size from
TF_OpKernelConstruction_GetAttrSize(ctx, attr_name, &list_size,
&total_size)).
/* From <tensorflow/c/kernels_experimental.h> */
TF_CAPI_EXPORT extern void TF_OpKernelConstruction_GetAttrTensorShape(
TF_OpKernelConstruction* ctx, const char* attr_name, int64_t* dims,
size_t num_dims, TF_Status* status);
TF_IsRefInput
/* From <tensorflow/c/kernels_experimental.h> */
TF_CAPI_EXPORT extern bool TF_IsRefInput(TF_OpKernelContext* ctx, int i,
TF_Status* status);
TF_AddNVariant
Expose higher level AddN operation for Pluggable vendors to implement
in the plugin for Variant data types. The API takes in the context and a
callback provided by pluggable vendor to do a Binary Add operation on the
tensors unwrapped from the Variant tensors. The caller takes ownership of the
`a`, `b` and `out` tensors and is responsible for freeing them with
TF_DeleteTensor.
/* From <tensorflow/c/kernels_experimental.h> */
TF_CAPI_EXPORT extern void TF_AddNVariant(
TF_OpKernelContext* ctx,
void (*binary_add_func)(TF_OpKernelContext* ctx, TF_Tensor* a, TF_Tensor* b,
TF_Tensor* out),
TF_Status* status);
TF_ZerosLikeVariant
Expose higher level ZerosLike operation for Pluggable vendors to implement
in the plugin for Variant data types. The API takes in the context and a
callback provided by pluggable vendor to do a ZerosLike operation on the
tensors unwrapped from the Variant tensors. The caller takes ownership of the
`input` and `out` tensors and is responsible for freeing them with
TF_DeleteTensor.
/* From <tensorflow/c/kernels_experimental.h> */
TF_CAPI_EXPORT extern void TF_ZerosLikeVariant(
TF_OpKernelContext* ctx,
void (*zeros_like_func)(TF_OpKernelContext* ctx, TF_Tensor* input,
TF_Tensor* out),
TF_Status* status);
TFE_NewContextOptions
Return a new options object.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern TFE_ContextOptions* TFE_NewContextOptions(void);
TFE_ContextOptionsSetConfig
Set the config in TF_ContextOptions.options.
config should be a serialized tensorflow.ConfigProto proto.
If config was not parsed successfully as a ConfigProto, record the
error information in *status.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_ContextOptionsSetConfig(
TFE_ContextOptions* options, const void* proto, size_t proto_len,
TF_Status* status);
TFE_ContextOptionsSetAsync
Sets the default execution mode (sync/async). Note that this can be
overridden per thread using TFE_ContextSetExecutorForThread.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_ContextOptionsSetAsync(TFE_ContextOptions*,
unsigned char enable);
TFE_ContextOptionsSetDevicePlacementPolicy
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_ContextOptionsSetDevicePlacementPolicy(
TFE_ContextOptions*, TFE_ContextDevicePlacementPolicy);
TFE_DeleteContextOptions
Destroy an options object.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_DeleteContextOptions(TFE_ContextOptions*);
TFE_NewContext
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern TFE_Context* TFE_NewContext(
const TFE_ContextOptions* opts, TF_Status* status);
TFE_DeleteContext
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_DeleteContext(TFE_Context* ctx);
TFE_ContextListDevices
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern TF_DeviceList* TFE_ContextListDevices(TFE_Context* ctx,
TF_Status* status);
TFE_ContextClearCaches
Clears the internal caches in the TFE context. Useful when reseeding random
ops.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_ContextClearCaches(TFE_Context* ctx);
TFE_ContextSetThreadLocalDevicePlacementPolicy
Sets a thread-local device placement policy. After this call, other calls to
TFE_Execute in the same thread will use the device policy specified here
instead of the device policy used to construct the context. This has no
effect on the device policy used by other program threads.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_ContextSetThreadLocalDevicePlacementPolicy(
TFE_Context* ctx, TFE_ContextDevicePlacementPolicy policy);
TFE_ContextGetDevicePlacementPolicy
Returns the device placement policy to be used by this context in the current
thread.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern TFE_ContextDevicePlacementPolicy
TFE_ContextGetDevicePlacementPolicy(TFE_Context* ctx);
TFE_ContextSetServerDef
A tensorflow.ServerDef specifies remote workers (in addition to the current
workers name). Operations created in this context can then be executed on
any of these remote workers by setting an appropriate device.
If the following is set, all servers identified by the
ServerDef must be up when the context is created.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_ContextSetServerDef(TFE_Context* ctx,
int keep_alive_secs,
const void* proto,
size_t proto_len,
TF_Status* status);
TFE_NewTensorHandle
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_NewTensorHandle(const TF_Tensor* t,
TF_Status* status);
TFE_DeleteTensorHandle
Indicates that the caller will not be using `h` any more.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_DeleteTensorHandle(TFE_TensorHandle* h);
TFE_TensorHandleDataType
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern TF_DataType TFE_TensorHandleDataType(TFE_TensorHandle* h);
TFE_TensorHandleNumDims
This function will block till the operation that produces `h` has completed.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern int TFE_TensorHandleNumDims(TFE_TensorHandle* h,
TF_Status* status);
TFE_TensorHandleNumElements
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern int64_t TFE_TensorHandleNumElements(TFE_TensorHandle* h,
TF_Status* status);
TFE_TensorHandleDim
This function will block till the operation that produces `h` has completed.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern int64_t TFE_TensorHandleDim(TFE_TensorHandle* h,
int dim_index,
TF_Status* status);
TFE_TensorHandleDeviceName
Returns the device of the operation that produced `h`. If `h` was produced by
a copy, returns the destination device of the copy. Note that the returned
device name is not always the device holding the tensor handle's memory. If
you want the latter, use TFE_TensorHandleBackingDeviceName. This function
will block till the operation that produces `h` has completed.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern const char* TFE_TensorHandleDeviceName(
TFE_TensorHandle* h, TF_Status* status);
TFE_TensorHandleBackingDeviceName
Returns the name of the device in whose memory `h` resides.
This function will block till the operation that produces `h` has completed.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern const char* TFE_TensorHandleBackingDeviceName(
TFE_TensorHandle* h, TF_Status* status);
TFE_TensorHandleCopySharingTensor
Return a pointer to a new TFE_TensorHandle that shares the underlying tensor
with `h`. On success, `status` is set to OK. On failure, `status` reflects
the error and a nullptr is returned.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_TensorHandleCopySharingTensor(
TFE_TensorHandle* h, TF_Status* status);
TFE_TensorHandleResolve
This function will block till the operation that produces `h` has
completed. The memory returned might alias the internal memory used by
TensorFlow. Hence, callers should not mutate this memory (for example by
modifying the memory region pointed to by TF_TensorData() on the returned
TF_Tensor).
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern TF_Tensor* TFE_TensorHandleResolve(TFE_TensorHandle* h,
TF_Status* status);
TFE_TensorHandleCopyToDevice
Create a new TFE_TensorHandle with the same contents as 'h' but placed
in the memory of the device name 'device_name'.
If source and destination are the same device, then this creates a new handle
that shares the underlying buffer. Otherwise, it currently requires at least
one of the source or destination devices to be CPU (i.e., for the source or
destination tensor to be placed in host memory).
If async execution is enabled, the copy may be enqueued and the call will
return "non-ready" handle. Else, this function returns after the copy has
been done.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_TensorHandleCopyToDevice(
TFE_TensorHandle* h, TFE_Context* ctx, const char* device_name,
TF_Status* status);
TFE_TensorHandleTensorDebugInfo
Retrieves TFE_TensorDebugInfo for `handle`.
If TFE_TensorHandleTensorDebugInfo succeeds, `status` is set to OK and caller
is responsible for deleting returned TFE_TensorDebugInfo.
If TFE_TensorHandleTensorDebugInfo fails, `status` is set to appropriate
error and nullptr is returned. This function can block till the operation
that produces `handle` has completed.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern TFE_TensorDebugInfo* TFE_TensorHandleTensorDebugInfo(
TFE_TensorHandle* h, TF_Status* status);
TFE_DeleteTensorDebugInfo
Deletes `debug_info`.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_DeleteTensorDebugInfo(
TFE_TensorDebugInfo* debug_info);
TFE_TensorDebugInfoOnDeviceNumDims
Returns the number of dimensions used to represent the tensor on its device.
The number of dimensions used to represent the tensor on device can be
different from the number returned by TFE_TensorHandleNumDims.
The return value was current at the time of TFE_TensorDebugInfo creation.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern int TFE_TensorDebugInfoOnDeviceNumDims(
TFE_TensorDebugInfo* debug_info);
TFE_TensorDebugInfoOnDeviceDim
Returns the number of elements in dimension `dim_index`.
Tensor representation on device can be transposed from its representation
on host. The data contained in dimension `dim_index` on device
can correspond to the data contained in another dimension in on-host
representation. The dimensions are indexed using the standard TensorFlow
major-to-minor order (slowest varying dimension first),
not the XLA's minor-to-major order.
On-device dimensions can be padded. TFE_TensorDebugInfoOnDeviceDim returns
the number of elements in a dimension after padding.
The return value was current at the time of TFE_TensorDebugInfo creation.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern int64_t TFE_TensorDebugInfoOnDeviceDim(
TFE_TensorDebugInfo* debug_info, int dim_index);
TFE_NewOp
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern TFE_Op* TFE_NewOp(TFE_Context* ctx,
const char* op_or_function_name,
TF_Status* status);
TFE_DeleteOp
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_DeleteOp(TFE_Op* op);
TFE_OpGetName
Returns the op or function name `op` will execute.
The returned string remains valid throughout the lifetime of 'op'.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern const char* TFE_OpGetName(const TFE_Op* op,
TF_Status* status);
TFE_OpGetContext
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern TFE_Context* TFE_OpGetContext(const TFE_Op* op,
TF_Status* status);
TFE_OpSetDevice
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpSetDevice(TFE_Op* op, const char* device_name,
TF_Status* status);
TFE_OpGetDevice
The returned string remains valid throughout the lifetime of 'op'.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern const char* TFE_OpGetDevice(const TFE_Op* op,
TF_Status* status);
TFE_OpAddInput
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpAddInput(TFE_Op* op, TFE_TensorHandle* input,
TF_Status* status);
TFE_OpAddInputList
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpAddInputList(TFE_Op* op,
TFE_TensorHandle** inputs,
int num_inputs,
TF_Status* status);
TFE_OpGetFlatInputCount
Fetches the current number of inputs attached to `op`.
Does not use the operation's definition to determine how many inputs should
be attached. It is intended for use with TFE_OpGetFlatInput to inspect an
already-finalized operation.
Note that TFE_OpGetFlatInputCount and TFE_OpGetFlatInput operate on a flat
sequence of inputs, unlike TFE_OpGetInputLength (for getting the length of a
particular named input list, which may only be part of the op's inputs).
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern int TFE_OpGetFlatInputCount(const TFE_Op* op,
TF_Status* status);
TFE_OpGetFlatInput
Returns a borrowed reference to one of `op`'s inputs. Use
`TFE_TensorHandleCopySharingTensor` to make a new reference.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_OpGetFlatInput(const TFE_Op* op,
int index,
TF_Status* status);
TFE_OpGetAttrType
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern TF_AttrType TFE_OpGetAttrType(TFE_Op* op,
const char* attr_name,
unsigned char* is_list,
TF_Status* status);
TFE_OpNameGetAttrType
Get an attribute type given an op name; a fusion of TFE_NewOp and
TFE_OpGetAttrType for use from Python without the overhead of the individual
calls and memory management of TFE_Op.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern TF_AttrType TFE_OpNameGetAttrType(
TFE_Context* ctx, const char* op_or_function_name, const char* attr_name,
unsigned char* is_list, TF_Status* status);
TFE_OpSetAttrString
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpSetAttrString(TFE_Op* op,
const char* attr_name,
const void* value,
size_t length);
TFE_OpSetAttrInt
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpSetAttrInt(TFE_Op* op, const char* attr_name,
int64_t value);
TFE_OpSetAttrFloat
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpSetAttrFloat(TFE_Op* op, const char* attr_name,
float value);
TFE_OpSetAttrBool
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpSetAttrBool(TFE_Op* op, const char* attr_name,
unsigned char value);
TFE_OpSetAttrType
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpSetAttrType(TFE_Op* op, const char* attr_name,
TF_DataType value);
TFE_OpSetAttrShape
If the number of dimensions is unknown, `num_dims` must be set to
-1 and `dims` can be null. If a dimension is unknown, the
corresponding entry in the `dims` array must be -1.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpSetAttrShape(TFE_Op* op, const char* attr_name,
const int64_t* dims,
const int num_dims,
TF_Status* out_status);
TFE_OpSetAttrFunction
Sets the attribute attr_name to be a function specified by 'function'.
TODO(ashankar,iga): Add this functionality to the C API for graph
construction. Perhaps we want an AttrValueMap equivalent in the C API?
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpSetAttrFunction(TFE_Op* op,
const char* attr_name,
const TFE_Op* value);
TFE_OpSetAttrFunctionName
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT void TFE_OpSetAttrFunctionName(TFE_Op* op, const char* attr_name,
const char* data, size_t length);
TFE_OpSetAttrTensor
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpSetAttrTensor(TFE_Op* op,
const char* attr_name,
TF_Tensor* tensor,
TF_Status* status);
TFE_OpSetAttrStringList
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpSetAttrStringList(TFE_Op* op,
const char* attr_name,
const void* const* values,
const size_t* lengths,
int num_values);
TFE_OpSetAttrIntList
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpSetAttrIntList(TFE_Op* op,
const char* attr_name,
const int64_t* values,
int num_values);
TFE_OpSetAttrFloatList
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpSetAttrFloatList(TFE_Op* op,
const char* attr_name,
const float* values,
int num_values);
TFE_OpSetAttrBoolList
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpSetAttrBoolList(TFE_Op* op,
const char* attr_name,
const unsigned char* values,
int num_values);
TFE_OpSetAttrTypeList
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpSetAttrTypeList(TFE_Op* op,
const char* attr_name,
const TF_DataType* values,
int num_values);
TFE_OpSetAttrShapeList
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpSetAttrShapeList(
TFE_Op* op, const char* attr_name, const int64_t** dims,
const int* num_dims, int num_values, TF_Status* out_status);
TFE_OpSetAttrFunctionList
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_OpSetAttrFunctionList(TFE_Op* op,
const char* attr_name,
const TFE_Op** value,
int num_values);
TFE_OpGetInputLength
Returns the length (number of tensors) of the input argument `input_name`
found in the provided `op`.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern int TFE_OpGetInputLength(TFE_Op* op,
const char* input_name,
TF_Status* status);
TFE_OpGetOutputLength
Returns the length (number of tensors) of the output argument `output_name`
found in the provided `op`.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern int TFE_OpGetOutputLength(TFE_Op* op,
const char* output_name,
TF_Status* status);
TFE_Execute
Execute the operation defined by 'op' and return handles to computed
tensors in `retvals`.
'retvals' must point to a pre-allocated array of TFE_TensorHandle* and
'*num_retvals' should be set to the size of this array. It is an error if
the size of 'retvals' is less than the number of outputs. This call sets
*num_retvals to the number of outputs.
If async execution is enabled, the call may simply enqueue the execution
and return "non-ready" handles in `retvals`. Note that any handles contained
in 'op' should not be mutated till the kernel execution actually finishes.
For sync execution, if any of the inputs to `op` are not ready, this call
will block till they become ready and then return when the kernel execution
is done.
TODO(agarwal): change num_retvals to int from int*.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_Execute(TFE_Op* op, TFE_TensorHandle** retvals,
int* num_retvals, TF_Status* status);
TFE_ContextAddFunctionDef
Add a function (serialized FunctionDef protocol buffer) to ctx so
that it can be invoked using TFE_Execute.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_ContextAddFunctionDef(
TFE_Context* ctx, const char* serialized_function_def, size_t size,
TF_Status* status);
TFE_ContextAddFunction
Adds a function (created from TF_GraphToFunction or
TF_FunctionImportFunctionDef) to the context, allowing it to be executed with
TFE_Execute by creating an op with the same name as the function.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_ContextAddFunction(TFE_Context* ctx,
TF_Function* function,
TF_Status* status);
TFE_ContextRemoveFunction
Removes a function from the context. Once removed, you can no longer
TFE_Execute it or TFE_Execute any TFE_Op which has it as an attribute or any
other function which calls it as an attribute.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_ContextRemoveFunction(TFE_Context* ctx,
const char* name,
TF_Status* status);
TFE_ContextHasFunction
Checks whether a function is registered under `name`.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT unsigned char TFE_ContextHasFunction(TFE_Context* ctx,
const char* name);
TFE_ContextEnableRunMetadata
Enables tracing of RunMetadata on the ops executed from this context.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_ContextEnableRunMetadata(TFE_Context* ctx);
TFE_ContextDisableRunMetadata
Disables tracing of RunMetadata on the ops executed from this context.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_ContextDisableRunMetadata(TFE_Context* ctx);
TFE_ContextExportRunMetadata
Populates the passed-in buffer with a serialized RunMetadata protocol buffer
containing any run metadata information accumulated so far and clears this
information.
If async mode is enabled, this call blocks till all currently pending ops are
done.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_ContextExportRunMetadata(TFE_Context* ctx,
TF_Buffer* buf,
TF_Status* status);
TFE_ContextStartStep
Some TF ops need a step container to be set to limit the lifetime of some
resources (mostly TensorArray and Stack, used in while loop gradients in
graph mode). Calling this on a context tells it to start a step.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_ContextStartStep(TFE_Context* ctx);
TFE_ContextEndStep
Ends a step. When there is no active step (that is, every started step has
been ended) step containers will be cleared. Note: it is not safe to call
TFE_ContextEndStep while ops that rely on the step container may be running.
/* From <tensorflow/c/eager/c_api.h> */
TF_CAPI_EXPORT extern void TFE_ContextEndStep(TFE_Context* ctx);
TFE_HandleToDLPack
Converts eager tensor handle to DLPack (DLManagedTensor*), and return the
void* for further PyCapsule construction.
/* From <tensorflow/c/eager/dlpack.h> */
TF_CAPI_EXPORT extern void* TFE_HandleToDLPack(TFE_TensorHandle* h,
TF_Status* status);
TFE_HandleFromDLPack
Converts DLPack (DLManagedTensor*) to eager tensor handle.
/* From <tensorflow/c/eager/dlpack.h> */
TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_HandleFromDLPack(void* dlm,
TF_Status* status,
TFE_Context* ctx);
TFE_CallDLManagedTensorDeleter
Calls the destructor of DLManagedTensor, used in the destructor of PyCapsule.
/* From <tensorflow/c/eager/dlpack.h> */
TF_CAPI_EXPORT extern void TFE_CallDLManagedTensorDeleter(void* dlm_ptr);
TFE_OpReset
Resets `op_to_reset` with `op_or_function_name` and `raw_device_name`. This
is for performance optimization by reusing an exiting unused op rather than
creating a new op every time. If `raw_device_name` is `NULL` or empty, it
does not set the device name. If it's not `NULL`, then it attempts to parse
and set the device name. It's effectively `TFE_OpSetDevice`, but it is faster
than separately calling it because if the existing op has the same
`raw_device_name`, it skips parsing and just leave as it is.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_OpReset(TFE_Op* op_to_reset,
const char* op_or_function_name,
const char* raw_device_name,
TF_Status* status);
TFE_ContextEnableGraphCollection
Enables only graph collection in RunMetadata on the functions executed from
this context.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_ContextEnableGraphCollection(TFE_Context* ctx);
TFE_ContextDisableGraphCollection
Disables only graph collection in RunMetadata on the functions executed from
this context.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_ContextDisableGraphCollection(TFE_Context* ctx);
TFE_MonitoringCounterCellIncrementBy
Atomically increments the value of the cell. The value must be non-negative.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringCounterCellIncrementBy(
TFE_MonitoringCounterCell* cell, int64_t value);
TFE_MonitoringCounterCellValue
Retrieves the current value of the cell.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern int64_t TFE_MonitoringCounterCellValue(
TFE_MonitoringCounterCell* cell);
TFE_MonitoringNewCounter0
Returns a new Counter metric object. The caller should manage lifetime of
the object. Using duplicate metric name will crash the program with fatal
error.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringCounter0* TFE_MonitoringNewCounter0(
const char* name, TF_Status* status, const char* description);
TFE_MonitoringDeleteCounter0
Deletes the Counter object.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteCounter0(
TFE_MonitoringCounter0* counter);
TFE_MonitoringGetCellCounter0
Retrieves the cell from the Counter object. The Counter object will manage
lifetime of the cell.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringCounterCell* TFE_MonitoringGetCellCounter0(
TFE_MonitoringCounter0* counter);
TFE_MonitoringNewCounter1
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringCounter1* TFE_MonitoringNewCounter1(
const char* name, TF_Status* status, const char* description,
const char* label1);
TFE_MonitoringDeleteCounter1
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteCounter1(
TFE_MonitoringCounter1* counter);
TFE_MonitoringGetCellCounter1
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringCounterCell* TFE_MonitoringGetCellCounter1(
TFE_MonitoringCounter1* counter, const char* label1);
TFE_MonitoringNewCounter2
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringCounter2* TFE_MonitoringNewCounter2(
const char* name, TF_Status* status, const char* description,
const char* label1, const char* label2);
TFE_MonitoringDeleteCounter2
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteCounter2(
TFE_MonitoringCounter2* counter);
TFE_MonitoringGetCellCounter2
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringCounterCell* TFE_MonitoringGetCellCounter2(
TFE_MonitoringCounter2* counter, const char* label1, const char* label2);
TFE_MonitoringIntGaugeCellSet
Atomically set the value of the cell.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringIntGaugeCellSet(
TFE_MonitoringIntGaugeCell* cell, int64_t value);
TFE_MonitoringIntGaugeCellValue
Retrieves the current value of the cell.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern int64_t TFE_MonitoringIntGaugeCellValue(
TFE_MonitoringIntGaugeCell* cell);
TFE_MonitoringNewIntGauge0
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringIntGauge0* TFE_MonitoringNewIntGauge0(
const char* name, TF_Status* out_status, const char* description);
TFE_MonitoringDeleteIntGauge0
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteIntGauge0(
TFE_MonitoringIntGauge0* gauge);
TFE_MonitoringGetCellIntGauge0
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringIntGaugeCell*
TFE_MonitoringGetCellIntGauge0(TFE_MonitoringIntGauge0* gauge);
TFE_MonitoringNewIntGauge1
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringIntGauge1* TFE_MonitoringNewIntGauge1(
const char* name, TF_Status* out_status, const char* description,
const char* label1);
TFE_MonitoringDeleteIntGauge1
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteIntGauge1(
TFE_MonitoringIntGauge1* gauge);
TFE_MonitoringGetCellIntGauge1
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringIntGaugeCell*
TFE_MonitoringGetCellIntGauge1(TFE_MonitoringIntGauge1* gauge,
const char* label1);
TFE_MonitoringNewIntGauge2
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringIntGauge2* TFE_MonitoringNewIntGauge2(
const char* name, TF_Status* out_status, const char* description,
const char* label1, const char* label2);
TFE_MonitoringDeleteIntGauge2
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteIntGauge2(
TFE_MonitoringIntGauge2* gauge);
TFE_MonitoringGetCellIntGauge2
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringIntGaugeCell*
TFE_MonitoringGetCellIntGauge2(TFE_MonitoringIntGauge2* gauge,
const char* label1, const char* label2);
TFE_MonitoringStringGaugeCellSet
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringStringGaugeCellSet(
TFE_MonitoringStringGaugeCell* cell, const char* value);
TFE_MonitoringStringGaugeCellValue
Retrieves the string value and saves it in the buffer.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern const void TFE_MonitoringStringGaugeCellValue(
TFE_MonitoringStringGaugeCell* cell, TF_Buffer* buf);
TFE_MonitoringNewStringGauge0
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringStringGauge0* TFE_MonitoringNewStringGauge0(
const char* name, TF_Status* out_status, const char* description);
TFE_MonitoringDeleteStringGauge0
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteStringGauge0(
TFE_MonitoringStringGauge0* gauge);
TFE_MonitoringGetCellStringGauge0
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringStringGaugeCell*
TFE_MonitoringGetCellStringGauge0(TFE_MonitoringStringGauge0* gauge);
TFE_MonitoringNewStringGauge1
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringStringGauge1* TFE_MonitoringNewStringGauge1(
const char* name, TF_Status* out_status, const char* description,
const char* label1);
TFE_MonitoringDeleteStringGauge1
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteStringGauge1(
TFE_MonitoringStringGauge1* gauge);
TFE_MonitoringGetCellStringGauge1
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringStringGaugeCell*
TFE_MonitoringGetCellStringGauge1(TFE_MonitoringStringGauge1* gauge,
const char* label1);
TFE_MonitoringNewStringGauge2
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringStringGauge2* TFE_MonitoringNewStringGauge2(
const char* name, TF_Status* out_status, const char* description,
const char* label1, const char* label2);
TFE_MonitoringDeleteStringGauge2
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteStringGauge2(
TFE_MonitoringStringGauge2* gauge);
TFE_MonitoringGetCellStringGauge2
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringStringGaugeCell*
TFE_MonitoringGetCellStringGauge2(TFE_MonitoringStringGauge2* gauge,
const char* label1, const char* label2);
TFE_MonitoringNewStringGauge3
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringStringGauge3* TFE_MonitoringNewStringGauge3(
const char* name, TF_Status* out_status, const char* description,
const char* label1, const char* label2, const char* label3);
TFE_MonitoringDeleteStringGauge3
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteStringGauge3(
TFE_MonitoringStringGauge3* gauge);
TFE_MonitoringGetCellStringGauge3
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringStringGaugeCell*
TFE_MonitoringGetCellStringGauge3(TFE_MonitoringStringGauge3* gauge,
const char* label1, const char* label2,
const char* label3);
TFE_MonitoringNewStringGauge4
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringStringGauge4* TFE_MonitoringNewStringGauge4(
const char* name, TF_Status* out_status, const char* description,
const char* label1, const char* label2, const char* label3,
const char* label4);
TFE_MonitoringDeleteStringGauge4
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteStringGauge4(
TFE_MonitoringStringGauge4* gauge);
TFE_MonitoringGetCellStringGauge4
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringStringGaugeCell*
TFE_MonitoringGetCellStringGauge4(TFE_MonitoringStringGauge4* gauge,
const char* label1, const char* label2,
const char* label3, const char* label4);
TFE_MonitoringBoolGaugeCellSet
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringBoolGaugeCellSet(
TFE_MonitoringBoolGaugeCell* cell, bool value);
TFE_MonitoringBoolGaugeCellValue
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern bool TFE_MonitoringBoolGaugeCellValue(
TFE_MonitoringBoolGaugeCell* cell);
TFE_MonitoringNewBoolGauge0
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringBoolGauge0* TFE_MonitoringNewBoolGauge0(
const char* name, TF_Status* out_status, const char* description);
TFE_MonitoringDeleteBoolGauge0
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteBoolGauge0(
TFE_MonitoringBoolGauge0* gauge);
TFE_MonitoringGetCellBoolGauge0
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringBoolGaugeCell*
TFE_MonitoringGetCellBoolGauge0(TFE_MonitoringBoolGauge0* gauge);
TFE_MonitoringNewBoolGauge1
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringBoolGauge1* TFE_MonitoringNewBoolGauge1(
const char* name, TF_Status* out_status, const char* description,
const char* label1);
TFE_MonitoringDeleteBoolGauge1
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteBoolGauge1(
TFE_MonitoringBoolGauge1* gauge);
TFE_MonitoringGetCellBoolGauge1
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringBoolGaugeCell*
TFE_MonitoringGetCellBoolGauge1(TFE_MonitoringBoolGauge1* gauge,
const char* label1);
TFE_MonitoringNewBoolGauge2
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringBoolGauge2* TFE_MonitoringNewBoolGauge2(
const char* name, TF_Status* out_status, const char* description,
const char* label1, const char* label2);
TFE_MonitoringDeleteBoolGauge2
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteBoolGauge2(
TFE_MonitoringBoolGauge2* gauge);
TFE_MonitoringGetCellBoolGauge2
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringBoolGaugeCell*
TFE_MonitoringGetCellBoolGauge2(TFE_MonitoringBoolGauge2* gauge,
const char* label1, const char* label2);
TFE_MonitoringSamplerCellAdd
Atomically add the value of the cell.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringSamplerCellAdd(
TFE_MonitoringSamplerCell* cell, double value);
TFE_MonitoringSamplerCellValue
Retrieves the current value of the cell. The return value is a HistogramProto
saved in the buffer.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringSamplerCellValue(
TFE_MonitoringSamplerCell* cell, TF_Buffer* buf);
TFE_MonitoringNewExponentialBuckets
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringBuckets*
TFE_MonitoringNewExponentialBuckets(double scale, double growth_factor,
int bucket_count);
TFE_MonitoringDeleteBuckets
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteBuckets(
TFE_MonitoringBuckets* buckets);
TFE_MonitoringNewSampler0
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringSampler0* TFE_MonitoringNewSampler0(
const char* name, TFE_MonitoringBuckets* buckets, TF_Status* out_status,
const char* description);
TFE_MonitoringDeleteSampler0
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteSampler0(
TFE_MonitoringSampler0* sampler);
TFE_MonitoringGetCellSampler0
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringSamplerCell* TFE_MonitoringGetCellSampler0(
TFE_MonitoringSampler0* sampler);
TFE_MonitoringNewSampler1
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringSampler1* TFE_MonitoringNewSampler1(
const char* name, TFE_MonitoringBuckets* buckets, TF_Status* out_status,
const char* description, const char* label1);
TFE_MonitoringDeleteSampler1
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteSampler1(
TFE_MonitoringSampler1* sampler);
TFE_MonitoringGetCellSampler1
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringSamplerCell* TFE_MonitoringGetCellSampler1(
TFE_MonitoringSampler1* sampler, const char* label1);
TFE_MonitoringNewSampler2
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringSampler2* TFE_MonitoringNewSampler2(
const char* name, TFE_MonitoringBuckets* buckets, TF_Status* out_status,
const char* description, const char* label1, const char* label2);
TFE_MonitoringDeleteSampler2
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_MonitoringDeleteSampler2(
TFE_MonitoringSampler2* sampler);
TFE_MonitoringGetCellSampler2
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_MonitoringSamplerCell* TFE_MonitoringGetCellSampler2(
TFE_MonitoringSampler2* sampler, const char* label1, const char* label2);
TFE_ContextOptionsSetTfrt
Sets whether to use TFRT
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_ContextOptionsSetTfrt(TFE_ContextOptions*,
bool use_tfrt);
TFE_ContextOptionsSetTfrtDistributedRuntime
Sets whether to use TFRT distributed runtime
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_ContextOptionsSetTfrtDistributedRuntime(
TFE_ContextOptions* options, bool use_tfrt_distributed_runtime);
TFE_GetContextId
Returns the context_id from the EagerContext which is used by the
EagerService to maintain consistency between client and worker. The
context_id is initialized with a dummy value and is later set when the worker
is initialized (either locally or remotely). The context_id can change during
the process lifetime although this should cause the worker to be
reinitialized (e.g. cleared caches) as well.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern uint64_t TFE_GetContextId(TFE_Context* ctx);
TFE_NewCancellationManager
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_CancellationManager* TFE_NewCancellationManager();
TFE_CancellationManagerIsCancelled
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern bool TFE_CancellationManagerIsCancelled(
TFE_CancellationManager*);
TFE_CancellationManagerStartCancel
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_CancellationManagerStartCancel(
TFE_CancellationManager*);
TFE_DeleteCancellationManager
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_DeleteCancellationManager(
TFE_CancellationManager*);
TFE_OpSetCancellationManager
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_OpSetCancellationManager(
TFE_Op* op, TFE_CancellationManager* cancellation_manager,
TF_Status* status);
TFE_NewExecutor
Creates a new eager Executor. Nodes in one executor are guaranteed to be
executed in sequence. Assigning nodes to different executors allows executing
nodes in parallel.
in_flight_nodes_limit: when is_async is true, this value controls the
maximum number of in flight async nodes. Enqueuing of additional async ops
after the limit is reached blocks until some inflight nodes finishes.
The effect is bounding the memory held by inflight TensorHandles that are
referenced by the inflight nodes.
A recommended value has not been established.
A value of 0 removes the limit, which is the behavior of TensorFlow 2.11.
When is_async is false, the value is ignored.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_Executor* TFE_NewExecutor(
bool is_async, bool enable_streaming_enqueue, int in_flight_nodes_limit);
TFE_DeleteExecutor
Deletes the eager Executor without waiting for enqueued nodes. Please call
TFE_ExecutorWaitForAllPendingNodes before calling this API if you want to
make sure all nodes are finished.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_DeleteExecutor(TFE_Executor*);
TFE_ExecutorIsAsync
Returns true if the executor is in async mode.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern bool TFE_ExecutorIsAsync(TFE_Executor*);
TFE_ExecutorWaitForAllPendingNodes
Causes the calling thread to block till all ops dispatched in this executor
have been executed. Note that "execution" here refers to kernel execution /
scheduling of copies, etc. Similar to sync execution, it doesn't guarantee
that lower level device queues (like GPU streams) have been flushed.
This call may not block for execution of ops enqueued concurrently with this
call.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_ExecutorWaitForAllPendingNodes(
TFE_Executor*, TF_Status* status);
TFE_ExecutorClearError
When an error happens, any pending operations are discarded, and newly issued
ops return an error. This call clears the error state and re-enables
execution of newly issued ops.
Note that outputs of discarded ops remain in a corrupt state and should not
be used for future calls.
TODO(agarwal): mark the affected handles and raise errors if they are used.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_ExecutorClearError(TFE_Executor*);
TFE_ContextSetExecutorForThread
Sets a custom Executor for the current thread. All nodes created by this
thread will be added to this Executor. It will override the current executor.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_ContextSetExecutorForThread(TFE_Context*,
TFE_Executor*);
TFE_ContextGetExecutorForThread
Returns the Executor for the current thread.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_Executor* TFE_ContextGetExecutorForThread(
TFE_Context*);
TFE_ContextUpdateServerDef
Update an existing context with a new set of servers defined in a ServerDef
proto. Servers can be added to and removed from the list of remote workers
in the context. A New set of servers identified by the ServerDef must be up
when the context is updated.
This API is for experimental usage and may be subject to change.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_ContextUpdateServerDef(TFE_Context* ctx,
int keep_alive_secs,
const void* proto,
size_t proto_len,
TF_Status* status);
TFE_ContextCheckAlive
Checks whether a remote worker is alive or not. This will return true even if
the context doesn't exist on the remote worker.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern bool TFE_ContextCheckAlive(TFE_Context* ctx,
const char* worker_name,
TF_Status* status);
TFE_ContextAsyncWait
Sync pending nodes in local executors (including the context default executor
and thread executors) and streaming requests to remote executors, and get the
combined status.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_ContextAsyncWait(TFE_Context* ctx,
TF_Status* status);
TFE_TensorHandleDevicePointer
This function will block till the operation that produces `h` has
completed. This is only valid on local TFE_TensorHandles. The pointer
returned will be on the device in which the TFE_TensorHandle resides (so e.g.
for a GPU tensor this will return a pointer to GPU memory). The pointer is
only guaranteed to be valid until TFE_DeleteTensorHandle is called on this
TensorHandle. Only supports POD data types.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void* TFE_TensorHandleDevicePointer(TFE_TensorHandle*,
TF_Status*);
TFE_TensorHandleDeviceMemorySize
This function will block till the operation that produces `h` has
completed. This is only valid on local TFE_TensorHandles. Returns the size in
bytes of the memory pointed to by the device pointer returned above.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern size_t TFE_TensorHandleDeviceMemorySize(TFE_TensorHandle*,
TF_Status*);
TFE_NewTensorHandleFromDeviceMemory
Creates a new TensorHandle from memory residing in the physical device
device_name. Takes ownership of the memory, and will call deleter to release
it after TF no longer needs it or in case of error.
Custom devices must use TFE_NewCustomDeviceTensorHandle instead.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_NewTensorHandleFromDeviceMemory(
TFE_Context* ctx, const char* device_name, TF_DataType, const int64_t* dims,
int num_dims, void* data, size_t len,
void (*deallocator)(void* data, size_t len, void* arg),
void* deallocator_arg, TF_Status* status);
TFE_HostAddressSpace
Retrieves the address space (i.e. job, replia, task) of the local host and
saves it in the buffer.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_HostAddressSpace(TFE_Context* ctx,
TF_Buffer* buf);
TFE_OpGetAttrs
Fetch a reference to `op`'s attributes. The returned reference is only valid
while `op` is alive.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern const TFE_OpAttrs* TFE_OpGetAttrs(const TFE_Op* op);
TFE_OpAddAttrs
Add attributes in `attrs` to `op`.
Does not overwrite or update existing attributes, but adds new ones.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_OpAddAttrs(TFE_Op* op, const TFE_OpAttrs* attrs);
TFE_OpAttrsSerialize
Serialize `attrs` as a tensorflow::NameAttrList protocol buffer (into `buf`),
containing the op name and a map of its attributes.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_OpAttrsSerialize(const TFE_OpAttrs* attrs,
TF_Buffer* buf,
TF_Status* status);
TFE_OpSetAttrValueProto
Set an op's attribute from a serialized AttrValue protocol buffer.
Analogous to TF_SetAttrValueProto for building graph operations.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_OpSetAttrValueProto(const TFE_Op* op,
const char* attr_name,
const void* proto,
size_t proto_len,
TF_Status* status);
TFE_RegisterCustomDevice
Registers a custom device for use with eager execution.
Eager operations may be placed on this device, e.g. `with
tf.device("CUSTOM"):` from Python if `device_name` for this call is
"/job:localhost/replica:0/task:0/device:CUSTOM:0".
The custom device defines copy operations for moving TensorHandles on and
off, and an execution operation for named operations. Often execution will
simply wrap op execution on one or more physical devices.
device_info is an opaque caller-defined type stored with the custom device
which is passed to the functions referenced in the TFE_CustomDevice struct
`device` (execute, delete_device, etc.). It can for example contain the
names of wrapped devices.
There are currently no graph semantics implemented for registered custom
devices, so executing tf.functions which contain operations placed on the
custom devices will fail.
`device_name` must not name an existing physical or custom device. It must
follow the format:
/job:<name>/replica:<replica>/task:<task>/device:<type>:<device_num>
If the device is successfully registered, `status` is set to TF_OK. Otherwise
the device is not usable. In case of a bad status, `device.delete_device` is
still called on `device_info` (i.e. the caller does not retain ownership).
This API is highly experimental, and in particular is expected to change when
it starts supporting operations with attributes and when tf.function support
is added.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_RegisterCustomDevice(TFE_Context* ctx,
TFE_CustomDevice device,
const char* device_name,
void* device_info,
TF_Status* status);
TFE_IsCustomDevice
Returns whether `device_name` maps to a registered custom device.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern bool TFE_IsCustomDevice(TFE_Context* ctx,
const char* device_name);
TFE_NewCustomDeviceTensorHandle
Creates a new TensorHandle from memory residing in a custom device. Takes
ownership of the memory pointed to by `tensor_handle_data`, and calls
`methods.deallocator` to release it after TF no longer needs it or in case of
an error.
This call is similar to `TFE_NewTensorHandleFromDeviceMemory`, but supports
custom devices instead of physical devices and does not require blocking
waiting for exact shapes.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_NewCustomDeviceTensorHandle(
TFE_Context*, const char* device_name, TF_DataType, void* data,
TFE_CustomDeviceTensorHandle methods, TF_Status* status);
TFE_ContextGetFunctionDef
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_ContextGetFunctionDef(TFE_Context* ctx,
const char* function_name,
TF_Buffer* buf,
TF_Status* status);
TFE_AllocateHostTensor
Allocate and return a new Tensor on the host.
The caller must set the Tensor values by writing them to the pointer returned
by TF_TensorData with length TF_TensorByteSize.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TF_Tensor* TFE_AllocateHostTensor(TFE_Context* ctx,
TF_DataType dtype,
const int64_t* dims,
int num_dims,
TF_Status* status);
TFE_NewTensorHandleFromTensor
Given a Tensor, wrap it with a TensorHandle
Similar to TFE_NewTensorHandle, but includes a pointer to the TFE_Context.
The context should be identical to that of the Tensor.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT TFE_TensorHandle* TFE_NewTensorHandleFromTensor(
TFE_Context* ctx, TF_Tensor* t, TF_Status* status);
TFE_CreatePackedTensorHandle
Create a packed TensorHandle with the given list of TensorHandles.
If `handles` are on the same device, assign the same device to the packed
handle; if `handles` are on different deivces, assign a CompositeDevice to
it.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_CreatePackedTensorHandle(
TFE_Context* ctx, TFE_TensorHandle** handles, int* num_handles,
TF_Status* status);
TFE_ContextSetSoftDevicePlacement
Configure soft device placement policy for the eager executor. Note this
policy is applied to any subsequent op executions.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT void TFE_ContextSetSoftDevicePlacement(TFE_Context* ctx,
unsigned char enable,
TF_Status* status);
TFE_ContextSetLogDevicePlacement
Configure device placement policy logging for the eager executor. Note this
policy is applied to any subsequent op executions.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT void TFE_ContextSetLogDevicePlacement(TFE_Context* ctx,
unsigned char enable,
TF_Status* status);
TFE_ContextSetRunEagerOpAsFunction
Enables running eager ops as function.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT void TFE_ContextSetRunEagerOpAsFunction(TFE_Context* ctx,
unsigned char enable,
TF_Status* status);
TFE_ContextSetJitCompileRewrite
Enables rewrite jit_compile functions.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT void TFE_ContextSetJitCompileRewrite(TFE_Context* ctx,
unsigned char enable,
TF_Status* status);
TFE_TensorHandleDeviceType
Returns the device type of the operation that produced `h`.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern const char* TFE_TensorHandleDeviceType(
TFE_TensorHandle* h, TF_Status* status);
TFE_TensorHandleDeviceID
Returns the device ID of the operation that produced `h`.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern int TFE_TensorHandleDeviceID(TFE_TensorHandle* h,
TF_Status* status);
TFE_TensorHandleGetStatus
Returns the status for the tensor handle. In TFRT, a tensor handle can carry
error info if error happens. If so, the status will be set with the error
info. If not, status will be set as OK.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_TensorHandleGetStatus(TFE_TensorHandle* h,
TF_Status* status);
TFE_GetExecutedOpNames
Get a comma-separated list of op names executed in graph functions dispatched
to `ctx`. This feature is currently only enabled for TFRT debug builds, for
performance and simplicity reasons.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_GetExecutedOpNames(TFE_Context* ctx,
TF_Buffer* buf,
TF_Status* status);
TFE_SetLogicalCpuDevices
Set logical devices to the context's device manager.
If logical devices are already configured at context initialization
through TFE_ContextOptions, this method should not be called.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_SetLogicalCpuDevices(TFE_Context* ctx,
int num_cpus,
const char* prefix,
TF_Status* status);
TFE_InsertConfigKeyValue
Set configuration key and value using coordination service.
If coordination service is enabled, the key-value will be stored on the
leader and become accessible to all workers in the cluster.
Currently, a config key can only be set with one value, and subsequently
setting the same key will lead to errors.
Note that the key-values are only expected to be used for cluster
configuration data, and should not be used for storing a large amount of data
or being accessed very frequently.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_InsertConfigKeyValue(TFE_Context* ctx,
const char* key,
const char* value,
TF_Status* status);
TFE_GetConfigKeyValue
Get configuration key and value using coordination service.
The config key must be set before getting its value. Getting value of
non-existing config keys will result in errors.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_GetConfigKeyValue(TFE_Context* ctx,
const char* key,
TF_Buffer* value_buf,
TF_Status* status);
TFE_DeleteConfigKeyValue
Delete configuration key-value. If `key` is a directory, recursively clean up
all key-values under the path specified by `key`.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_DeleteConfigKeyValue(TFE_Context* ctx,
const char* key,
TF_Status* status);
TFE_ReportErrorToCluster
Report error (specified by error_code and error_message) to other tasks in
the cluster.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_ReportErrorToCluster(TFE_Context* ctx,
int error_code,
const char* error_message,
TF_Status* status);
TFE_GetTaskStates
Get task states from the Coordination Service.
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_GetTaskStates(TFE_Context* ctx,
const TF_Buffer& tasks,
void* states, TF_Status* status);
TFE_WaitAtBarrier
/* From <tensorflow/c/eager/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_WaitAtBarrier(TFE_Context* ctx,
const char* barrier_id,
int64_t barrier_timeout_in_ms,
TF_Status* status);
TF_GetNodesToPreserveListSize
Get a set of node names that must be preserved. They can not be transformed
or removed during the graph transformation. This includes feed and fetch
nodes, keep_ops, init_ops. Fills in `num_values` and `storage_size`, they
will be used in `TF_GetNodesToPreserveList`.
/* From <tensorflow/c/experimental/grappler/grappler.h> */
TF_CAPI_EXPORT extern void TF_GetNodesToPreserveListSize(
const TF_GrapplerItem* item, int* num_values, size_t* storage_size,
TF_Status* status);
TF_GetNodesToPreserveList
Get a set of node names that must be preserved. They can not be transformed
or removed during the graph transformation. This includes feed and fetch
nodes, keep_ops, init_ops. Fills in `values` and `lengths`, each of which
must point to an array of length at least `num_values`.
The elements of values will point to addresses in `storage` which must be at
least `storage_size` bytes in length. `num_values` and `storage` can be
obtained from TF_GetNodesToPreserveSize
Fails if storage_size is too small to hold the requested number of strings.
/* From <tensorflow/c/experimental/grappler/grappler.h> */
TF_CAPI_EXPORT extern void TF_GetNodesToPreserveList(
const TF_GrapplerItem* item, char** values, size_t* lengths, int num_values,
void* storage, size_t storage_size, TF_Status* status);
TF_GetFetchNodesListSize
Get a set of node names for fetch nodes. Fills in `values` and `lengths`,
they will be used in `TF_GetFetchNodesList`
/* From <tensorflow/c/experimental/grappler/grappler.h> */
TF_CAPI_EXPORT extern void TF_GetFetchNodesListSize(const TF_GrapplerItem* item,
int* num_values,
size_t* storage_size,
TF_Status* status);
TF_GetFetchNodesList
Get a set of node names for fetch nodes. Fills in `values` and `lengths`,
each of which must point to an array of length at least `num_values`.
The elements of values will point to addresses in `storage` which must be at
least `storage_size` bytes in length. `num_values` and `storage` can be
obtained from TF_GetFetchNodesSize
Fails if storage_size is too small to hold the requested number of strings.
/* From <tensorflow/c/experimental/grappler/grappler.h> */
TF_CAPI_EXPORT extern void TF_GetFetchNodesList(const TF_GrapplerItem* item,
char** values, size_t* lengths,
int num_values, void* storage,
size_t storage_size,
TF_Status* status);
TF_NewGraphProperties
Create GraphProperties. The item must outlive the properties.
/* From <tensorflow/c/experimental/grappler/grappler.h> */
TF_CAPI_EXPORT extern TF_GraphProperties* TF_NewGraphProperties(
const TF_GrapplerItem* item);
TF_DeleteGraphProperties
Delete GraphProperties.
/* From <tensorflow/c/experimental/grappler/grappler.h> */
TF_CAPI_EXPORT extern void TF_DeleteGraphProperties(
TF_GraphProperties* graph_properties);
TF_InferStatically
Infer tensor shapes through abstract interpretation.
If assume_valid_feeds is true, it can help infer shapes in the fanout of fed
nodes. This may cause incorrectness in graph analyses, but is useful for
simulation or scheduling.
If aggressive_shape_inference is true, nodes are executed on the host to
identify output values when possible and does other aggressive strategies.
This may cause incorrectness in graph analyses, but is useful for simulation
or scheduling.
If include_input_tensor_values is true, the values of constant
tensors will included in the input properties.
If include_output_tensor_values is true, the values of constant tensors will
be included in the output properties.
/* From <tensorflow/c/experimental/grappler/grappler.h> */
TF_CAPI_EXPORT extern void TF_InferStatically(
TF_GraphProperties* graph_properties, TF_Bool assume_valid_feeds,
TF_Bool aggressive_shape_inference, TF_Bool include_input_tensor_values,
TF_Bool include_output_tensor_values, TF_Status* s);
TF_GetInputPropertiesListSize
Get the size of input OpInfo::TensorProperties given node name.
/* From <tensorflow/c/experimental/grappler/grappler.h> */
TF_CAPI_EXPORT extern void TF_GetInputPropertiesListSize(
TF_GraphProperties* graph_properties, const char* name, int* num_values,
TF_Status* status);
TF_GetOutputPropertiesListSize
Get the size of output OpInfo::TensorProperties given node name.
/* From <tensorflow/c/experimental/grappler/grappler.h> */
TF_CAPI_EXPORT extern void TF_GetOutputPropertiesListSize(
TF_GraphProperties* graph_properties, const char* name, int* num_values,
TF_Status* status);
TF_GetInputPropertiesList
Get a list of input OpInfo::TensorProperties given node name.
Return the serialized list `properties`.
/* From <tensorflow/c/experimental/grappler/grappler.h> */
TF_CAPI_EXPORT extern void TF_GetInputPropertiesList(
TF_GraphProperties* graph_properties, const char* name,
TF_Buffer** properties, int num_values, TF_Status* status);
TF_GetOutputPropertiesList
Get a list of output OpInfo::TensorProperties given node name.
Return the serialized list `properties`.
/* From <tensorflow/c/experimental/grappler/grappler.h> */
TF_CAPI_EXPORT extern void TF_GetOutputPropertiesList(
TF_GraphProperties* graph_properties, const char* name,
TF_Buffer** properties, int num_values, TF_Status* status);
TF_NewFunctionLibraryDefinition
Create NewFunctionLibraryDefinition.
/* From <tensorflow/c/experimental/grappler/grappler.h> */
TF_CAPI_EXPORT extern TF_FunctionLibraryDefinition*
TF_NewFunctionLibraryDefinition(const TF_Buffer* graph_buf, TF_Status* status);
TF_DeleteFunctionLibraryDefinition
Delete NewFunctionLibraryDefinition.
/* From <tensorflow/c/experimental/grappler/grappler.h> */
TF_CAPI_EXPORT extern void TF_DeleteFunctionLibraryDefinition(
TF_FunctionLibraryDefinition* fn_lib);
TF_LookUpOpDef
Shorthand for calling LookUp to get the OpDef from FunctionLibraryDefinition
given op name. The returned OpDef is represented by TF_Buffer.
/* From <tensorflow/c/experimental/grappler/grappler.h> */
TF_CAPI_EXPORT extern void TF_LookUpOpDef(TF_FunctionLibraryDefinition* fn_lib,
const char* name, TF_Buffer* buf,
TF_Status* s);
TF_TensorSpecDataType
Returns the dtype associated with the TensorSpec.
/* From <tensorflow/c/experimental/saved_model/public/tensor_spec.h> */
TF_CAPI_EXPORT extern TF_DataType TF_TensorSpecDataType(
const TF_TensorSpec* spec);
TF_TensorSpecShape
Returns the shape associated with the TensorSpec. The returned Shape is not
owned by the caller. Caller must not call TF_DeleteShape on the returned
shape.
/* From <tensorflow/c/experimental/saved_model/public/tensor_spec.h> */
TF_CAPI_EXPORT extern const TF_Shape* TF_TensorSpecShape(
const TF_TensorSpec* spec);
TF_InitPlugin
/// Initializes a TensorFlow plugin.
///
/// Must be implemented by the plugin DSO. It is called by TensorFlow runtime.
///
/// Filesystem plugins can be loaded on demand by users via
/// `Env::LoadLibrary` or during TensorFlow's startup if they are on certain
/// paths (although this has a security risk if two plugins register for the
/// same filesystem and the malicious one loads before the legimitate one -
/// but we consider this to be something that users should care about and
/// manage themselves). In both of these cases, core TensorFlow looks for
/// the `TF_InitPlugin` symbol and calls this function.
///
/// For every filesystem URI scheme that this plugin supports, the plugin must
/// add one `TF_FilesystemPluginInfo` entry in `plugin_info->ops` and call
/// `TF_SetFilesystemVersionMetadata` for that entry.
///
/// Plugins must also initialize `plugin_info->plugin_memory_allocate` and
/// `plugin_info->plugin_memory_free` to ensure memory allocated by plugin is
/// freed in a compatible way.
/* From <tensorflow/c/experimental/filesystem/filesystem_interface.h> */
TF_CAPI_EXPORT extern void TF_InitPlugin(TF_FilesystemPluginInfo* plugin_info);
TF_LoadSavedModel
Load a SavedModel from `dirname`. We expect the SavedModel to contain a
single Metagraph (as for those exported from TF2's `tf.saved_model.save`).
Params:
dirname - A directory filepath that the SavedModel is at.
ctx - A TFE_Context containing optional load/TF runtime options.
`ctx` must outlive the returned TF_SavedModel pointer.
status - Set to OK on success and an appropriate error on failure.
Returns:
If status is not OK, returns nullptr. Otherwise, returns a newly created
TF_SavedModel instance. It must be deleted by calling TF_DeleteSavedModel.
/* From <tensorflow/c/experimental/saved_model/public/saved_model_api.h> */
TF_CAPI_EXPORT extern TF_SavedModel* TF_LoadSavedModel(const char* dirname,
TFE_Context* ctx,
TF_Status* status);
TF_LoadSavedModelWithTags
Load a SavedModel from `dirname`.
Params:
dirname - A directory filepath that the SavedModel is at.
ctx - A TFE_Context containing optional load/TF runtime options.
`ctx` must outlive the returned TF_SavedModel pointer.
tags - char* array of SavedModel tags. We will load the metagraph matching
the tags.
tags_len - number of elements in the `tags` array.
status - Set to OK on success and an appropriate error on failure.
Returns:
If status is not OK, returns nullptr. Otherwise, returns a newly created
TF_SavedModel instance. It must be deleted by calling TF_DeleteSavedModel.
/* From <tensorflow/c/experimental/saved_model/public/saved_model_api.h> */
TF_CAPI_EXPORT extern TF_SavedModel* TF_LoadSavedModelWithTags(
const char* dirname, TFE_Context* ctx, const char* const* tags,
int tags_len, TF_Status* status);
TF_DeleteSavedModel
Deletes a TF_SavedModel, and frees any resources owned by it.
/* From <tensorflow/c/experimental/saved_model/public/saved_model_api.h> */
TF_CAPI_EXPORT extern void TF_DeleteSavedModel(TF_SavedModel* model);
TF_GetSavedModelConcreteFunction
Retrieve a function from the TF2 SavedModel via function path.
Params:
model - The TF2 SavedModel to load a function from.
function_path - A string containing the path from the root saved python
object to a tf.function method.
TODO(bmzhao): Add a detailed example of this with a
python tf.module before moving this out of experimental.
status - Set to OK on success and an appropriate error on failure.
Returns:
If status is not OK, returns nullptr. Otherwise, returns a
TF_ConcreteFunction instance. The lifetime of this instance is
"conceptually" bound to `model`. Once `model` is deleted, all
`TF_ConcreteFunctions` retrieved from it are invalid, and have been deleted.
/* From <tensorflow/c/experimental/saved_model/public/saved_model_api.h> */
TF_CAPI_EXPORT extern TF_ConcreteFunction* TF_GetSavedModelConcreteFunction(
TF_SavedModel* model, const char* function_path, TF_Status* status);
TF_GetSavedModelSignatureDefFunction
Retrieve a function from the TF SavedModel via a SignatureDef key.
Params:
model - The SavedModel to load a function from.
signature_def_key - The string key of the SignatureDef map of a SavedModel:
https://github.com/tensorflow/tensorflow/blob/69b08900b1e991d84bce31f3b404f5ed768f339f/tensorflow/core/protobuf/meta_graph.proto#L89
status - Set to OK on success and an appropriate error on failure.
Returns:
If status is not OK, returns nullptr. Otherwise, returns a
TF_SignatureDefFunction instance. Once `model` is deleted, all
`TF_SignatureDefFunctions` retrieved from it are invalid, and have been
deleted.
/* From <tensorflow/c/experimental/saved_model/public/saved_model_api.h> */
TF_CAPI_EXPORT extern TF_SignatureDefFunction*
TF_GetSavedModelSignatureDefFunction(TF_SavedModel* model,
const char* signature_def_key,
TF_Status* status);
TF_ConcreteFunctionGetMetadata
Returns FunctionMetadata associated with `func`. Metadata's lifetime is
bound to `func`, which is bound to the TF_SavedModel it was loaded from.
/* From <tensorflow/c/experimental/saved_model/public/concrete_function.h> */
TF_CAPI_EXPORT extern TF_FunctionMetadata* TF_ConcreteFunctionGetMetadata(
TF_ConcreteFunction* func);
TF_ConcreteFunctionMakeCallOp
Returns a TFE_Op suitable for executing this function. Caller must provide
all function inputs in `inputs`, and must not add any additional inputs on
the returned op. (i.e. don't call TFE_OpAddInput or TFE_OpAddInputList).
The caller is responsible for deleting the returned TFE_Op. If op
construction fails, `status` will be non-OK and the returned pointer will be
null.
TODO(bmzhao): Remove this function in a subsequent change; Design + implement
a Function Execution interface for ConcreteFunction that accepts a tagged
union of types (tensorflow::Value). This effectively requires moving much of
the implementation of function.py/def_function.py to C++, and exposing a
high-level API here. A strawman for what this interface could look like:
TF_Value* TF_ExecuteFunction(TFE_Context*, TF_ConcreteFunction*, TF_Value*
inputs, int num_inputs, TF_Status* status);
/* From <tensorflow/c/experimental/saved_model/public/concrete_function.h> */
TF_CAPI_EXPORT extern TFE_Op* TF_ConcreteFunctionMakeCallOp(
TF_ConcreteFunction* func, TFE_TensorHandle** inputs, int num_inputs,
TF_Status* status);
TF_SignatureDefParamName
Returns the name of the given parameter. The caller is not responsible for
freeing the returned char*.
/* From <tensorflow/c/experimental/saved_model/public/signature_def_param.h> */
TF_CAPI_EXPORT extern const char* TF_SignatureDefParamName(
const TF_SignatureDefParam* param);
TF_SignatureDefParamTensorSpec
Returns the TensorSpec associated with the given parameter. The caller is
not reponsible for freeing the returned TF_TensorSpec*.
/* From <tensorflow/c/experimental/saved_model/public/signature_def_param.h> */
TF_CAPI_EXPORT extern const TF_TensorSpec* TF_SignatureDefParamTensorSpec(
const TF_SignatureDefParam* param);
TF_SignatureDefFunctionGetMetadata
Returns FunctionMetadata associated with `func`. Metadata's lifetime is
bound to `func`, which is bound to the TF_SavedModel it was loaded from.
/* From <tensorflow/c/experimental/saved_model/public/signature_def_function.h> */
TF_CAPI_EXPORT extern TF_SignatureDefFunctionMetadata*
TF_SignatureDefFunctionGetMetadata(TF_SignatureDefFunction* func);
TF_SignatureDefFunctionMakeCallOp
Returns a TFE_Op suitable for executing this function. Caller must provide
all function inputs in `inputs`, and must not add any additional inputs on
the returned op. (i.e. don't call TFE_OpAddInput or TFE_OpAddInputList).
The caller is responsible for deleting the returned TFE_Op. If op
construction fails, `status` will be non-OK and the returned pointer will be
null.
/* From <tensorflow/c/experimental/saved_model/public/signature_def_function.h> */
TF_CAPI_EXPORT extern TFE_Op* TF_SignatureDefFunctionMakeCallOp(
TF_SignatureDefFunction* func, TFE_TensorHandle** inputs, int num_inputs,
TF_Status* status);
TF_ConcreteFunctionListSize
Returns the size of `list`.
/* From <tensorflow/c/experimental/saved_model/public/concrete_function_list.h> */
TF_CAPI_EXPORT extern size_t TF_ConcreteFunctionListSize(
TF_ConcreteFunctionList* list);
TF_ConcreteFunctionListGet
Returns the `i`th TF_ConcreteFunction in the list.
/* From <tensorflow/c/experimental/saved_model/public/concrete_function_list.h> */
TF_CAPI_EXPORT extern TF_ConcreteFunction* TF_ConcreteFunctionListGet(
TF_ConcreteFunctionList* list, int i);
TF_DeleteConcreteFunctionList
Deletes `list`.
/* From <tensorflow/c/experimental/saved_model/public/concrete_function_list.h> */
TF_CAPI_EXPORT extern void TF_DeleteConcreteFunctionList(
TF_ConcreteFunctionList* list);
TF_SignatureDefParamListSize
Returns the size of `list`.
/* From <tensorflow/c/experimental/saved_model/public/signature_def_param_list.h> */
TF_CAPI_EXPORT extern size_t TF_SignatureDefParamListSize(
const TF_SignatureDefParamList* list);
TF_SignatureDefParamListGet
Returns the `i`th TF_SignatureDefParam in the list.
/* From <tensorflow/c/experimental/saved_model/public/signature_def_param_list.h> */
TF_CAPI_EXPORT extern const TF_SignatureDefParam* TF_SignatureDefParamListGet(
const TF_SignatureDefParamList* list, int i);
TF_SignatureDefFunctionMetadataArgs
Retrieves the arguments of the SignatureDefFunction. The caller is not
responsible for freeing the returned pointer.
/* From <tensorflow/c/experimental/saved_model/public/signature_def_function_metadata.h> */
TF_CAPI_EXPORT extern const TF_SignatureDefParamList*
TF_SignatureDefFunctionMetadataArgs(
const TF_SignatureDefFunctionMetadata* list);
TF_SignatureDefFunctionMetadataReturns
Retrieves the returns of the SignatureDefFunction. The caller is not
responsible for freeing the returned pointer.
/* From <tensorflow/c/experimental/saved_model/public/signature_def_function_metadata.h> */
TF_CAPI_EXPORT extern const TF_SignatureDefParamList*
TF_SignatureDefFunctionMetadataReturns(
const TF_SignatureDefFunctionMetadata* list);
TF_EnableXLACompilation
When `enable` is true, set
tensorflow.ConfigProto.OptimizerOptions.global_jit_level to ON_1, and also
set XLA flag values to prepare for XLA compilation. Otherwise set
global_jit_level to OFF.
This and the next API are syntax sugar over TF_SetConfig(), and is used by
clients that cannot read/write the tensorflow.ConfigProto proto.
TODO: Migrate to TF_CreateConfig() below.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TF_EnableXLACompilation(TF_SessionOptions* options,
unsigned char enable);
TF_SetXlaEnableLazyCompilation
Set XLA's internal BuildXlaOpsPassFlags.tf_xla_enable_lazy_compilation to the
value of 'enabled'. Also returns the original value of that flag.
Use in tests to allow XLA to fallback to TF classic. This has global effect.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT unsigned char TF_SetXlaEnableLazyCompilation(
unsigned char enable);
TF_SetTfXlaCpuGlobalJit
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT unsigned char TF_SetTfXlaCpuGlobalJit(unsigned char enable);
TF_SetXlaAutoJitMode
Sets XLA's auto jit mode according to the specified string, which is parsed
as if passed in XLA_FLAGS. This has global effect.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT void TF_SetXlaAutoJitMode(const char* mode);
TF_GetXlaAutoJitEnabled
Returns whether the single GPU or general XLA auto jit optimizations are
enabled through MarkForCompilationPassFlags.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT unsigned char TF_GetXlaAutoJitEnabled();
TF_SetXlaMinClusterSize
Sets XLA's minimum cluster size. This has global effect.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT void TF_SetXlaMinClusterSize(int size);
TF_GetXlaConstantFoldingDisabled
Gets/Sets TF/XLA flag for whether(true) or not(false) to disable constant
folding. This is for testing to ensure that XLA is being tested rather than
Tensorflow's CPU implementation through constant folding.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT unsigned char TF_GetXlaConstantFoldingDisabled();
TF_SetXlaConstantFoldingDisabled
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT void TF_SetXlaConstantFoldingDisabled(
unsigned char should_enable);
TF_CreateConfig
Create a serialized tensorflow.ConfigProto proto, where:
a) ConfigProto.optimizer_options.global_jit_level is set to ON_1 if
`enable_xla_compilation` is non-zero, and OFF otherwise.
b) ConfigProto.gpu_options.allow_growth is set to `gpu_memory_allow_growth`.
c) ConfigProto.device_count is set to `num_cpu_devices`.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern TF_Buffer* TF_CreateConfig(
unsigned char enable_xla_compilation, unsigned char gpu_memory_allow_growth,
unsigned int num_cpu_devices);
TF_CreateRunOptions
Create a serialized tensorflow.RunOptions proto, where RunOptions.trace_level
is set to FULL_TRACE if `enable_full_trace` is non-zero, and NO_TRACE
otherwise.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern TF_Buffer* TF_CreateRunOptions(
unsigned char enable_full_trace);
TF_GraphDebugString
Returns the graph content in a human-readable format, with length set in
`len`. The format is subject to change in the future.
The returned string is heap-allocated, and caller should call free() on it.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern const char* TF_GraphDebugString(TF_Graph* graph,
size_t* len);
TF_FunctionDebugString
Returns the function content in a human-readable format, with length set in
`len`. The format is subject to change in the future.
The returned string is heap-allocated, and caller should call free() on it.
Do not return const char*, because some foreign language binding
(e.g. swift) cannot then call free() on the returned pointer.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern char* TF_FunctionDebugString(TF_Function* func,
size_t* len);
TF_DequeueNamedTensor
Caller must call TF_DeleteTensor() over the returned tensor. If the queue is
empty, this call is blocked.
Tensors are enqueued via the corresponding TF enqueue op.
TODO(hongm): Add support for `timeout_ms`.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern TF_Tensor* TF_DequeueNamedTensor(TF_Session* session,
int tensor_id,
TF_Status* status);
TF_EnqueueNamedTensor
On success, enqueues `tensor` into a TF-managed FifoQueue given by
`tensor_id`, associated with `session`. There must be a graph node named
"fifo_queue_enqueue_<tensor_id>", to be executed by this API call. It reads
from a placeholder node "arg_tensor_enqueue_<tensor_id>".
`tensor` is still owned by the caller. This call will be blocked if the queue
has reached its capacity, and will be unblocked when the queued tensors again
drop below the capacity due to dequeuing.
Tensors are dequeued via the corresponding TF dequeue op.
TODO(hongm): Add support for `timeout_ms`.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TF_EnqueueNamedTensor(TF_Session* session,
int tensor_id,
TF_Tensor* tensor,
TF_Status* status);
TF_MakeInternalErrorStatus
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TF_MakeInternalErrorStatus(TF_Status* status,
const char* errMsg);
TF_NewCheckpointReader
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern TF_CheckpointReader* TF_NewCheckpointReader(
const char* filename, TF_Status* status);
TF_DeleteCheckpointReader
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TF_DeleteCheckpointReader(
TF_CheckpointReader* reader);
TF_CheckpointReaderHasTensor
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern int TF_CheckpointReaderHasTensor(
TF_CheckpointReader* reader, const char* name);
TF_CheckpointReaderGetVariable
Get the variable name at the given index
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern const char* TF_CheckpointReaderGetVariable(
TF_CheckpointReader* reader, int index);
TF_CheckpointReaderSize
Get the number of variable in the checkpoint
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern int TF_CheckpointReaderSize(TF_CheckpointReader* reader);
TF_CheckpointReaderGetVariableDataType
Get the DataType of a variable
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern TF_DataType TF_CheckpointReaderGetVariableDataType(
TF_CheckpointReader* reader, const char* name);
TF_CheckpointReaderGetVariableShape
Read the shape of a variable and write to `dims`
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TF_CheckpointReaderGetVariableShape(
TF_CheckpointReader* reader, const char* name, int64_t* dims, int num_dims,
TF_Status* status);
TF_CheckpointReaderGetVariableNumDims
Get the number of dimension of a variable
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern int TF_CheckpointReaderGetVariableNumDims(
TF_CheckpointReader* reader, const char* name);
TF_CheckpointReaderGetTensor
Load the weight of a variable
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern TF_Tensor* TF_CheckpointReaderGetTensor(
TF_CheckpointReader* reader, const char* name, TF_Status* status);
TF_NewAttrBuilder
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern TF_AttrBuilder* TF_NewAttrBuilder(const char* op_name);
TF_DeleteAttrBuilder
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TF_DeleteAttrBuilder(TF_AttrBuilder* builder);
TF_AttrBuilderSetType
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TF_AttrBuilderSetType(TF_AttrBuilder* builder,
const char* attr_name,
TF_DataType value);
TF_AttrBuilderSetTypeList
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TF_AttrBuilderSetTypeList(TF_AttrBuilder* builder,
const char* attr_name,
const TF_DataType* values,
int num_values);
TF_AttrBuilderCheckCanRunOnDevice
Checks the tensorflow::NodeDef built via the methods above to see if it can
run on device_type.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TF_AttrBuilderCheckCanRunOnDevice(
TF_AttrBuilder* builder, const char* device_type, TF_Status* status);
TF_GetNumberAttrForOpListInput
For argument number input_index, fetch the corresponding number_attr that
needs to be updated with the argument length of the input list.
Returns nullptr if there is any problem like op_name is not found, or the
argument does not support this attribute type.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern const char* TF_GetNumberAttrForOpListInput(
const char* op_name, int input_index, TF_Status* status);
TF_OpIsStateful
Returns 1 if the op is stateful, 0 otherwise. The return value is undefined
if the status is not ok.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern int TF_OpIsStateful(const char* op_type,
TF_Status* status);
TF_InitMain
Platform specific initialization routine. Very few platforms actually require
this to be called.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT void TF_InitMain(const char* usage, int* argc, char*** argv);
TF_PickUnusedPortOrDie
Platform-specific implementation to return an unused port. (This should used
in tests only.)
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT int TF_PickUnusedPortOrDie(void);
TFE_NewTensorHandleFromScalar
Fast path method that makes constructing a single scalar tensor require less
overhead and copies.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_NewTensorHandleFromScalar(
TF_DataType data_type, void* data, size_t len, TF_Status* status);
TFE_EnableCollectiveOps
Specify the server_def that enables collective ops.
This is different to the above function in that it doesn't create remote
contexts, and remotely executing ops is not possible. It just enables
communication for collective ops.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_EnableCollectiveOps(TFE_Context* ctx,
const void* proto,
size_t proto_len,
TF_Status* status);
TFE_AbortCollectiveOps
Aborts all ongoing collectives with the specified status. After abortion,
subsequent collectives will error with this status immediately. To reset the
collectives, create a new EagerContext.
This is intended to be used when a peer failure is detected.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_AbortCollectiveOps(TFE_Context* ctx,
TF_Status* status);
TFE_CollectiveOpsCheckPeerHealth
Checks the health of collective ops peers. Explicit health check is needed in
multi worker collective ops to detect failures in the cluster. If a peer is
down, collective ops may hang.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_CollectiveOpsCheckPeerHealth(
TFE_Context* ctx, const char* task, int64_t timeout_in_ms,
TF_Status* status);
TF_NewShapeAndTypeList
API for manipulating TF_ShapeAndTypeList objects.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern TF_ShapeAndTypeList* TF_NewShapeAndTypeList(
int num_shapes);
TF_ShapeAndTypeListSetShape
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TF_ShapeAndTypeListSetShape(
TF_ShapeAndTypeList* shape_list, int index, const int64_t* dims,
int num_dims);
TF_ShapeAndTypeListSetUnknownShape
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TF_ShapeAndTypeListSetUnknownShape(
TF_ShapeAndTypeList* shape_list, int index);
TF_ShapeAndTypeListSetDtype
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TF_ShapeAndTypeListSetDtype(
TF_ShapeAndTypeList* shape_list, int index, TF_DataType dtype);
TF_DeleteShapeAndTypeList
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TF_DeleteShapeAndTypeList(
TF_ShapeAndTypeList* shape_list);
TF_DeleteShapeAndTypeListArray
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TF_DeleteShapeAndTypeListArray(
TF_ShapeAndTypeList** shape_list_array, int num_items);
TFE_InferShapes
Infer shapes for the given `op`. The arguments mimic the arguments of the
`shape_inference::InferenceContext` constructor. Note the following:
- The inputs of the `op` are not used for shape inference. So, it is
OK to not have the inputs properly set in `op`. See `input_tensors`
if you want shape inference to consider the input tensors of the
op for shape inference.
- The types need not be set in `input_shapes` as it is not used.
- The number of `input_tensors` should be the same as the number of items
in `input_shapes`.
The results are returned in `output_shapes` and
`output_resource_shapes_and_types`. The caller is responsible for freeing the
memory in these buffers by calling `TF_DeleteShapeAndTypeList`.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TFE_InferShapes(
TFE_Op* op, TF_ShapeAndTypeList* input_shapes, TF_Tensor** input_tensors,
TF_ShapeAndTypeList* input_tensor_as_shapes,
TF_ShapeAndTypeList** input_resource_shapes_and_types,
TF_ShapeAndTypeList** output_shapes,
TF_ShapeAndTypeList*** output_resource_shapes_and_types, TF_Status* status);
TF_ImportGraphDefOptionsSetValidateColocationConstraints
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void
TF_ImportGraphDefOptionsSetValidateColocationConstraints(
TF_ImportGraphDefOptions* opts, unsigned char enable);
TF_LoadPluggableDeviceLibrary
Load the library specified by library_filename and register the pluggable
device and related kernels present in that library. This function is not
supported on embedded on mobile and embedded platforms and will fail if
called.
Pass "library_filename" to a platform-specific mechanism for dynamically
loading a library. The rules for determining the exact location of the
library are platform-specific and are not documented here.
On success, returns the newly created library handle and places OK in status.
The caller owns the library handle.
On failure, returns nullptr and places an error status in status.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern TF_Library* TF_LoadPluggableDeviceLibrary(
const char* library_filename, TF_Status* status);
TF_DeletePluggableDeviceLibraryHandle
Frees the memory associated with the library handle.
Does NOT unload the library.
/* From <tensorflow/c/c_api_experimental.h> */
TF_CAPI_EXPORT extern void TF_DeletePluggableDeviceLibraryHandle(
TF_Library* lib_handle);
SEE ALSO
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/c
AUTHOR
Zakariyya Mughal <zmughal@cpan.org>
COPYRIGHT AND LICENSE
This software is Copyright (c) 2022 by Auto-Parallel Technologies, Inc.
This is free software, licensed under:
The Apache License, Version 2.0, January 2004